of the two functions under the infinity title.

When we want to claim that the same result of \(D \) for \(x \) and \(x \) respectively

whenever \(1 \) and \(2 \) are defined by \((1 \vee 2) \) and \((1 \wedge 2)\) respectively.

\[
(x)(\chi) + (x)(\psi) = (x)0
\]

Corollary 4.3. Under the same assumptions:

An alternative form of (4.1.4) can be written by the result of Theorem 3.6, as follows:

\[
\begin{align*}
\{x \in & 1 \mid x \in (x)A' \} = (x)0 \\
\{x \in & 1 \mid x \in (x)A' \} = (x)0
\end{align*}
\]

Define the following two functions, similar to Section 7.

\[
\begin{align*}
\liminf_{x \to \infty} (x) & = (x)0 \quad \limsup_{x \to \infty} (x) = (x)0 \\
\liminf_{x \to \infty} (x) & = (x)0 \\
\limsup_{x \to \infty} (x) & = (x)0
\end{align*}
\]

Also, the rest of the proof is easily obtained by combining the results in Sections 7 and 4.

Proof. The proof that the set \(B' \) of \(1 \) is disjoint can be obtained similarly to Lemma 2.1.

\[
\begin{align*}
\{x \in & 1 \mid x \in (x)A' \} = (x)0 \\
\{x \in & 1 \mid x \in (x)A' \} = (x)0
\end{align*}
\]

Theorem 4.2. Under assumptions 7.1 and 4.2, the sets \(B' \) and \(B' \) are disjoint and the infinity-

\[
\begin{align*}
\liminf_{x \to \infty} (x) & = (x)0 \\
\limsup_{x \to \infty} (x) & = (x)0
\end{align*}
\]

We assume that

Assumption 4.3.

Either of those sets is nonempty and each set \(B' \) is closed with respect to \(P' \).

Definition: The stopping rule is a stopping rule based on the first hitting time of set \(B' \) or \(B' \).

\[
\begin{align*}
\{0 \in (x)A' \mid x \in x \} = B' \\
\{0 \in (x)A' \mid x \in x \} = B'
\end{align*}
\]

Define the stopping region for Player I by

\[
\text{Dynkin's Stopping Game}
\]