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Objective:

Properties of null-additive fuzzy measure on
metric spaces
In this paper, under

the null-additivity,

weekly null-additivity and

converse null-additivity condition,

we shall discuss the relation among

the inner regularity,

the outer regularity and

the regularity of fuzzy measure.
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Notation:

(X, d) : a metric space,
O : the classes of all open sets in (X, d)
C : the classes of all closed sets in (X, d)
K : the classes of all compact sets in (X, d)
B denotes Borel σ-algebra on X, i.e., it is the
smallest σ-algebra containing O. Unless stated
otherwise all the subsets mentioned are
supposed to belong to B
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Definition: continuity

A set function µ : B → [0,+∞] is said to be
continuous from below, if limn→∞ µ(An) = µ(A)
whenever An ր A;
continuous from above, if limn→∞ µ(An) = µ(A)
whenever An ց A;
strongly order continuous, if limn→∞µ(An) = 0
whenever An ց B and µ(B) = 0;
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Definition: additivities

null-additive, if µ(E ∪ F ) = µ(E) for any E

whenever µ(F ) = 0;
weakly null-additive, if µ(E ∪ F ) = 0 whenever
µ(E) = µ(F ) = 0;
converse-null-additive, if µ(E − F ) = 0 whenever
F ⊂ E and µ(F ) = µ(E) < +∞;

Obviously, the null-additivity of µ implies weakly

null-additivity.
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Definition: a fuzzy measure

A fuzzy measure on (X,B) is an extended real valued set

function µ : F → [0,+∞] satisfying the following

conditions:

(1) µ(∅) = 0;

(2) µ(A) ≤ µ(B) whenever A ⊂ B and A,B ∈ F

(monotonicity).
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Definition: Wu/Wu FSS(2001)

A fuzzy measure µ is called outer regular if for each
A ∈ B and each ǫ > 0, there exists a set G ∈ O
such that A ⊂ G, µ(G − A) < ǫ
A fuzzy measure µ is called inner regular, if for
each A ∈ B and each ǫ > 0, there exists a set
F ∈ C such that F ⊂ A, µ(A − F ) < ǫ

A fuzzy measure µ is called regular , if for each

A ∈ B and each ǫ > 0, there exist a closed set
F ∈ C and an open set G ∈ O such that
F ⊂ A ⊂ G and µ(G − F ) < ǫ.

MDAI2005 – p.13/30



Proposition: Li/Yasuda FSS(2004)

If µ is weekly null-additive and continuous, then it
is regular.

Furthermore, if µ is null-additive, then for any
A ∈ B,

µ(A) = sup{ µ(F ) | F ⊂ A, F ∈ C }

= inf{ µ(G) | G ⊃ A, G ∈ O }
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Proposition:

If µ is weekly null-additive and strongly order con-

tinuous, then both outer regularity and inner reg-

ularity imply regularity.
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Proposition:

Let µ be a null-additive fuzzy measure.
(1) If µ is continuous from below, then inner
regularity implies

µ(A) = sup{ µ(F ) | F ⊂ A, F ∈ C }

for all A ∈ B;
(2) If µ is continuous from above, then outer
regularity implies

µ(A) = inf{ µ(G) | A ⊂ G, G ∈ O }

for all A ∈ B.
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Proposition:

Let µ be a converse-null-additive fuzzy measure.
(1) If µ is continuous from below and strongly
order continuous, and for any A ∈ B,

µ(A) = sup{ µ(F ) | F ⊂ A, F ∈ C },

then µ is inner regular.
(2) If µ is continuous from above, and for any
A ∈ B,

µ(A) = inf{ µ(G) | A ⊂ G, G ∈ O },

then µ is outer regular.
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Definition: strongly regular

A fuzzy measure µ is called strongly regular, if for
each A ∈ B and each ǫ > 0, there exist a
compact set K ∈ K and an open set G ∈ O such
that K ⊂ A ⊂ G and µ(G − K) < ǫ.
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Proposition:

Let µ be null-additive and continuous from below.
If µ is strongly regular, then for any A ∈ B,

µ(A) = sup{ µ(K) | K ⊂ A, K ∈ K }.
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Proposition:

Let µ be null-additive and order continuous. If for
any A ∈ B,

µ(A) = sup{ µ(K) | K ⊂ A, K ∈ K },

then µ is strongly regular.
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In the rest of the paper, we assume that (X, d) is

complete and separable metric space, and that µ

is finite continuous fuzzy measure.
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Theorem:

If µ is null-additive, then µ is strongly regular.
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Lemma:

Let µ be a finite continuous fuzzy measure. Then
for any ǫ > 0 and any double sequence

{A
(k)
n | n ≥ 1, k ≥ 1} ⊂ B satisfying

A
(k)
n ց ∅ (k → ∞), n = 1, 2, . . ., there exists a

subsequence {A
(kn)
n } of {A

(k)
n | n ≥ 1, k ≥ 1}

such that

µ

(

∞
⋃

n=1

A(kn)
n

)

< ǫ (k1 < k2 < . . .)
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Lemma:

If µ be continuous fuzzy measure, then for each

ǫ > 0, there exists a compact set Kǫ ∈ K such

that µ(X − Kǫ) < ǫ.
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Corollary:

If µ is null-additive, then for any A ∈ B the
following statements hold:
(1) For each ǫ > 0, there exist a compact set
Kǫ ∈ K such that Kǫ ⊂ A and µ(A − Kǫ) < ǫ;

(2) µ(A) = sup{ µ(K) | K ⊂ A, K ∈ K }.
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Theorem: Egoroff’s theorem

Let µ be null-additive continuous fuzzy measure.

If {fn} converges to f almost everywhere on X,

then for any ǫ > 0, there exists a compact sub-

set Kǫ ∈ K such that µ(X − Kǫ) < ǫ and {fn}n

converges to f uniformly on Kǫ.
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Theorem: Lusin’s theorem

Let µ be null-additive continuous fuzzy measure.

If f is a real measurable function on X, then, for

each ǫ > 0, there exists a compact subset Kǫ ∈ K

such that f is continuous on Kǫ and µ(X−Kǫ) ≤ ǫ.

MDAI2005 – p.27/30



Definition: Jiang/Suzuki FSS(1996)

A set A ∈ B with µ(A) > 0 is call an atom if
B ⊂ A then
(i) µ(B) = 0, or

(ii) µ(A) = µ(B) and µ(A − B) = 0.
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Fuzzy Integral:

Consider a nonnegative real-valued measurable
function f on A. The fuzzy integral of f on A with
respect to µ, denoted by (S)

∫

A
fdµ, is defined by

(S)

∫

A

fdµ = sup
0≤α<+∞

[α ∧ µ({x : f(x) ≥ α} ∩ A)]
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Theorem:

Let µ be null-additive and continuous. If A is an
atom of µ, then there exists a point a ∈ A such
that the fuzzy integral satisfies

(S)

∫

A

fdµ = f(a) ∧ µ({a})

for any non-negative measurable function f on A.

MDAI2005 – p.30/30


	Objective:
	Regularity:
	References(continued)
	References(continued)
	References(continued)
	References(continued)
	General references:
	Notation:
	Definition: continuity
	Definition: additivities
	Definition: a fuzzy measure
	Definition: Wu/Wu {it FSS}(2001)
	Proposition: Li/Yasuda {it FSS}(2004)
	Proposition:
	Proposition:
	Proposition:
	Definition: strongly regular
	Proposition:
	Proposition:
	
	Theorem:
	Lemma:
	Lemma:
	Corollary:
	Theorem: Egoroff's theorem
	Theorem: Lusin's theorem
	Definition: Jiang/Suzuki {it FSS}(1996)
	Fuzzy Integral:
	Theorem:

