American Options with Uncertainty of the Stock Prices:
The Discrete-Time Model
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1. Introduction

A discrete-time mathematical model for American put option with uncertainty is pre-
sented, and the randomness and fuzziness are evaluated by both probabilistic expectation
and \-weighted possibilistic mean values.

2. Fuzzy stochastic processes

First we give some mathematical notations regarding fuzzy numbers. Let (Q2, M, P) be
a probability space, where M is a o-field and P is a non-atomic probability measure. R
denotes the set of all real numbers, and let C(R) be the set of all non-empty bounded
closed intervals. A ‘fuzzy number’ is denoted by its membership function @ : R — [0, 1]
which is normal, upper-semicontinuous, fuzzy convex and has a compact support. Refer
to Zadeh [12] regarding fuzzy set theory. R denotes the set of all fuzzy numbers. In
this paper, we identify fuzzy numbers with its corresponding membership functions. The
a-cut of a fuzzy number a(€ R) is given by

o :={r €R|a(zx) > a} (a« €(0,1]) and ay:=cl{z € R |a(x) > 0},
where cl denotes the closure of an interval. In this paper, we write the closed intervals by

ae = |a,,at] for a €0,1].

Hence we introduce a partial order >, so called the ‘fuzzy max order’; on fuzzy numbers

R: Let a,i) € R be fuzzy numbers.
a>=b meansthat a- >b. and ag > BZ for all a € [0, 1].

Then (R, =) becomes a lattice. For fuzzy numbers a, b € R, we define the maximum a\V b
with respect to the fuzzy max order > by the fuzzy number whose a-cuts are

(@Vb)e = [max{az,b;}, max{al,b*}], a€[0,1]. (2.1)



An addition, a subtraction and a scalar multiplication for fuzzy numbers are defined as
follows: For a,b € R and A > 0, the addition and subtraction a = b of a and b and the
scalar multiplication Aa of A\ and a are fuzzy numbers given by

(@4 D)o = [ag + by, a5 +bF], (a—0b)a:=[a; —bF

(0% o) o Oé]
and (\d), = [Aa,, \at] for a €]0,1].

A fuzzy-number-valued map X : Q — R is called a ‘fuzzy random variable’ if the
maps w — X, (w) and w — X (w) are measurable for all & € [0,1], where X, (w) =
(X (w), X (w)] = {z € R | X(w)(x) > a} (see [10]). Next we need to introduce
expectations of fuzzy random variables in order to describe an optimal stopping model
in the next section. A fuzzy random variable X is called integrably bounded if both
w — X (w) and w +— XF(w) are integrable for all & € [0,1]. Let X be an integrably
bounded fuzzy random variable. The expectation E(X) of the fuzzy random variable X
is defined by a fuzzy number (see [7])

E(X)(z) := sup min{a, lpx). (@)}, = €R, (2.2)

a€l0,1]

where closed intervals E(X), := [fﬂ X5 (w)dP(w), [, X (w) dP(w)} (a € [0,1]).

In the rest of this section, we introduce stopping times for fuzzy stochastic processes.
Let T (T > 0) be an ‘expiration date’ and let T := {0,1,2,---, 7'} be the time space. Let
a ‘fuzzy stochastic process’ {f(t}tT:O be a sequence of integrably bounded fuzzy random
variables such that F(max;c )2;’0) < 00, where )N(Qfo(w) is the right-end of the 0-cut of
the fuzzy number X;(w). For t € T, M, denotes the smallest o-field on Q generated by
all random variables X;a and X;fa (s =0,1,2,--,t; € [0,1]). We call (X, M), a

fuzzy stochastic process. A map 7: €2+ T is called a ‘stopping time’ if
{lweQ|r(w)=t}eM; forallt=0,1,2,---,T.
Then, the following lemma is trivial from the definitions ([11]).

Lemma 2.1. Let 7 be a stopping time. We define

X, (w) =X, (w) ifT(w)=t fort=0,1,2,---,T and w € Q.
Then, X, is a fuzzy random variable.

3. American put option with uncertainty of stock prices

In this section, we formulate American put option with uncertainty of stock prices by
fuzzy random variables. Let T := {0,1,2,---,T'} be the time space with an expiration
date T (T > 0) similarly to the previous section, and take a probability space 2 := RT+1.
Let r (r > 0) be an interest rate of a bond price, which is riskless asset, and put a discount



rate 8 = 1/(147r). Define a ‘stock price process’ {S;}]_, as follows: An initial stock price
Sp is a positive constant and stock prices are given by

t
Sp=S [JA+Y:) fort=1,2--T, (3.1)

s=1

where {Y;}7_; is a uniform integrable sequence of independent, identically distributed real
random variables on [r — 1,r 4 1] such that E(Y;) =r forallt =1,2,---,T. The o-fields
{M;}L, are defined as follows: M, is the completion of {@, Q} and M,(t = 1,2,---,T)
denote the complete o-fields generated by {Y1,Ys---Y;}.

We consider a finance model where the stock price process {S;}1_, takes fuzzy values.
Now we give fuzzy values by triangular fuzzy numbers for simplicity. Let {a;}7_, be an
M-adapted stochastic process such that 0 < a;(w) < Sy(w) for w € . A ‘stock price
process with fuzzy values’ are represented by a sequence of fuzzy random variables {S't}tTZO:

Si(w)() = L((z = Si(w))/ar(w)) (3:2)

fort € T,w e Q and x € R, where L(z) := max{1 — |z|,0} (x € R) is the triangle shape
function. Hence, a;(w) is a spread of triangular fuzzy numbers Sy(w) and corresponds to
the amount of fuzziness in the process. Then, a;(w) should be an increasing function of
the stock price Si(w) (see Assumption S in the next section).

Let K (K > 0) be a ‘strike price’. The ‘price process’ { P,}T_, of American put option
under uncertainty is represented by

é(&)) = Bt(l{K} _gt(w» N 1{0} fort=0,1,2,---,T, (33)

where V is given by (2.1), and l{x} and 1fp denote the crisp number K and zero re-
spectively. An ‘exercise time’ in American put option is given by a stopping time 7 with
values in T. For an exercise time 7, we define

Pr(w) = P(w) ifr(w)=t fort=0,1,2,---,T, and w € Q. (3.4)

Then, from Lemma 2.1, P; is a fuzzy random variable. The expectation of the fuzzy
random variable P is a fuzzy number(see (2.2))

E(P.)(zx) := sup min{a, lgipy. (@)}, 7 €R, (3.5)

a€l0,1]
where E(P;), = [fﬂ P (w)dP(w), [, Pl (w) dP(w)} . In American put option, we must
maximize the expected values (3.5) of the price process by stopping times 7, and we need
to evaluate the fuzzy numbers (3.5) since the fuzzy max order (2.1) on R is a partial order

and not a linear order. In this paper, we consider the following estimation regarding the
price process {P;}1_, of American put option. Let g : C(R) — R be a map such that

9([z,y]) = A+ (1 =Ny, [z,y] € C(R), (3.6)
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where \ is a constant satisfying 0 < A < 1. This scalarization is used for the evaluation of
fuzzy numbers, and A is called a ‘pessimistic-optimistic index’ and means the pessimistic
degree in decision making. We call g a ‘A\-weighting function’ and we evaluate fuzzy
numbers a by “A-weighted possibilistic mean value’

/0 2ag(a,) da, (3.7)

where @, is the a-cut of fuzzy numbers a. (see Carlsson and Fullér [1], Goetshel and
Voxman [4]) When we apply a A-weighting function g to (3.5), its evaluation follows

/0 1 2a9(E(P;),) de. (3.8)

Now we analyze (3.8) by a-cuts technique of fuzzy numbers. The a-cuts of fuzzy
random variables (3.2) are

Sialw) = [Si(w) — (1 — a)ar(w), Sy(w) + (1 — @)ay(w)], weQ, (3.9)
and so
Sia(w) = Si(w) £ (1 — )ay(w), weQ (3.10)
for t € T and « € [0, 1]. Therefore, the a-cuts of (3.3) are

Pra(w) = [P (), B, (w)] == [3" max{K - 5, (w),0}, ' max{K — S, (w),0}], (3.11)
and we obtain E(maXe SuP,e f?;) < K < oo since gfa(w) > 0, where E(-) is the
expectation with respect to some risk-neutral equivalent martingale measure([2],[6]). For

a stopping time 7, the expectation of the fuzzy random variable P, is a fuzzy number
whose a-cut is a closed interval

E(P))a = E(P.o) = [E(P7,), E(P},)] for a€[0,1], (3.12)

where P, () a(w) = [P, (), P} ).a(w)] is the a-cut of fuzzy number P-(w). Using the

T(w),a 7(w
A-weighting function g, from (3.7) the evaluation of the fuzzy random variable P; is given
by the integral

/0 1 209(E(P.,)) de. (3.13)

Put the value by P(7). Then, from (2.2), the terms (3.8) and (3.13) coincide:

P(T):/O 2ag(E(ﬁT,a))d04:/0 209(E(P;)a) da. (3.14)

Therefore P(7) means an evaluation of the expected price of American put option when
T is an exercise time. Further, we have the following equality.



Lemma 3.1. For a stopping time 7 (1 < T'), it holds that

P(r) = /01 20g(E(P,.o)) da = /01 20E(g(Pro)) do = E (/01 2a9(Pr.o (")) d@) . (3.15)

We put the ‘optimal expected price’ by

V := sup P(7) = sup /0 209(E(P;4)) da. (3.16)

T:7<T T:7<T

In the next section, this paper discusses the following optimal stopping problem regarding
American put option with fuzziness.

Problem P. Find a stopping time 7*(7* < T') and the optimal expected price V' such
that
P(r) =V, (3.17)

where V' is given by (3.16).

Then, 7* is called an ‘optimal exercise time’.

4. The optimal expected price and the optimal exercise time

In this section, we discuss the optimal fuzzy price V' and the optimal exercise time 7*, by
using dynamic programming approach. Now we introduce an assumption.

Assumption S. The stochastic process {a;}]_, is represented by
ar(w) == cSi(w), t=0,1,2,---, T, weQ,
where ¢ is a constant satisfying 0 < ¢ < 1.

Assumption S is reasonable since a;(w) means a size of fuzziness and it should depend
on the volatility and the stock price Si(w) because one of the most difficulties is estimation
of the actual volatility ([8, Sect.7.5.1]). In this model, we represent by ¢ the fuzziness of
the volatility, and we call ¢ a ‘fuzzy factor’ of the process. From now on, we suppose that
Assumption S holds. For a stopping time 7 (7 < T'), we define a random variable

I (w) ::/0 209(Pro(w)) da, w € Q. (4.1)

From Lemma 3.1, P(7) = E(II;) is the evaluated price of American put option when 7
is an exercise time. Then we have the following representation about (4.1).

Lemma 4.1. For a stopping time 7 (1 < T'), it holds that

I (w) = 7@ fP(S (w), weQ, (4.2)

>



where f7 is a function on (0, 00) such that

K—y—3itcy@Cr—1)+ X' (y) if0<y<K

o= { G5 ity > K 43

and
o y) = (0311)2 (=K +y+cy) max{0, - K +y+cy}>— % max{0, - K +y+cy}?), y>0,
(4.4)
¢ (y) = (C;Q((K—y%y) max{0, K—y+cy}2—§ma><{0, K—y+cy}’), y>0. (45)

Now we give an optimal stopping time for Problem P and we discuss an iterative
method to obtain the optimal expected price V' in (3.16). To analyze the optimal fuzzy
price V', we put

Vi"(y) = sup E(BTIL|S; =y) (4.6)
T:t1<7<T
fort =0,1,2,---,T and an initial stock price y (y > 0). Then we note that V' = V"' (y).
Theorem 4.1 (Optimality equation).

(i) The optimal expected price V.= V' (y) with an initial stock pricey (y > 0) is given
by the following backward recursive equations (4.7) and (4.8):

V" (y) = max{BE(V;},(y(1+ Y1), fF(y)}, t=0,1,---,T—1,y>0, (4.7)
Vi) =f"y), y>0. (4.8)

(ii) Define a stopping time
m'(w) = inf{t € T| V5" (Si(w)) = f7(Si(w))}, weQ, (4.9)

where the infimum of the empty set is understood to be T. Then, T is an optimal
exercise time for Problem P, and the optimal value of American put option is

V= Vi) = P(+") (4.10)

for an initial stock price y > 0.

5. A numerical example

Now we give a numerica example to illustrate our idea in Sections 3 and 4.

Example 5.1. We consider CRR type American put option model (see Ross [8,
Sect.7.4]). Put an expiration date T = 10, an interest rate of a bond r = 0.05, a fuzzy
factor ¢ = 0.05, an initial stock price y = 30 and a strike price K = 35. Assume that
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{Y;}L_, is a uniform sequence of independent, identically distributed real random variables
such that

V. — e’ —1  with probability p
"7 e 1 with probability (1 —p)

forallt =1,2,---,7, where 0 = 025 and p= (1 +7r — e ?)/(e” — e 7). Then we have
E(Y;) = r. The corresponding optimal exercise time is given by

T (w) =inf{t € T | V" (Si(w)) = " (Si(w))}-

In the following Table, the optimal expected price V' = V' (y) at initial stock price y = 30
changes with the pessimistic-optimistic index A of the A-weighting function g.

Table. The optimal expected price = OP(y) at initial stock prices y = 30.

| 1/3 1/2 2/3
V [ 748169 7.39649 7.31130
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