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Abstract. Based on temporal difference method in neuro-dynamic pro-
gramming, an adaptive policy for finite state Markov decision processes
with the average reward is constructed under the minorization condition.
We estimate the value function by a learning iteration algorithm. And
the adaptive policy is specified as an ε-forced modification of the greedy
policy for the estimated value and the estimated transition probability
matrix. Also, a numerical experiment for “Toymaker’s problem” is given
to illustrate the validity of the adaptive policy.
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1 Introduction and notation

In the real world, there are many requests to solve uncertain models. Adaptive
models for uncertain Markov decision processes (MDPs) have been considered
by many authors as [6, 12, 14, 15] and so on. The idea of neuro-dynamic program-
ming by [2] seems a recent breakthrough in the practical application of neural
networks and dynamic programming to complex problems of planning, optimal
decision making, and intelligent control. In our previous work [9], the adaptive
policies are constructed by applying the methods of value iteration, cooperated
with the policy improvement(cf. [17]), in which the corresponding value function
is approximated through the expectation with respect to the estimated transition
matrices at each learning step. In order to decrease the amount of computation
necessary for a learning algorithm, we can use the idea of temporal-difference
method(TD-method) in neuro-dynamic programming[1, 2, 4, 10, 18], that is, the
data of the state-action process are directly used for value iteration and pol-
icy improvement at each learning step, by which the amount of computation is
reduced to some extent.
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In this paper, based on TD-method, we propose a way of constructing an
adaptive policy for the average reward criterion. In fact, we will estimate the
value function by the stochastic iteration algorithm that updates the value esti-
mate iteratively using temporal differences made from the data of state-action
process and adaptively optimal policies for a class of MDPs satisfying the mi-
norization condition are constructed as an ε-forced modification of the greedy
policy for the estimated value and transition probability matrices. Also, a nu-
merical experiment for “Toymaker’s problem” in Howard[7] is given to illustrate
the validity of the adaptive policy we have proposed here.

In the reminder of this section, we will formulate finite MDPs whose tran-
sition matrices are unknown but the state at each stage is observable exactly.
Consider a controlled dynamic system with finite state and action spaces, S and
A, containing N <∞ and K <∞ elements respectively.

For any δ > 0, let Qδ denote the parameter space of K unknown stochastic
matrices, defined by

Qδ =







q = (qij(a))

∣

∣

∣

∣

∣

qij(a) ≧ δ,
∑

j∈S

qij(a) = 1 for i, j ∈ S, a ∈ A







.

Throughout this paper, all the tranisition matrices which we are dealing with
are satisfying the minorization condition above(cf. [16]).

The sample space is the product space Ω = (S × A)∞ such that the pro-
jections Xt,∆t on the t-th factors S,A describe the state and action at the
t-th stage of the process(t ≧ 0). Let Π denote the set of all policies, i.e., for
π = (π0, π1, . . .) ∈ Π, let πt ∈ P (A|(S × A)t × S) for all t ≧ 0, where, for
any finite sets X and Y , P (X|Y ) denotes the set of all conditional probabil-
ity distribution on X given Y . A policy π = (π0, π1, . . .) is called randomized
stationary if a conditional probability ξ = (ξ(·|i) : i ∈ S) ∈ P (A|S) such that
πt(·|x0, a0, . . . , xt) = ξ(·|xt) for all t ≧ 0 and (x0, a0, . . . , xt) ∈ (S×A)t×S. Such
a policy is simply denoted by ξ. We denote by F the set of functions on S with
f(i) ∈ A for all i ∈ S. A randomized stationary policy ξ is called stationary if
there exists a function f ∈ F with ξ({f(i)}|i) = 1 for all i ∈ S, which is denoted
simply by f .

We will construct a probability space as follows: For any initial state X0 =
i, π ∈ Π and a transition law q = (qij(a)) ∈ Q, let P (Xt+1 = j|X0,∆0, . . . ,Xt =
i,∆t = a) = qij(a) and P (∆t = a|X0,∆0, . . . ,Xt = i) = πt(a|X0,∆0, . . . ,Xt =
i) (t ≧ 0). Then, we can define the probability measure Pπ(·|X0 = i, q) on Ω.

For a given reward function r on S × A, we shall consider the long-run
expected average reward:

ψ(i, q|π) = lim inf
T→∞

1

T + 1
Eπ

(

T
∑

t=0

r(Xt,∆t)

∣

∣

∣

∣

∣

X0 = i, q

)

(1)

where Eπ(·|X0 = i, q) is the expectation operator with respect to Pπ(·|X0 = i, q).
Then, for any fixed δ > 0, the problem is to maximize ψ(i, q|π) over all π ∈ Π

for i ∈ S and q ∈ Qδ.
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Thus, for q ∈ Qδ denoting by ψ(i, q) the value function, i.e.,

ψ(i, q) = sup
π∈Π

ψ(i, q|π), (2)

π∗ ∈ Π will be called q-optimal if ψ(i, q|π∗) = ψ(i, q) for all i ∈ S and called
adaptively optimal if π∗ is q-optimal for all q ∈ Qδ.

In Section 2, several lemmas are prepared, which are used to prove the va-
lidity of adaptive policies. These notions are proposed in Section 3. A numerical
experiment is given in Section 4.

2 Preliminary lemmas

In this section, several lemmas are given which are used in Section 3.
Let B(S) be the set of all functions on S. The following fact is well-known

(cf. [17]).

Lemma 1 (Puterman [17]). Let q = (qij(a)) ∈ Qδ. Supposed that there exists
a constant g and a v ∈ B(S) such that

v(i) = max
a∈A

{r(i, a) +
∑

j∈S

qij(a)v(j)} − g for all i ∈ S. (3)

Then, g is unique and g = ψ(i, q) = ψ(i, q|f) for i ∈ S, where f ∈ F is q-optimal
and f(i) is a maximizer in the right-hand side of (3) for all i ∈ S.

For any q ∈ Qδ, we define the map U{q} : B(S) → B(S) by

U{q}u(i) = max
a∈A

{

r(i, a) +
∑

j∈S

(

qij(a) − δ
)

u(j)

}

(4)

Then, U(q) is easily proved to be a contraction mapping, so that there is a fixed
point. Let h(q) ∈ B(S) be unique fixed point of U(q). We have the optimality
equation for the average case:

h(q) = U{q}h(q) for each q ∈ Qδ. (5)

Putting ψ∗(q) = δ
∑

j∈S h(q)(j) in (5), we obtain the optimality equation:

h(q)(i) = max
a∈A

{

r(i, a) − ψ∗(q) +
∑

j∈S

qij(a)h(q)(j)

}

(6)

for i ∈ S. Then, by applying Lemma 1, we have the well-known results.

Lemma 2. Let q ∈ Qδ. Then, ψ∗(q) = ψ(i, q) (independent of i ∈ S) and if
f(i) ∈ A∗(i|q) for all i ∈ S, f is q-optimal, where A∗(i|q) is the set of optimal ac-

tions at state i and A∗(i|q) = arg maxa∈A

{

r(i, a)−ψ∗(q)+
∑

j∈S qij(a)h(q)(j)

}
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For any map H : B(S) → B(S), we consider the stochastic algorithm {ṽt :
t = 0, 1, 2, · · · } for the stochastic process {Xt}

∞
t=0 on S, whose update equations

are described by, for i ∈ S,

ṽ0(i) ≡ 0,

ṽt+1(i) =
(

1 − γ̃t(i)
)

ṽt(i) + γ̃t(i)
(

Hṽt(i) +Wt(i) + ut(i)
)

, t ≧ 0
(7)

where γ̃t(i) is a step size at time t and defined for a given sequence {γt(i)} by
γ̃t(i) = γt(i) if Xt = i and = 0 otherwise. Also, {Wt(i)} and {ut(i)} are random
noise terms depending on i ∈ S.

Then, we have the following.

Lemma 3 (cf. Proposition 4.5 in [2]). Suppose that the following condition
(i) – (v).

(i) E[Wt(i)|Ft] = 0 for i ∈ S
(ii) There exist A,B > 0 such that

E
[

Wt(i)
2
∣

∣ Ft

]

≦ A+B‖ṽt‖
2

for t ≧ 0 and i ∈ S.
(iii) H is a contraction with a unique fixed point v∗ ∈ B(S).
(iv) γ̃t(i) ≧ 0,

∑∞
t=0

γ̃t(i) = ∞ and
∑∞

t=0
γ̃t(i)

2 <∞ for t ≧ 0, i ∈ S.
(v) There exists a nonnegative random sequence θt that converges to zero with

probability 1, and such that

|ut(i)| ≦ θt(||ṽt|| + 1)

for i ∈ S and t ≧ 0.

Then, ṽt in (7) converges to v∗ with probability 1, where ||·|| is a supremum norm

and Ft is a minimal σ-field generated by
{

Xℓ(ℓ ≦ t),Wℓ(ℓ ≦ t−1), Uℓ(ℓ ≦ t−1)
}

.

3 TD-based adaptive policies

In this section, an adaptive policy is given by the learning iteration algorithm
using temporal differences.

Lemma 4. Let π = (π0, π1, · · · ) ∈ Π satisfy that πt

(

A∗(j|q)
∣

∣ X0,∆0, · · · ,∆t−1,

Xt = j
)

→ 1 with Pπ(·|X0 = i, q)-probability 1 as t→ ∞ for i, j ∈ S and q ∈ Qδ.
Then, the policy π is adaptively optimal for Qδ.

Proof. Let q ∈ Qδ with δ > 0. For simplicity, put P (·) = Pπ(·|X0 = i, q) and
E(·) = Eπ(·|X0 = i, q). For t ≧ 0, let

σ(Xt,Xt+1) = h(q)(Xt) − (r(Xt,∆t) + h(q)(Xt+1) − ψ∗(q)) .
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Then, we have

E(σ(Xt,Xt+1)|X0,∆0, . . . ,Xt = j)

= h(q)(j) −
∑

a∈A

(

r(j, a) +
∑

ℓ∈S

qjℓ(a)h(q)(ℓ) − ψ∗(q)

)

πt(a|X0 = i, . . . ,Xt = j).

(8)
By assumption of Lemma 4, πt(A

∗(j|q)|X0,∆0, . . . ,Xt = j) → 1 (t → ∞) with
P -probability 1. So, by (8) it holds that E (σ(Xt,Xt+1)|X0,∆0, . . . ,Xt = j) → 0
as t → ∞ with P -probability 1. Applying the dominated convergence theorem,
it follows that E (σ(Xt,Xt+1)) → 0 as t→ ∞. Thus, we have

lim
T→∞

1

T + 1

T
∑

t=0

E(σ(Xt,Xt+1))

= lim
T→∞

(

1

T + 1
E

(

T
∑

t=0

r(Xt,∆t)

)

− ψ∗(q) +
1

T + 1
(h(q)(X0) − h(q)(XT ))

)

=ψ(i, q|π) − ψ∗(q) = 0.

By Lemma 2, ψ∗(q) = ψ(i, q) = ψ(i, q|π) which completes the proof. ⊓⊔
For each i, j ∈ S and a ∈ A, let Nn(i, j|a) =

∑n
t=0

I{Xt=i,∆t=a,Xt+1=j} and
Nn(i|a) =

∑n
t=0

I{Xt=i,∆t=a}, where ID is the indicator function of a set D. Let

qn
ij(a) =







Nn(i, j|a)

Nn(i|a)
if Nn(i|a) > 0,

0 otherwise.

Then, qn
ij =

(

qn
ij(a))

)

is the maximum likelihood estimator of the unknown

transition matrices. For any given q0 =
(

q0ij(a)
)

∈ Qδ, we define q̃n =
(

q̃n
ij(a)

)

∈
Qδ by

q̃n
ij(a) =

{

qn
ij(a) if Nn(i|a) > 0,

q0ij(a) otherwise.

Firstly, the adaptive policy is constructed in the following TD-based learning
algorithm “Algorithm (∗)” with the sequences {εt(i)}

∞
t=0 for each i ∈ S such that

0 < εt(i) < 1 for t ≧ 0 and i ∈ S.

Algorithm (∗):

1. Set t = 0 and ṽ0 ≡ 0 and let π̃0 ∈ P (A|S) be such that π̃0(a|i) > 0 for all
a ∈ A and i ∈ S.

2. Suppose that π̃t ∈ P
(

A
∣

∣ (S × A)t × S
)

and ṽt ∈ B(S) are given and ∆t is
chosen according to π̃t. Observe the next state Xt+1 = j selected according
to the present state Xt = i and ∆t.
At the stage t+1, determine ṽt+1 ∈ B(S) by the TD-based update equation:
for i ∈ S,

ṽt+1(i) =
(

1 − γ̃t(i)
)

ṽt(i) + γ̃t(i)
(

r(i,∆t) + ṽt(Xt+1) − δ
∑

ℓ∈S

ṽt(ℓ)
)

(9)
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where the step size γ̃t is defined as γ̃t(i) = γt(i) if Xt = i, and = 0 otherwise,
for a sequence {γt(i)}.

3. Let ãt+1(i) ∈ arg maxa∈A

{

r(i, a)+
∑

j∈S q̃
t
ij(a)ṽt+1(j)

}

for each i ∈ S. Then

the policy π̃t+1 is given by

π̃t+1(a|i) =
εt(i)

K(i) − 1
if a 6= ãt+1(i),= 1 − εt(i) if a = ãt+1(i), (10)

where K(i) denotes the number of actions in state i.
4. Set t = t+ 1 and return to step 2.

To prove the validity of the adaptive policy given in Algorithm (∗), we need
the following Condition (∗) and Lemmas.

Condition (∗)

(i) limt→∞ εt(i) = 0 and
∑∞

t=0
εt(i) = ∞,

(ii) γt(i) ≧ 0,
∑∞

t=0
γt(i) = ∞ and

∑∞
t=0

γt(i)
2 <∞ for all i ∈ S.

Lemma 5. Suppose that (i) of Condition (∗) holds and q = (qij(a)) ∈ Qδ with
δ > 0. Then, we have

(i) limt→∞Nt(j|a) = ∞ for all j ∈ S and a ∈ A with Pπ̃(·|X0 = i, q)-probability
1,

(ii) qt
ij(a) → qij(a) as t → ∞ for all i, j ∈ S and a ∈ A with Pπ̃(·|X0 = i, q)-

probability 1.

Proof. From Lemma 1 of [11], (i) follows. Also, (ii) follows from the law of large
numbers(cf. [3]). ⊓⊔

Applying Lemma 3, we have the following.

Theorem 1. Suppose that Condition (∗) holds and q = (qij(a)) ∈ Qδ with
δ > 0. Then, ṽt(i) → h(q)(i) as t→ ∞ with Pπ̃(·|X0 = i, q)-probability 1.

Proof. For simplicity, put P (·) = Pπ̃(·|X0 = i, q). We rewrite the update equation
(9) in Algorithm (∗) to:

ṽt+1(i) = (1 − γ̃t(i))ṽt(i) + γ̃t(i) (U{q}ṽt(i) +Wt(i) + ut(i)) (t ≧ 0), (11)

where

Wt(i) = r(i,∆t) + ṽt(Xt+1) − δ
∑

ℓ∈S

ṽt(ℓ)

−
∑

a∈A



r(i, a) +
∑

j∈S

qij(a)ṽt(j) − δ
∑

ℓ∈S

ṽt(ℓ)



 π̃t(a|i), (12)

ut(i) =
∑

a∈A



r(i, a) +
∑

j∈S

qij(a)ṽt(j) − δ
∑

ℓ∈S

ṽt(ℓ)



 π̃t(a|i) − U{q}ṽt(i) (t ≧ 0).

(13)
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It is easily seen that W0(i) = u0(i) = 0 for i ∈ S.
It follows from the definition of U{q} that ||U{q}ṽt|| ≦ ||r|| + (1 − δ)||ṽt||

with 1−δ < 1, so that by Proposition 4.7 of [2], the sequence ṽt is bounded with
P -probability 1. That is, there exists M > 0 such that ||ṽt|| ≦ M for t ≧ 1 with
P -probability 1.

By (12), |Wt(i)| ≦ 2(||r|| +M) for all t ≧ 1 and i ∈ S, such that conditions
(i)–(ii) of Lemma 3.

For ut in (13), we have

|ut(i)| ≦ A1 +A2 +A3 (14)

where

A1 =

∣

∣

∣

∣

∣

∣

∑

a∈A



r(i, a) +
∑

j∈S

q̃t−1

ij (a)ṽt(j) − δ
∑

ℓ∈S

ṽt(ℓ)



 π̃t(a|i) − U{q̃t−1}ṽt(i)

∣

∣

∣

∣

∣

∣

,

A2 =

∣

∣

∣

∣

∣

∣

∑

a∈A



r(i, a) +
∑

j∈S

q̃t−1

ij (a)ṽt(j)



 π̃t(a|i)

−
∑

a∈A



r(i, a) +
∑

j∈S

qij(a)ṽt(j)



 π̃t(a|i)

∣

∣

∣

∣

∣

∣

and

A3 =
∣

∣U{q̃t}ṽt(i) − U{q}ṽt(i)
∣

∣ (t ≧ 1).

By the definition of π̃t, A1 ≦ (||r|| +M) εt where εt = maxi∈S{ε(i)}. We also
observe that A2 ≦ M maxi∈S,a∈A

∑

j∈S

∣

∣q̃t
ij(a) − qij(a)

∣

∣. Moreover, we have

A3 ≦ max
i∈S,a∈A

∣

∣

∣

∣

∣

∣



r(i, a) +
∑

j∈S

q̃t−1

ij ṽt(j)



−



r(i, a) +
∑

j∈S

qij(a)ṽt(j)





∣

∣

∣

∣

∣

∣

= M max
i∈S,a∈A

∑

j∈S

∣

∣q̃t−1

ij (a) − qij(a)
∣

∣ .

Thus, putting θt = εt +maxi∈S,a∈A

∑

j∈S

∣

∣q̃t−1

ij (a) − qij(a)
∣

∣ and C = 3M + ||r||,
it yields that |ut(i)| ≦ Cθt for all t ≧ 0.

By Lemma 5 and (i) of Condition (∗), it clearly holds that θt → 0 as t→ ∞
with P -probability 1, which implies condition (v) of Lemma 3. Thus, since h(q)
is a fixed point of U{q}, by applying Lemma 3, the desired results follows, which
completes the proof. ⊓⊔

The optimality of the adaptive policy π̃ is given in the following.

Theorem 2. Let δ > 0 be arbitrary. Suppose that Condition (∗) holds. Then, π̃
is adaptively optimal for Qδ.
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Proof. Let q = (qij(a)) ∈ Qδ. By Theorem 1, ṽt → h(q) as t→ ∞ with Pπ̃(·|X0 =
i, q)-probability 1. Also, from (ii) of Lemma 5, q̃t

ij(a) → qij(a) as t → ∞ with
Pπ̃(·|X0 = i, q)-probability 1. So, observing Step 3 of Algorithm (∗), we have

π̃t(A
∗(j|q)|X0,∆0, . . . ,∆t−1,Xt = j) = π̃(A∗(j|q)|j) → 1 as t→ ∞.

Thus, from Lemma 4, it follows that π̃ is q-optimal, which completes the proof.
⊓⊔

4 A numerical experiment

In this section, we consider the adaptive case of “Toymaker’s problem” in Howard
[7], for which a numerical experiment by TD-based learning algorithm (Algo-
rithm (∗)) given in Section 3 is put in practice. For the corresponding MDPs,
there exists two states S = {1, 2}, where state 1(2) represents that he has a
successful(unsuccessful) toy. In state 1(2), he has two actions, where action 1(1)
is “no advertising”(“no research”) and action 2(2) is “advertising”(“research”).
The table of the unknown (true) stochastic matrix q and reward function r and
the figure of transition diagrams are given Table 1 and Figure 1.

i a
qij(a)

r(i, a)
1 2

1
1 0.5 0.5 6
2 0.8 0.2 4

2
1 0.4 0.6 −3
2 0.7 0.3 −5

Table 1. Toymaker’s Problem

1 2

0.5

0.5 0.6

0.4

action 1

1 2

0.2

0.8 0.3

0.7

action 2

Fig. 1. Transition diagrams in Toymaker’s problem.

By solving the optimality equation (3), we find that the optimal policy f∗

is such that f∗(1) = f∗(2) = 2 and the optimal average reward g∗ = 2 with
v(1) − v(2) = 10.
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values @
@@δ

t
103 5 × 103 104 5 × 104 105 106

g̃t
0.1 1.436563 1.874825 1.884112 1.930601 1.971630 2.002304
0.01 1.436563 1.872825 1.883312 1.930441 1.971550 2.002296

decision rule @
@@δ

t
103 5 × 103 104 5 × 104 105 106

π̃t(1|1)

0.1

0.998299 0.000275 0.000134 0.000026 0.000013 0.000001
π̃t(2|1) 0.001701 0.999725 0.999866 0.999974 0.999987 0.999999
π̃t(1|2) 0.002387 0.000729 0.000393 0.000086 0.000044 0.000005
π̃t(2|2) 0.997613 0.999271 0.999607 0.999914 0.999956 0.999995

π̃t(1|1)

0.01

0.998299 0.000275 0.000134 0.000026 0.000013 0.000001
π̃t(2|1) 0.001701 0.999725 0.999866 0.999974 0.999987 0.999999
π̃t(1|2) 0.002387 0.000730 0.000394 0.000086 0.000044 0.000005
π̃t(2|2) 0.997613 0.999270 0.999606 0.999914 0.999956 0.999995

Table 2. The simulation value of g̃t and π̃t for δ = 0.1, 0.01

We denote by g̃t the average present value obtained from adaptive policy
π̃ = (π̃0, π̃1, . . .) constructed through Algorithm (∗), which is denoted by

g̃t =
1

t

t−1
∑

l=0

r(Xl,∆l) (t ≧ 1). (15)

We have simulated Algorithm (∗) to investigate the asymptotic behaviour of
g̃t (t ≧ 1) under the adaptive policy π̃. The data for simulation have been given
as follows:

(i) The initial policy π̃0(·|i) =
(

1

2
, 1

2

)

, (i ∈ S) and q0 = {(q0ij(a))|q
0
ij(a) =

1

2
for i, j ∈ S, a ∈ A},

(ii) εt(i) = (Nt(i) +K(i) + 1)−1, γ(t)(i) = (Nt(i)/1000 + 10)−1 (t ≧ 1, i ∈ S),
where K(i) is given in (10) and Nt(i) represents the number of visiting state
i until the t-th time.

These data are shown to satisfy Condition (∗). The results of simulations with
δ = 0.1, 0.01 are given in Table 2 and Figure 2, in which we observe that

π̃t(2|1) → 1, π̃t(2|2) → 1 and g̃t → g = 2 as t→ ∞

These results surely show the efficiency of the adaptive policy π̃ constructed
through TD-based learning algorithm(Algorithm (∗)).
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steps of learning algorithm

a
v
er

a
g
e

p
re

se
n
t

v
a
lu

e
g̃ t

0 1/6 1/3 1/2 2/3 5/6 1 ×106
1.85

1.9

1.95

2

2.05

Fig. 2. The trajectories of g̃t(δ = 1). The dotted line means the optimal value of
average reward.
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