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Abstract—Under the One-step Look Ahead rule of Dynamic Programming, an explicit game
value of Dynkin’s stopping problem for a Markov chain is obtained by using a potential operator.
The condition on the One-step rule could be extended to the k-step and infinity-step rule. We shall
also decompose the game value as the sum of two explicit functions under these rules.
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1. INTRODUCTION AND SUMMARY

Let {(Xn,Fn);n > 0} be a Markov chain with a countable state space S having stationary
transition probabilities P(z,A), z € S. Suppose a function ¢(z), x € S is given. The standard
optimal stopping problem is to find a stopping time which maximizes E*[p(X,)] = E[p(X;) |
Xo = z] in the class of all finite stopping times 7 adapted to {F,;n > 0}. The optimal value is
denoted by

v(z) = sup E%[p(X,)], z €S (1.1)

0<r<00

The detailed analyses are discussed by many authors such as Chow, Robbins and Siegmund [1],
Shiryaev [2], etc. By the Dynamic Programming method, the optimality equation becomes

o) =max{ 5P P aes, (1.2

where Pv(z) = 3,5 v(y)P(z,y). We shall rewrite this equation as

p(z) on{z €S; ¢(z) = Pv(z)},
v(z) = (1.3)
Py(z) on {z € S; p(z) < Pu(z)},
or
v(z) — Pu(z) = (¢ — Pv)t(z), zeS (1.4)
in comparison with the game variant of the problem in the later section. Hereafter, we shall use
the superscript + as a* = max(a,0), a~ = — min(a, 0).
In the previous paper [3], we obtained the explicit expression of the optimal value as
u(z) = p(z) +N(Pp - )" (z), z€S5, (1.5)
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or equivalently
(@) A w(z), z € B, (1.6)
v(z) = .
N¢[Pgy)(z), z€C,

if the One-step Look Ahead (abbreviated to OLA) rule is optimal, where N = lim,_.c0 Sh_o PFis
a potential operator and Pg, N¢ mean the restriction of P and N on the set B or C, respectively.

The sets B and C are defined by the following (1.7), which are the regions where the decision
is made either to stop or to continue, respectively. The OLA rule is that stops are made at the
first time when the process enters a state in which stopping is at least as good as continuing for
exactly one more period and then stopping. The rule is also well known as the monotone case of
Markov sequence in [1]. To be precise, let

B = {z € §; Pp(z) — p(z) < 0},

(1.7)
C = the complement of B.

The decision rule based on the stopping time vp, the first hitting time of the set B, is referred
to frequently as the OLA rule, hereafter. If the rule is optimal for the problem, we shall say that
the OLA rule is optimal. If the set B is closed, that is,

P(z,C) =0, for x € B, (1.8)

and if it satisfies
vp < o a.e. P?, Xo=z €S, (1.9)

then the stopping time is optimal; that is, the OLA rule is optimal [4,5]. In [3], the explicit
optimal value is obtained when the OLA rule is optimal, and it is applied to the best choice
problem. Unlike the problem in which assumption (1.9) holds for all S, one must consider, in the
game variant of the OLA rule, the case of vg = 0o on some set.

In this paper, our aim is to show an explicit expression for the value of zero-sum game variant,
the so-called Dynkin’s stopping game [6,7]. Furthermore, it is proved that the game value in this
case is the sum of two independent maximal/minimal values with a zero reward at nonstopping
for the standard stopping problems.

In Section 2, Dynkin’s stopping game is considered when the OLA rule is optimal. The game
value of the problem is expressed by using a potential operator and is decomposed as the sum of
two independent maximal/minimal stopping problems. This is simpler than that of Bismut [8].
To discuss the standard stopping problem under an extended condition of the OLA rule, Section 3
considers it under the k-SLA rule, an abbreviation for the k-Step (k > 1) Look Ahead rule [9].
We shall express the optimal value of the standard problem under this rule. Again, Dynkin’s
stopping game is considered in Section 4. By taking k tend to infinity, the relation between
the value of Dynkin’s game and that of the standard stopping problem is obtained under the
infinity-SLA rule.

2. DYNKIN’S STOPPING GAME UNDER THE OLA RULE

The formulation of Dynkin’s stopping game is as follows. Two players I and II observe a
Markov chain {(Xn,Fn);n > 0} with the stationary transition probability P on the countable
state space S. Each of them chooses a stopping time adapted to {F,} as one’s strategy. If 7
and o are strategies of Player I and II, respectively, the payoff function is of the form

mw?., Q.v = GANLH?.AQV + ‘%A.NQVHT.VQH. + XAN‘LHT.HQT Aw.:

where the function ¢(z), ¥(z), and x(x) on z € S are supposed to be given. Earlier stopping of
players can stop the observation, and so 7 Ao = min{7, 0} is the termination for the process. To
avoid the nonterminated case, a pair of strategies

TANO <0
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is the admissible class of the problem. If either of the players does not stop in a finite horizon,
let
R(1,00) = p(X,;) and R(c0,0) =9(X,). (2.2)

Player I’s objective is to maximize E®[R(7,0)], Xo = x with respect to 7 such that 7 Ao < oo
for fixed o and on the other hand, Player 1. is to minimrize it with respect to ¢ for fixed 7. The
minimax and the maxmin value of this zero-sum game are defined by

7(z) = wwm sup E*[R(r,0)], (2.3)
v(z) = sup mwm E®[R(t,0)], . (2.4)

respectively. We say that the problem has a game value _m (z) = v(z), z € S, and we denote
the value function by v(x), z € S. A pair of strategies (7*,0*) is optimal (equilibrium) if

™ ANo* < 00 a.e. P?, z €S, (2.5)

and
E*[R(t*,0")] = v(z) = 9(x), z el (2.6)

Generally, the zero-sum stopping mm.B,m does not have value and so it is natural to consider a
class of randomized stopping times [10] as the admissible class. However, we impose a condition
for the payoff functions in order to have the optimal strategy in the class of stopping times adapted
to {Fn}. We assume Assumption 2.1, whose condition implies that there exists an optimal pure
strategy, that is, an optimal stopping time in the zero-sum matrix game for all of randomized
strategies. Stettner [11], Elbakidze [12], and others discussed the zero-sum stopping problem
under this separability condition (2.12).

The discussion starts from the description of the optimality equation for the game variant.
By the argument of recursive games of Everett [13], the value function satisfies the optimality
equation of the game variant v

II :stop II: conti.
v(z) = VAL | I :stop x(z) p(x) , 2.7
I:conti. 9(x) Pu(z)

where VAL means the value of the 2 by 2 matrix game. Condition (2.12) (there is no need to be

strict with the inequality in this argument) implies that VAL ( ) = max; min;;( ) = miny;y max;( )
for any value of (2,2)-element of the matrix. Immediately, we see that (2.7) is equivalent to

() on {z € S;Pu(z) < ¢(z)},
v(z) = Pu(z) on {z € S;p(z) < Pv(z) < ¢¥(z)}, (2.8)
¥(x) on{z € S;¢¥(z) < Pu(z)}.

Also, it is equivalent to
v(z) — Po(z) = (¢ — Pv)*(z) - (¢ - Pv)~(2). (2.9)

We note that the case of the simultaneous stopping for Player I and II with the reward x(z),
x € S does not occur, and hence, it is insignificant in the equations of (2.8) and (2.9). Also,
considering the trivial case, one could evaluate the value as v(z) = inf,sup, E*[R(7,0)] <
SUPp<r<oo EZ[R(T,00)] = SUPg<r<oo E*[9(Xr)]. The similar inequality is also obtained by ex-
changing sup and inf. Then, combined with these two inequalities,

inf E°[Y(X,)) <v(z) < sup E°[p(X,)], =x€S&. (2.10)

0<o<o0 0<T<00 .

MM 22:10/12-y
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Already, Neveu [7] had discussed the equality (2.8) and the inequality (2.10) under a general
stochastic process. _

Now Dynkin’s stopping game under the OLA rule is considered.
ASSUMPTION 2.1.

(1) Foreachz € S,

n>0 n>0

E® Tcw €+Cn:v“_ < o0, .Ma Tbm AlﬁlAN:vL > —00. (2.11)
(2) For the given reward functions,

o(z) < x(2) < ¥(2), (2.12)
forallz in S.

Let us denote o
B, = {z € 8; Pp(z) < o(z)},
By = {z € 8;9(z) < PY(z)}, (2.13)
C = the complement of By U Bs.

ASSUMPTION 2.2.

(1) Either B; or By is assumed to be nonempty and each set B;, i = 1,2 is closed with respect
to P; that is,
wmav ms.v =1, z € B;. AM.H#V

(2) The process eventually hits either of these sets; that is,
v(B1 U Bs) < x a.e. P?, Xo=z €S, (2.15)

where v(B) = vp denotes the first hitting time of set B.

(3) We assume that «
:ﬁwsmm_aEAN:v_ < o(z), z € By,

limsup E*[p(X,)] = ¥(z), <z € Boa. (2.16)
n

We shall discuss the problem under Assumption 2.1 throughout the paper, but Assumption 2.2
is tentative for considering the OLA rule in this section. The set B;, i = 1,2 means the stopping
region of the OLA rule for each player, and Assumption 2.1(2), 2.2(3) implies the simultaneous
stopping decision does not occur for the OLA rule. So the stopping regions for each player are
disjoint, and a receivable reward x(z) in the formulation does not appear. Intuitively, we note
that (2.12) requires that the reward for one player is disengaged from the stopping region of the
opposite player.

LEMMA 2.1.

(1) The sets B, and By are disjoint.
(2) Let w(z) = E®[R(vB,,VB,)]; € S. Then,

w(z) — Pw(z) = (p — Pp)*(z) —(¥ —PY)"(z), z€S; (2.17)
that is, ;
SA&.V. TE .mr
w(z) = { Pw(z), z€C, : (2.18)

\%ASV. . z € Bs.
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PROOF.
(1) If there exist some x € B N By, the inequality

Py(z) < p(z) < %(z) < Py(z)

must hold simultaneously. Since B; and B; are closed by Assumption 2.2(1), Xo = z
implies X; € BN By a.e. P®, z € S. So EX1 TbAkw: < ﬁﬁumuv < \.\\AN‘HV < EX: —\SANMZ
Repeating this, we have, for each n, E*[p(X,)] < ¢(z) < ¥(z) < E*[(Xy,)],z € B1NBs.
So limsup,, E®[p(X,)] < ¢(z) < ¥(z) < liminf, E*[$)(X,)], for z € By N Ba. But this
contradicts (2.16). Hence, the sets B; and Bz must be disjoint.

(2) Since B; and B; are the stopping region of each player, if z € By, then vp, = 0 and
0 < vp, = 00 a.e. P?, x € B;. So we have w(z) = ¢(x), z € By. Similarly w(z) = ¥(z),
z € B, and w(z) = Pw(z), = € C. To show the relation (2.17), note that Pw(x) = Py(z),
z € B; and Pw(z) = Py(z), z € By by the closedness of Assumption 2.2(1). Therefore,
the conclusion (2.17) follows easily.

(8) The result is immediate from the closedness of sets by Assumption 2.2(1).

REMARK. In the case of the one-player problem, the finiteness of the hitting time (1.9) is assumed
to obtain the expression (1.6). But, for this game version, we are not in this situation because
v(B;) = 00 a.e. P® in z € By and v(B;) = o a.e. P® in z € B;.

Let us consider two standard stopping problems:

B(e)= s B [p(X,), (2.19)
@) = inf FW(X),  z€S; (2.20)

then, each value function is obtained by the OLA rule. Define C; = {z € C;v(B1) < o0 a.e. P*}
and C, = {z € C;v(B2) < ¢ a.e. P*}. Since the OLA rule is the least criterion of considering
one-period-after and 0 < v(B;) < oo a.e. P*, x € By U (], the optimal strategy exists in this
region and the value is E®[p(X,(p,))] = ¢(z) + N(Pp — ¢)* (z). If X, is not in By, it would be
foolish to stop at such a state and forego. Hence, we have

— SAHV+ZANu€|€v+A&Y z € BiUCGC,
p@)={ 0 | (221)
imsup,, E®[¢(Xpav(B,))], otherwise.
Similarly,
P(z) ~N(Py—9)~(z), z€BUCy,
o ={ <% (222)
liminf, E®[Y(Xnau(B,))], otherwise.

By Assumption 2.2(1), we note that @(z) = limsup, E®[p(X,)] for z € By and ¥(z) =
liminf, E®[(X,)] for = € By hold. ,

THEOREM 2.2. Under Assumption 2.1 and 2.2,
w(z) = E°[R(vp,,vB,)l, =€S (2.23)

satisfies the optimality equation (2.7) and the inequality (2.10). The OLA rule is optimal; that
is, the stopping times v(B;),i = 1,2 are the optimal strategy for each player.
ProoF. To prove that w(z),z € S satisfies (2.7), it is enough to show that the set B; equals
{z € S;p(x) > Pw(z)}, the set C equals {z € S;¢(z) < Pw(z) < ()} and the set By equals
{z € S;9(z) < Pw(z)} by the comparison of (2.9) and (2.17).

First, the inclusive relation By C {z € S;¥(z) > Pw(z)} is clear because Pw(z) = Py(z),
z € By. Inversely, if x € S such that ¢(z) > Pw(z), then

0, forz € C,
¥(z) — PY(z) <0, forz € Bs.

w(z) - p(z) < w(z) — Pu(z) = A
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On B; = {z € S;¥(z) > Py(x)}, it is apparent that w(z) — ¢(z) < 0 is contradictory to
w(z) = ¥(z) > ¢(z), = € Bz by Assumption 2.1(2). On C = {z € S;¢(z) < Pyp(z) < Py(z) <
¥(x)}, it holds that w(z) = Pw(z), as we have seen already in Lemma 2.1(2). Generally,
o(z) < w(z) < P(z), T € S by the definition, so Pp(z) < Pw(z) < Py(z), z € S. Hence, the
claim that w(z) — ¢(z) <0, z € C contradicts ¢(z) < Pp(z) < Pw(z) = w(z). This concludes
that if z € {¢(z) > Pw(z)}, it never occurs that x € C nor z € By, but only the rest case z € B;
occurs. Therefore, the set {p(z) > Pw(z)} equals B;. Similar arguments could be applied to
the set By. For the set C, it is immediate from the definition and the claim for B; and Bs.

Because w(z) = ¢(z) = B(z), = € B1, w(z) = Pw(z), B(z) < PP(z), z € C and w(z) =
¥(z) < limsup,, E*[¢(X,)], € B; all hold, the inequality (2.10), w(z) < P(z), = € S can be
obtained. The proof for another side of the inequality is similar.

To prove the latter part of the theorem, it suffices to show that T(z) < w(z) for each z € S.
Because the alternative discussion implies that v(z) > w(z) and w(z) = T(z) = v(z), we will
show that, for some o, sup, E®[R(t,0)] < w(z), z € S.

Define

™ = inf{n > 0;w(X,) < ¢(Xn)},
Q*HER:NQSAN:VN@AN:VT

and oo if there exists no such n. Clearly, 7* = v(Bi), 0* = v(B2) and 7 A 0* < 0 a.e. P%,
z € S by Assumption 2.2, .

Since w(x) satisfies (2.18), {w(Xnno+);n > 0} is a super-Martingale with respect to {Fn}
by following the discussion of [1, Chapter 3]. We have, for any stopping time 7 < oo, w(z) 2
E*[w(Xr0+)] by using Doob’s optional sampling theorem. For z € S such that ¢* < oo a.e. P%,
it holds that E®[R(r,0*)] < w(z) provided 0 < 7 < o0, and that E*[R(c0,0*)] = E*[(0*)] =
inf, E®[¢(c)] < w(z). If 0* = 00, then 7* < 0o by the assumption. In this case, sup, E*[R(r, c0)]
= sup, E®[p(X,)] = E®[p(Xs+)] = w(z). The state of * A 7* < 0o a.e. P” covers § by
Assumption 2.2(2). Therefore, being combined with these cases, sup, E*[R(7,0*)] < w(z) is
shown for all z € S. Analogously, since {w(Xnar+);n > 0} become a sub-Martingale, and so
w(z) < infocp<oo E°[R(T*,0)] = u(z), z € S. Thus, we obtain that w(z), z € S is the game
value. 1

We can show the explicit game value as follows.

(2.24)

THEOREM 2.3. Under Assumptions 2.1 and 2.2, the game value of Dynkin’s stopping problem
is given by

(), ‘ z € By,
v(z) = ZQ?umiB + Pp,¢|(z), z€C, (2:25)
P(z), z € Bs.

PROOF. By Theorem 2.2, w(z) = E*[R(vp,,VB,)] satisfies the optimality equation (2.8) and the

inequality (2.10). Hence, the game has value and its value v(x) equals w(z) for all z € S. The

explicit form of w(x) is easily obtained from (2.18) in Lemma 2.1. |
If we define two functions as

GASY T € By,

vi(z) = { Ne[Ps,pl(z), z€C, (2.26)
O“ X E mm,
P(x), z € By,

va(@) = { No|Ps,¥l(z), z€C, (2.27)
o, T € By.

Then, we can obtain the next corollary.
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COROLLARY 2.4. The game value of Dynkin’s stopping problem is expressed by the sum of two

functions
v(z) = vi(z) + va(x), z €S (2.28)

We note that, from (2.26) and (2.27), vi(z) = Pvi(z), £ € B2 U C and ve(z) = Puy(z),
z € B; U C, respectively.
This would be compared with Bismut’s result [8]. Theorem IIL.1 in [8] is as follows. The
simultaneous equation
u1(z) = Pu1(x) + (¢ — vz — Pu1)* (),
ug(z) = Pua(z) — (¥ — u1 — Pug) ™ (z), zesS (2.29)
has the unique solution under Assumption 2.1, and imposing a discount factor on the payoff of

the formulation, and
u(z) = u1(z) + ua(x), z€eS (2.30)

satisfies the optimality equation (2.8) and ¢(z) < u(z) < ¥(z), z € S.

3. EXTENSION OF THE OLA RULE TO THE k-SLA RULE

The natural requirement of the extension from the OLA rule to the k-Step (k > 1), the Look
Ahead rule [9] is considered. For the sake of simplicity, we do not treat the game problem, but
the standard stopping problem (1.1) in this section. The game variant is discussed in the next
section. .

Let k > 1 be a fixed integer. Define iteratively the following sequence of di(z), z € S:

di(z) = (Pp — p)(z) + P(di—1)T(x), i=1,2,...,k, (3.1)

where we put do(z) = 0. We will consider a region defined by
B¥ = {z € S;di(z) <0}, (3.2)

C* = the complement of BF, '

ASSUMPTION 3.1.

(1) The set B* and C* are nonempty and the stopping set B* is closed with respect to P;
that is,
P(z,B*)=1, ze B~ (3.3)

(2) The first hitting time v(BF) satisfies
v(B*) < 00 a.e. P%, Xo=z €S (3.4)
We shall refer to the k-SLA rule if the rule is based on the first hitting time v(B*). The
procedure is as follows. First, one starts by considering the OLA (that is, the 1-SLA) rule. If

it reaches into the stopping region, one switches to the 2-SLA rule and considers whether to
continue or stop, and so on.

LEMMA 3.1. The sequence B, i = 1,2,...,k is monotone decreasing; that is,
B'>B?*>..-D B | (3.5)
PROOF. It is clear because of the definition of di(z), z € S. In fact, for Xo =z € S,
dy(z) = Po(z) — p(z) = E°[p(X1)] — (2),
da(z) = Po(z) + P(Pe — 0)* () - (@) = B* [{p+ (Pp - 0)" } (1)] - ¢(a)
= E° [max {¢(X1), EX [p(X2)]}] — ¢(2),
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COROLLARY 2.4. The game value of Dynkin’s stopping problem is expressed by the sum of two

functions
v(z) = v1(z) + v2(2), zesS. (2.28)

We note that, from (2.26) and (2.27), vi(z) = Puvi(z), z € B2 U C and ve(z) = Puva(z),
x € B; U C, respectively.

This would be compared with Bismut’s result [8]. Theorem IIL1 in [8] is as follows. The
simultaneous equation

wi(z) = Puy(z) + (p—uz — W§HV+A&V,
ug(z) = Pug(z) — (¥ — w1 — Pug)™ (), z€eS (2.29)

has the unique solution under Assumption 2.1, and imposing a discount factor on the payoff of

the formulation, and
u(z) = wi(z) +uz(z), €S (2.30)

satisfies the optimality equation (2.8) and ¢(z) < u(z) < ¢(z), z € S.

3. EXTENSION OF THE OLA RULE TO THE k-SLA RULE

The natural requirement of the extension from the OLA rule to the k-Step (k > 1), the Look
Ahead rule [9] is considered. For the sake of simplicity, we do not treat the game problem, but
the standard stopping problem (1.1) in this section. The game variant is discussed in the next

section.
Let k > 1 be a fixed integer. Define iteratively the following sequence of di(z), z € S:

&ﬂAHV = Quﬁ lﬁxav +.ﬁA&&IHv+AHY i=1,2,...,k, Aw.c
where we put do(z) = 0. We will consider a region defined by

BF = {z € S;di(x) <0},
C* = the complement of Bk,

(3.2)

ASSUMPTION 3.1.
(1) The set B* and C* are nonempty and the stopping set BF is closed with respect to P;

that is,
P(z,B*)=1, zeB~ (3.3)

(2) The first hitting time v(B¥) satisfies
v(B*) < 00 a.e. P%, Xo=z €. (3.4)
We shall refer to the k-SLA rule if the rule is based on the first hitting time v(B*). The
procedure is as follows. First, one starts by considering the OLA (that is, the 1-SLA) rule. If

it reaches into the stopping region, one switches to the 2-SLA rule and considers whether to
continue or stop, and so on.

LEMMA 3.1. The sequence Bt, i =1,2,...,k is monotone decreasing; that is,
B'>B*>...D B | (3.5)
PROOF. It is clear because of the definition of di(z), = € S. In fact, for Xo =z € S,
di(z) = Pp(z) — p(z) = E*[p(X1)] - ¢(2),
da() = Polx) + P(Po— ¢)* (@) — () = B [{0+ (Po = 9)* } (X)] ~ 0l2)
= E® [max {p(X1), EX* [p(X2)]}] - ¢(2),
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and

ds(z) = Po(z) + P(d2)* (z) — ¢()
= E* [max {p(X1), E** [max {o(X2), E**[p(X3)]}] }] — ¢(2),

and so forth.
By this lemma, if z € B, then it is included by the following joint sets:

Pp(z) < p(z),  Pp(z) < p(x),..., Prp(z) < p(z). (3.6)

This shows that, when one comes to stop under the k-SLA rule, one already has been considering
the previous degree of stopping rules.

LEMMA 3.2.
(1) N(Pp — )t (z) <o, forzeS. (3.7)
(2) ZE&+ - E&THVJQ& < 00, forx € S. (3.8)
PROOF.

(1) By Lemma 3.1, we have that B! D B¥, and hence, »(B') < v(B*) ae. P°,z € S.
Assumptions 3.1(2) and 2.1(1) imply that Ng1 [Pp1¢](x) < oo and lim,e0 (Pc1)"(z) =0
forx e S.

(2) From the definition of (3.1), we have
(di)t(z) — P(di—1) T (2) < (Pp — )t (z), zeS, i=12,...,k

The conclusion is immediately obtained gx Lemma 3.2(1).

THEOREM 3.3. Under Assumptions 2.1 and 3.1, v(B¥) is the optimal stopping time and the
optimal value of (1.1) is given by

o(@) = p(z) + N[(d)* — P(di-1)*] (@), €S, (3.9)
_ [ o(z), z € Bk,
- A New|[Pgrey)(z), = € Ck. (3.10)

PROOF. Let w(z) = E*[p(X,(B+))], = € S. Immediately,

o(z), =€ Bk,

@Euﬁ§§yam%

by the definition of the strategy. If z € B*, then (3.2) and Lemma 3.1 yield that Pw(x)
Pyp(z) < o(z). Therefore, w(z), * € S satisfies the optimality equation (1.2). Let 7™ =
inf{n > O;w(Xn) < ¢(Xn)} = inf{n > 0;X, € B¥} = y(BF). Following the Martingale

system theory [1], we see that w(z) is equal to the optimal value v(z) and 7" is the optimal
stopping time. We will calculate the optimal value. When z € c*,

v(@) = Po(z) = Pgrop(z) + Porv(z),
dividing S of the integral P into B* and C*. Hence,

v(z) = Now [Pgr](2), for z € Ck.
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Since v(z) = ¢(z) for z € B¥, this proves (3.10). Next, we shall show (3.9). If z € BF,
v(z) = p(z) and so (3.2) implies that Pv(z) = Py(z). And also, (di)* (z) = P(dg-1)*"(2) =0,
z € B* by Lemma 3.1 and (3.2). On the other hand, if z € C*, then v(z) — Pv(z) = 0 and
o(z) — Po(z) + (dx) T (z) — P(dk-1)*(z) = 0 from the definition of di. Thus, we have

o(z) — Po(z) = p(z) — Po(z) + (di) ¥ (z) — P(dy-1)*(z), z €S.
Hence, (3.9) is proved by Lemma 3.2. ]

COROLLARY 3.4. .
If, for some j > 1, the j-SLA ruleis optimal, then the value of its stopping problem is dominated
as follows:
o(z) < v(@) < p(z) + N(Pp — ¢)* (2), (3.11)
forallz in S.
PRrOOF. Since (d;)*(z) < (Py — @) (z) + P(dj-1)*(z), = € S, the upper bound could be
obtained from (3.10). The lower bound is immediate by (1.1).

Note that, if 7 = 1, that is, the OLA rule is optimal, the upper bound holds with equality.
This upper bound of the optimal value is consistant with the result of [14, Lemma 3.3]. In the
conclusion of this section, we should like to discuss the infinity-SLA rule, which is a limiting case
of tending k to infinity. :

LEMMA 3.5. lim;_,o0 di(2) = d*(z), = € S exists. It is integrable with respect to P and satisfies
d*(z) = (Pp — p)(x) + P(d*)*(z), z €S, (3.12)

and also B* = {z € S;d*(x) < 0} is equal to Ny, Bk,

PROOF. The sequence is shown to be monotone increasing by the induction and is dominated
by N(Py — ¢)*(z), which is integrable with respect to P. The assertion (3.12) holds by the
Dominated Convergence Theorem. The last assertion is clear from Lemma 3.1.

ASSUMPTION 3.2.
(1) The set B* = {z € S;d*(z) < 0} and its complement C* are nonempty, and B* is closed
with respect to P; that is,

P(z,B*)=1, «e€B* : (3.13)

(2) The first hitting time v(B*) satisfies
v(B*) < o0 a.e. P%, Xo=z€S. (3.14)
Similarly as before, we shall refer to the s.z.mi.@._whb rule if the rule is based on the first hitting
time v(B*). ,

THEOREM 3.6. Under Assumptions 2.1 and 3.2, the infinity-SLA rule is optimal, its optimal
value equals

v(z) = GA.& +(@)*(z), =z€S, (3.15)
or equivalently @) : ,m
[ p(z), z € B*,
v(z) = A No-[P-l(z), @€ C", (3.16)

and the stopping region is B* = {z € §;d*(z) < 0}.
PROOF. The assertion follows from Lemma 3.5 and Theorem 3.3 because

N(d*)* - P(d*)* = N(I - P)(d")* = (d")*. ,

According to Chow and Schechner [9], they claim that the infinity-SLA is optimal. We have
confirmed this result under the assumption.
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4. GAME VALUE FOR THE k-SLA AND INFINITY RULE

The result of the previous section is applied to the problem of Dynkin’s stopping game, in which
Player I is to maximize and Player II to minimize as already defined in Section 2. The optimal
strategy of each player is defined by (2.4) and (2.5). The result of this section is an extension of
the discussion in Section 2, which considers a policy from the OLA rule to the k-SLA and the
infinity rule.

For the standard maximization problem of (2.19), the next sequence will be defined analogously
to d;(z), i = 1,2,...,k in (3.1) for the minimization of (2.20). We set k > 1 a fixed integer as
before. Define e;(z), z € S,i1=1,2,...,kby ,

ei(z) = (Py — ¢)(z) — P(ei-1)" (), (4.1)
where we put eg(z) = 0. Denote the stopping region for Player I and II by

Bf = {z € S;dx(z) <0},

BY = {z € S;ex(zx) >0}, (4.2)

respectively, and C}, be the complement of Bf UBY. We shall refer k-SLA rule of the game variant
to the stopping rule based on the first hitting time of set B¥ or B.

ASSUMPTION 4.1.

(1) Either of Bf or B¥ is assumed to be nonempty and each set BY is closed with respect
to P for i = 1,2; that is,

P(z,BF)=1, =zeBF i=1,2 (4.3)

(2) v(B¥UBf) <0 ae P°, Xpo=ze€Sb. (4.4)

(3) We assume that
liminf B°[(Xa)] S 0(z), 2z € B,

limsup E*[p(Xa)] 2 ¥(z), o€ B, 45

The result on the k-SLA rule for the stopping problem by the previous discussion would be as
follows.

THEOREM 4.1. Under Assumptions 2.1 and 4.1, the sets Bf and B¥ are disjoint. Further, the
k-SLA rule is optimal and the game value is given by

,‘ ﬁﬁﬁv. S m%v
v(z) = 4 New ?E% + w&i (z), = eCk, (4.6)

To consider the infinity-SLA rule of the game variant, we take the limit of k to infinity. Similar
to Lemma 3.5, we see that the sequence {e;(z);¢ > 1} is monotone decreasing and bounded
below. So

e*(z) = lim e;(z), zeS ; , 4.7)

1—00

exists and satisfies that

e*(z) = (PyY — ¢)(z) — P(e*) (z), zeS. (4.8)

Def
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Define the stopping region for Player I, II by
B} = {z € 8;d*(z) < 0},
B} = {z € S;e*(x) > 0},
respectively, and let C* be the complement of Bf U B3. The infinity-SLA rule of the Dynkin
stopping problem is a stopping rule based on the first hitting time of set B or B3.

(4.9)

ASSUMPTION 4.2.
(1) Either of these sets is nonempty and each set B}, i = 1,2 is closed with respect to P; that
is,

P(z,Bf) =1, z € B;. (4.10)
(2) The process eventually hits these sets; that is,
v(B} U B3) < o0 a.e. P%, Xo=2z€S. (4.11)
(3) We assume that
limint B*[$(X)] < ¢(z), @€ B, (412)
:B%:v E*[p(X,)] = ¥(z), =z€Bj. (4.13)

THEOREM 4.2. Under Assumptions 2.1 and 4.2, the sets B} and Bj are disjoint and the infinity-
SLA rule is optimal. Its optimal value v(x), * € S of the game variant problem is given by

o(z), z € B,
v(z) = { No« [Peyo + P9] (z), z€C™, (4.14)
‘%Aﬁ.v. T e .mm

PROOF. The proof that the set B}, i = 1,2 is disjoint can be obtained similarly to Lemma 2.1(1).
Also, the rest of the proof is easily obtained by combining the results in Sections 3 and 4. ]
Let Cf = {z € C*;v(B}) < 0 a.e. P’} and (3 = {z € C*v(B3) < oo a.e. P*}. Then we
have, by similar discussion in Section 2,
() + (@) * (), z € BfUCY,

D(x) = 4.15
?() lim sup,, E* TAN:ZA mﬁv_ , otherwise, (4.15)
and *\— * *
P(z) — (€)™ (2), ze€B3UCE,
YE)=9 . . . s . (4.16)
lim inf,, F TEN:ZA mm& , otherwise.
Define the following two functions, similar to Section 2.
p(z), T € By,
vi(z) ={ Nc¢ [Pp:y] (z), z€C*, , (4.17)
0, z € B3,
P(z), z € B3,
ewﬁav = N¢ _...me@”_ A.&Y T € C*, Ah.“_.mv
0, z € BY.

An alternative form of (4.14) can be written, by the result of Theorem 3.6, as follows.
COROLLARY 4.3. Under the same assumptions,
v(z) = v1(z) + va(z), TES, (4.19)

where v;(x), i = 1,2 are defined by (4.17) and (4.18), respectively.
What we want to claim is that the game value of Dynkin’s problem decomposed into the sum
of the two functions under the infinity rule.
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