On $B_2=\{x\in S; \psi(x)\geq P\psi(x)\}$, it is apparent that $w(x)-\varphi(x)\leq 0$ is contradictory to $w(x)=\psi(x)>\varphi(x), x\in B_2$ by Assumption 2.1(2). On $C=\{x\in S; \varphi(x)< P\varphi(x)< P\psi(x)< P\psi(x)$ the set B_2 . For the set C, it is immediate from the definition and the claim for B_1 and B_2 . occurs. Therefore, the set $\{\varphi(x) \geq Pw(x)\}$ equals B_1 . Similar arguments could be applied to that if $x \in \{\varphi(x) \ge Pw(x)\}$, it never occurs that $x \in C$ nor $x \in B_2$, but only the rest case $x \in B_1$ claim that $w(x) - \varphi(x) \leq 0$, $x \in C$ contradicts $\varphi(x) < P\varphi(x) \leq Pw(x) = w(x)$. This concludes $\psi(x)$ }, it holds that w(x) = Pw(x), as we have seen already in Lemma 2.1(2). Generally, $\varphi(x) \le w(x) \le \psi(x)$, $x \in S$ by the definition, so $P\varphi(x) \le Pw(x) \le P\psi(x)$, $x \in S$. Hence, the

obtained. The proof for another side of the inequality is similar. Because $w(x) = \varphi(x) = \overline{\varphi}(x)$, $x \in B_1$, w(x) = Pw(x), $\overline{\varphi}(x) \le P\overline{\varphi}(x)$, $x \in C$ and $w(x) = \psi(x) \le \limsup_n E^x[\varphi(X_n)]$, $x \in B_2$ all hold, the inequality (2.10), $w(x) \le \overline{\varphi}(x)$, $x \in S$ can be

show that, for some σ , $\sup_{\tau} E^x[R(\tau,\sigma)] \le w(x), \ x \in S$. Because the alternative discussion implies that $\underline{v}(x) \geq w(x)$ and $w(x) = \overline{v}(x) = \underline{v}(x)$, we will To prove the latter part of the theorem, it suffices to show that $\overline{v}(x) \leq w(x)$ for each $x \in S$.

Јеппе

$$\tau^* = \inf\{n \ge 0; w(X_n) \le \varphi(X_n)\},\$$

$$\sigma^* = \inf\{n \ge 0; w(X_n) \ge \psi(X_n)\},\$$

(2.24)

 $x \in S$ by Assumption 2.2. and ∞ if there exists no such n. Clearly, $\tau^* = \nu(B_1)$, $\sigma^* = \nu(B_2)$ and $\tau^* \wedge \sigma^* < \infty$ a.e. P^x ,

Since w(x) satisfies (2.18), $\{w(X_{n\wedge\sigma^*}); n \geq 0\}$ is a super-Martingale with respect to $\{\mathcal{F}_n\}$ by following the discussion of [1, Chapter 3]. We have, for any stopping time $\tau < \infty$, $w(x) \geq E^x[w(X_{\tau \wedge \sigma^*})]$ by using Doob's optional sampling theorem. For $x \in S$ such that $\sigma^* < \infty$ a.e. P^x , $w(x) \leq \inf_{0 \leq \sigma < \infty} E^x[R(\tau^*, \sigma)] = \underline{v}(x), x \in S$. Thus, we obtain that $w(x), x \in S$ is the game shown for all $x \in S$. Analogously, since $\{w(X_{n \wedge \tau^*}); n \geq 0\}$ become a sub-Martingale, and so = $\sup_{\tau} E^x[\varphi(X_{\tau})] = E^x[\varphi(X_{\tau^*})] = w(x)$. The state of $\sigma^* \wedge \tau^* < \infty$ a.e. P^x covers S by Assumption 2.2(2). Therefore, being combined with these cases, $\sup_{\tau} E^x[R(\tau,\sigma^*)] \leq w(x)$ is $\inf_{\sigma} E^x[\psi(\sigma)] \le w(x)$. If $\sigma^* = \infty$, then $\tau^* < \infty$ by the assumption. In this case, $\sup_{\tau} E^x[R(\tau,\infty)]$ it holds that $E^x[R(\tau, \sigma^*)] \le w(x)$ provided $0 \le \tau < \infty$, and that $E^x[R(\infty, \sigma^*)] = E^x[\psi(\sigma^*)] = E^x[\psi(\sigma^*)]$

We can show the explicit game value as follows.

THEOREM 2.3. Under Assumptions 2.1 and 2.2, the game value of Dynkin's stopping problem

$$v(x) = \begin{cases} \varphi(x), & x \in B_1, \\ \mathbb{N}_C[P_{B_1}\varphi + P_{B_2}\psi](x), & x \in C, \\ \psi(x), & x \in B_2. \end{cases}$$
 (2.25)

explicit form of w(x) is easily obtained from (2.18) in Lemma 2.1. inequality (2.10). Hence, the game has value and its value v(x) equals w(x) for all $x \in S$. The PROOF. By Theorem 2.2, $w(x) = E^x[R(\nu_{B_1}, \nu_{B_2})]$ satisfies the optimality equation (2.8) and the

If we define two functions as

$$v_1(x) = \begin{cases} \varphi(x), & x \in B_1, \\ \mathbb{N}_C[P_{B_1}\varphi](x), & x \in C, \\ 0, & x \in B_2, \end{cases}$$
 (2.26)

$$v_2(x) = \begin{cases} \psi(x), & x \in B_2, \\ \mathbb{N}_C[P_{B_2}\psi](x), & x \in C, \\ 0, & x \in B_1. \end{cases}$$
 (2.27)

Then, we can obtain the next corollary.