

Further properties of null-additive fuzzy measure on metric spaces

Jun Li $^{(a)}$, Masami Yasuda $^{(b)}$, Jinjie Song $^{(c)}$

(a) Communication University of China, Beijing, China
 (b) Chiba University, Chiba, Japan
 (c) Tianjin University of Technology, Tianjin, China

MDAI2005 - p.1/3

Objective:

Properties of null-additive fuzzy measure on metric spaces In this paper, under

- the null-additivity,
- weekly null-additivity and
- converse null-additivity condition,

we shall discuss the relation among

- the inner regularity,
- the outer regularity and
- the regularity of fuzzy measure.

Regularity:

Various regularities of set function:

- E. Pap, *Null-additive Set Functions*, Kluwer, Dordrecht, 1995.
- Q. Jiang, H. Suzuki, Fuzzy measures on metric spaces, *Fuzzy Sets and Systems* 83(1996) 99–106.

• J. Wu, C. Wu, Fuzzy regular measures on topological spaces, *Fuzzy Sets and Systems* 119(2001) 529–533.

• J. Song, J. Li, Regularity of null-additive fuzzy measure on metric spaces, *Int. J. General Systems* 32(2003) 271–279.

• J. Li, Order continuous of monotone set function and convergence of measurable functions sequence, *Applied Mathematics and Computation* 135(2003) 211–218.

• J. Song, J. Li, Regularity of null-additive fuzzy measure on metric spaces, *Int. J. General Systems* 32(2003) 271–279.

• J. Li, Order continuous of monotone set function and convergence of measurable functions sequence, *Applied Mathematics and Computation* 135(2003) 211–218.

 J. Li, M. Yasuda, Lusin's theorem on fuzzy measure spaces, *Fuzzy Sets and Systems* 146(2004) 121–133.

The regularity of null-additive fuzzy measure and proved Egoroff's theorem and Lusin's theorem for fuzzy measure on metric space.

- Y. Narukawa, T. Murofushi, M. Sugeno, Regular fuzzy measure and representation of comonotonically additive functional, *Fuzzy Sets and Systems* 112(2000) 177–186.
- Y. Narukawa, T. Murofushi, Conditions for Choquet integral representation of the comonotonically additive and monotone functional, *J. Math. Anal. Appl.* 282(2003) 201–211.
- Y. Narukawa, T. Murofushi, Regular nulladditive measure and Choquet integral, *Fuzzy Sets and Systems* 143(2004) 487–492.

I. Dobrakov, On submeasures I, Dissertations Math. 112(1974) 1-35.
Z. Wang, G. J. Klir, Fuzzy Measure Theory, Plenum, New York, 1992.

Notation:

(X, d): a metric space, \mathcal{O} : the classes of all open sets in (X, d) \mathcal{C} : the classes of all closed sets in (X, d) \mathcal{K} : the classes of all compact sets in (X, d) \mathcal{B} denotes Borel σ -algebra on X, i.e., it is the smallest σ -algebra containing \mathcal{O} . Unless stated otherwise all the subsets mentioned are supposed to belong to \mathcal{B}

Definition: continuity

A set function $\mu : \mathcal{B} \to [0, +\infty]$ is said to be continuous from below, if $\lim_{n\to\infty} \mu(A_n) = \mu(A)$ whenever $A_n \nearrow A$; continuous from above, if $\lim_{n\to\infty} \mu(A_n) = \mu(A)$ whenever $A_n \searrow A$; strongly order continuous, if $\lim_{n\to\infty} \mu(A_n) = 0$ whenever $A_n \searrow B$ and $\mu(B) = 0$; *null-additive*, if $\mu(E \cup F) = \mu(E)$ for any Ewhenever $\mu(F) = 0$; *weakly null-additive*, if $\mu(E \cup F) = 0$ whenever $\mu(E) = \mu(F) = 0$; *converse-null-additive*, if $\mu(E - F) = 0$ whenever $F \subset E$ and $\mu(F) = \mu(E) < +\infty$;

Obviously, the null-additivity of μ implies weakly null-additivity.

Definition: a fuzzy measure

A fuzzy measure on (X, \mathcal{B}) is an extended real valued set function $\mu : \mathcal{F} \to [0, +\infty]$ satisfying the following conditions: (1) $\mu(\emptyset) = 0$; (2) $\mu(A) \leq \mu(B)$ whenever $A \subset B$ and $A, B \in \mathcal{F}$

(monotonicity).

Definition: Wu/Wu FSS(2001)

A fuzzy measure μ is called *outer regular* if for each $A \in \mathcal{B}$ and each $\epsilon > 0$, there exists a set $G \in \mathcal{O}$ such that $A \subset G$, $\mu(G - A) < \epsilon$ A fuzzy measure μ is called *inner regular*, if for each $A \in \mathcal{B}$ and each $\epsilon > 0$, there exists a set $F \in \mathcal{C}$ such that $F \subset A, \ \mu(A - F) < \epsilon$ A fuzzy measure μ is called <u>regular</u>, if for each $A \in \mathcal{B}$ and each $\epsilon > 0$, there exist a closed set $F \in \mathcal{C}$ and an open set $G \in \mathcal{O}$ such that $F \subset A \subset G$ and $\mu(G - F) < \epsilon$.

Proposition: Li/Yasuda FSS(2004)

If μ is weekly null-additive and continuous, then it is regular.

Furthermore, if μ is null-additive, then for any $A \in \mathcal{B}$,

$$\mu(A) = \sup\{ \mu(F) \mid F \subset A, F \in \mathcal{C} \}$$
$$= \inf\{ \mu(G) \mid G \supset A, G \in \mathcal{O} \}$$

Proposition:

If μ is weekly null-additive and strongly order continuous, then both outer regularity and inner regularity imply regularity. Let μ be a null-additive fuzzy measure. (1) If μ is continuous from below, then inner regularity implies

 $\mu(A) = \sup\{ \ \mu(F) \mid F \subset A, \ F \in \mathcal{C} \ \}$

for all $A \in \mathcal{B}$;

(2) If μ is continuous from above, then outer regularity implies

 $\mu(A) = \inf\{ \ \mu(G) \mid A \subset G, \ G \in \mathcal{O} \ \}$

for all $A \in \mathcal{B}$.

Let μ be a converse-null-additive fuzzy measure. (1) If μ is continuous from below and strongly order continuous, and for any $A \in \mathcal{B}$,

$$\mu(A) = \sup\{ \ \mu(F) \mid F \subset A, \ F \in \mathcal{C} \},\$$

then μ is inner regular. (2) If μ is continuous from above, and for any $A \in \mathcal{B}$,

 $\mu(A) = \inf\{ \ \mu(G) \mid A \subset G, \ G \in \mathcal{O} \},\$

then μ is outer regular.

Definition: strongly regular

A fuzzy measure μ is called *strongly regular*, if for each $A \in \mathcal{B}$ and each $\epsilon > 0$, there exist a compact set $K \in \mathcal{K}$ and an open set $G \in \mathcal{O}$ such that $K \subset A \subset G$ and $\mu(G - K) < \epsilon$.

Proposition:

Let μ be null-additive and continuous from below. If μ is strongly regular, then for any $A \in \mathcal{B}$,

 $\mu(A) = \sup\{ \ \mu(K) \mid K \subset A, \ K \in \mathcal{K} \}.$

Let μ be null-additive and order continuous. If for any $A \in \mathcal{B}$,

 $\mu(A) = \sup\{ \ \mu(K) \mid K \subset A, \ K \in \mathcal{K} \},\$

then μ is strongly regular.

In the rest of the paper, we assume that (X, d) is complete and separable metric space, and that μ is finite continuous fuzzy measure.

If μ is null-additive, then μ is strongly regular.

Let μ be a finite continuous fuzzy measure. Then for any $\epsilon > 0$ and any double sequence $\{A_n^{(k)} \mid n \ge 1, k \ge 1\} \subset \mathcal{B}$ satisfying $A_n^{(k)} \searrow \emptyset \ (k \to \infty), \ n = 1, 2, \dots$, there exists a subsequence $\{A_n^{(k_n)}\}$ of $\{A_n^{(k)} \mid n \ge 1, k \ge 1\}$ such that

$$\mu\left(\bigcup_{n=1}^{\infty} A_n^{(k_n)}\right) < \epsilon \quad (k_1 < k_2 < \ldots)$$

If μ be continuous fuzzy measure, then for each $\epsilon > 0$, there exists a compact set $K_{\epsilon} \in \mathcal{K}$ such that $\mu(X - K_{\epsilon}) < \epsilon$.

Corollary:

If μ is null-additive, then for any $A \in \mathcal{B}$ the following statements hold: (1) For each $\epsilon > 0$, there exist a compact set

- $K_{\epsilon} \in \mathcal{K}$ such that $K_{\epsilon} \subset A$ and $\mu(A K_{\epsilon}) < \epsilon$;
- (2) $\mu(A) = \sup\{ \mu(K) \mid K \subset A, K \in \mathcal{K} \}.$

Theorem: Egoroff's theorem

Let μ be null-additive continuous fuzzy measure. If $\{f_n\}$ converges to f almost everywhere on X, then for any $\epsilon > 0$, there exists a compact subset $K_{\epsilon} \in \mathcal{K}$ such that $\mu(X - K_{\epsilon}) < \epsilon$ and $\{f_n\}_n$ converges to f uniformly on K_{ϵ} . Let μ be null-additive continuous fuzzy measure. If f is a real measurable function on X, then, for each $\epsilon > 0$, there exists a compact subset $K_{\epsilon} \in \mathcal{K}$ such that f is continuous on K_{ϵ} and $\mu(X-K_{\epsilon}) \leq \epsilon$.

Definition: Jiang/Suzuki FSS(1996)

A set $A \in \mathcal{B}$ with $\mu(A) > 0$ is call an atom if $B \subset A$ then (i) $\mu(B) = 0$, or (ii) $\mu(A) = \mu(B)$ and $\mu(A - B) = 0$. Consider a nonnegative real-valued measurable function f on A. The *fuzzy integral* of f on A with respect to μ , denoted by $(S) \int_A f d\mu$, is defined by

$$(S) \int_{A} f d\mu = \sup_{0 \le \alpha < +\infty} \left[\alpha \land \mu(\{x : f(x) \ge \alpha\} \cap A) \right]$$

Let μ be null-additive and continuous. If A is an atom of μ , then there exists a point $a \in A$ such that the fuzzy integral satisfies

$$(S) \int_A f d\mu = f(a) \wedge \mu(\{a\})$$

for any non-negative measurable function f on A.