According to Clovis and Sudderth [6], they claim that the infinity-StLA is optimal. We have

\[P = \frac{1}{N} \sum_{i=1}^{N} x_i \]

Proof. The assertion follows from Lemma 3.3 and Theorem 3.2, because

\[\{0 \leq (x)_{\theta} : \theta \in \mathbb{R} \} = \{x \in \mathbb{R} : x \geq 0\} \]

Lemma 3.3. Let \(S \subseteq \mathbb{R}^n \). Then \(x \in S \) if and only if \(x \) satisfies

\[\sum_{i=1}^{N} x_i = 0 \quad \text{and} \quad \sum_{i=1}^{N} x_i^2 = 0 \]

with respect to \(P \), that is,

\[\sum_{i=1}^{N} x_i^2 \leq \sum_{i=1}^{N} x_i^2 \]

Assumption 3.2.

Theorem 3.1. Under Assumptions 2.1 and 2.2, the infinity-StLA rule is optimal.

Time Out

**Similarity as before, we shall refer to the infinity-StLA rule if the rule is based on the first hitting time.

\[X \stackrel{d}{=} \mathbf{f} \quad \text{and} \quad \mathbb{P}(X = \mathbf{f}) = \frac{1}{N} \sum_{i=1}^{N} x_i \]

Theorem 3.2. Let \(S \subseteq \mathbb{R}^n \). Then \(x \in S \) if and only if \(x \) satisfies

\[\sum_{i=1}^{N} x_i = 0 \quad \text{and} \quad \sum_{i=1}^{N} x_i^2 = 0 \]

The above can be explained following Lemma 3.1.

\[\sum_{i=1}^{N} x_i^2 = 0 \quad \text{and} \quad \sum_{i=1}^{N} x_i^2 = 0 \]

Note that if \(f = 1 \), then the OLA rule is optimal. In this case.

\[\sum_{i=1}^{N} x_i = 0 \quad \text{and} \quad \sum_{i=1}^{N} x_i^2 = 0 \]

Lemma 3.1. For all \(x \in S \), the upper bound could be

\[\sum_{i=1}^{N} x_i^2 = 0 \quad \text{and} \quad \sum_{i=1}^{N} x_i^2 = 0 \]

as follows:

If \(x \) is obtained by Lemma 3.2.

Corollary 3.4.

Hence, \((x)_{\theta} \) is proved by Lemma 3.2.

\[\sum_{i=1}^{N} x_i^2 = 0 \quad \text{and} \quad \sum_{i=1}^{N} x_i^2 = 0 \]

Since \(x \) is obtained by Lemma 3.2, we have

\[\sum_{i=1}^{N} x_i^2 = 0 \quad \text{and} \quad \sum_{i=1}^{N} x_i^2 = 0 \]

On the other hand, we have

\[\sum_{i=1}^{N} x_i^2 = 0 \quad \text{and} \quad \sum_{i=1}^{N} x_i^2 = 0 \]

Next, we shall show

\[\sum_{i=1}^{N} x_i^2 = 0 \quad \text{and} \quad \sum_{i=1}^{N} x_i^2 = 0 \]

Since \(x \) is obtained by Lemma 3.2, we have