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1. Introduction and notations

This paper deals with an American put option model in financial engineering which is

based on Black-Scholes stochastic model under uncertaity. The theory of option pricing

in a financial market has been developing on the basis of the famous Black-Scholes log-

normal stochastic differential models. When we sell or buy stocks by Internet in a financial

market, there sometimes exists a difference between the actual prices and the theoretical

value which derived from Black-Scholes methods, and it is not easy to predict the future

actual prices. The difficulty comes from not only randomness of financial stochastic sys-

tems but also uncertainty which we cannot represent by only probability theory. When

the market are changing rapidly, the losses/errors often become bigger between the de-

cision maker’s expected price and the actual price. Mathematical modeling of stochastic

systems in decision-making has many applications to engineering, economics, etc., and

in general, one of the conditions that stochastic modeling works successfully is stability

of systems. When we deal with systems like financial markets, fuzzy logic works well

because the markets contain the uncertain factors which are different from probabilistic

essence and in which there exists a difficulty to identify actual price values exactly. In

this paper, probability is applied as the uncertainty such that something occurs or not

with probability, and fuzziness is applied as the uncertainty such that we cannot specify

the exact values because of a lack of knowledge regarding the present stock market.

By introducing fuzzy logic to the log-normal stochastic processes for the financial

market, we present a new model with uncertainty of both randomness and fuzziness in

output, which is a reasonable and natural extension of the original log-normal stochastic

processes in Black-Scholes model. To valuate the American put option, we need to deal

with optimal stopping in log-normal stochastic processes (Elliott and Kopp [1], Karatzas

and Shreve [4], Ross [8] and so on). In this paper, we discuss an optimal stopping model

regarding log-normal stochastic processes with fuzziness, and the optimal stopping times

mean exercise times for American option in the financial markets. In order to describe an

optimal stopping model with fuzziness, we need to extend real-valued random variables

in probability theory to ‘fuzzy random variables’, which are random variables with fuzzy

number values. We introduce a ‘fuzzy stochastic process’ by fuzzy random variables to

define prices in American put option, and we evaluate the randomness and fuzziness by
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probabilistic expectation and linear ranking functions from the viewpoint of Yoshida et

al. [11].

We derive an optimality equation for the optimal stopping model and gives a method

to solve the stopping problem without loss of worthy information contained in uncertainty

like randomness and fuzziness. This paper deals with an American option model with

uncertainty by an approach of dynamic programming.

In the next section, we introduce a fuzzy stochastic process by fuzzy random variables

to define prices in American put option with uncertainty. The prices are called ‘fuzzy

prices’ in this paper. The randomness and fuzziness in the fuzzy stochastic process are

evaluated by both probabilistic expectation and linear ranking functions. In Section 3,

this paper formulates an American option model with uncertainty. In Section 4, we con-

sider the optimal expected price in the American put option and discuss writer’s/seller’s

optimal expected prices, and we give an optimal exercise time for the American put op-

tion. We show, by dynamic programming, that the optimal fuzzy price is a solution of

an optimality equation under a reasonable assumption. Finally, a numerical example is

given to illustrate our idea.

In the remainder of this section, we describe notations regarding bond price processes

and stock price processes. We consider American put option in a finance model where

there is no arbitrage opportunities ([1, 4]). Let (Ω,M, P ) be a probability space, where

M is a σ-field of Ω and P is a non-atomic probability measure. R denotes the set of all

real numbers. Let µ be the appreciation rate and let σ be the volatility (µ ∈ R, σ > 0).

Let {Bt}t≥0 be a standard Brownian motion on (Ω,M, P ). {Mt}t≥0 denotes a family of

nondecreasing right-continuous complete sub-σ-fields of M such that Mt is generated by

Bs(0 ≤ s ≤ t). We consider two assets, a bond price {Rt}t≥0 and a stock price {St}t≥0,

where the bond price process {Rt}t≥0 is riskless and the stock price process {St}t≥0 is

risky. Let r (r ≥ 0) be the instantaneous interest rate, i.e. interest factor, on a bond. Let

a bond price process {Rt}t≥0 satisfy the ordinary differential equation:

dRt = rRtdt, t ≥ 0, (1.1)

with R0 = 1, and then it follows

Rt = ert, t ≥ 0. (1.2)

Let a stock price process {St}t≥0 satisfy the log-normal stochastic differential equation:

S0 is a positive constant, and

dSt = µStdt + σStdBt, t ≥ 0. (1.3)

It is known ([1]) that there exists an equivalent probability measure Q such that {St/Rt}t≥0

is a martingale under Q, by setting dQ/dP |Mt
= exp (((r − µ)/σ)Bt − 1

2
((r − µ)/σ)2t),

t ≥ 0. Under Q, Wt := Bt − ((r−µ)/σ)t is a standard Brownian motion and it holds that

dSt = rStdt + σStdWt. By Ito’s formula, we have

St = S0 exp

(
(r − σ2

2
)t + σWt

)
, t ≥ 0. (1.4)
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In this paper, we present option models where a stock price process St takes fuzzy values

using fuzzy random variables, whose mathematical notations are introduced in the next

section.

2. Fuzzy stochastic processes

Fuzzy random variables, which take values in fuzzy numbers, were first studied by Puri

and Ralescu [7] and have been studied by many authors. It is known that the fuzzy

random variable is one of the successful hybrid notions of randomness and fuzziness.

First we introduce fuzzy numbers. Let C(R) be the set of all non-empty bounded closed

intervals. A fuzzy number is denoted by its membership function ã : R �→ [0, 1] which

is normal, upper-semicontinuous, fuzzy convex and has a compact support. Refer to

Zadeh [12] regarding fuzzy set theory. In this paper, we identify fuzzy numbers with its

corresponding membership functions. R denotes the set of all fuzzy numbers. The α-cut

of a fuzzy number ã(∈ R) is given by

ãα := {x ∈ R | ã(x) ≥ α} (α ∈ (0, 1]) and ã0 := cl{x ∈ R | ã(x) > 0},

where cl denotes the closure of an interval. We write the closed intervals as

ãα := [ã−
α , ã+

α ] for α ∈ [0, 1].

We also use a metric δ∞ on R defined by

δ∞(ã, b̃) = sup
α∈[0,1]

δ(ãα, b̃α) for fuzzy numbers ã, b̃ ∈ R,

where δ is the Hausdorff metric on C(R)([6]). Hence we introduce a partial order �, so

called the fuzzy max order, on fuzzy numbers R([5]): Let ã, b̃ ∈ R be fuzzy numbers.

ã � b̃ means that ã−
α ≥ b̃−α and ã+

α ≥ b̃+
α for all α ∈ [0, 1].

Then (R,�) becomes a lattice. For fuzzy numbers ã, b̃ ∈ R, we define the maximum ã∨ b̃

with respect to the fuzzy max order � by the fuzzy number whose α-cuts are

(ã ∨ b̃)α = [max{ã−
α , b̃−α}, max{ã+

α , b̃+
α}], α ∈ [0, 1]. (2.1)

An addition, a subtraction and a scalar multiplication for fuzzy numbers are defined as

follows: For ã, b̃ ∈ R and λ ≥ 0, the addition and subtraction ã ± b̃ of ã and b̃ and the

scalar multiplication λã of λ and ã are fuzzy numbers given by

(ã + b̃)α := [ã−
α + b̃−α , ã+

α + b̃+
α ], (ã − b̃)α := [ã−

α − b̃+
α , ã+

α − b̃−α ]

and (λã)α := [λã−
α , λã+

α ] for α ∈ [0, 1].

A fuzzy-number-valued map X̃ : Ω �→ R is called a ‘fuzzy random variable’ if the

maps ω �→ X̃−
α (ω) and ω �→ X̃+

α (ω) are measurable for all α ∈ [0, 1], where X̃α(ω) =
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[X̃−
α (ω), X̃+

α (ω)] = {x ∈ R | X̃(ω)(x) ≥ α} (see [10]). Next we need to introduce

expectations of fuzzy random variables in order to describe an optimal stopping model

in the next section. A fuzzy random variable X̃ is called integrably bounded if both

ω �→ X̃−
α (ω) and ω �→ X̃+

α (ω) are integrable for all α ∈ [0, 1]. Let X̃ be an integrably

bounded fuzzy random variable. The expectation E(X̃) of the fuzzy random variable X̃

is defined by a fuzzy number (see [7])

E(X̃)(x) := sup
α∈[0,1]

min{α, 1E(X̃)α
(x)}, x ∈ R, (2.2)

where closed intervals E(X̃)α :=
[∫

Ω
X̃−

α (ω) dP (ω),
∫
Ω

X̃+
α (ω) dP (ω)

]
(α ∈ [0, 1]).

Now, we introduce a continuous-time fuzzy stochastic process by fuzzy random vari-

ables. Let {X̃t}t≥0 be a family of integrably bounded fuzzy random variables such that

E(supt≥0 X̃+
t,0) < ∞, where X̃+

t,0(ω) is the right-end of the 0-cut of the fuzzy number

X̃t(ω). We assume that the map t �→ X̃t(ω)(∈ R) is continuous on [0,∞) for almost all

ω ∈ Ω. {Mt}t≥0 is a family of nondecreasing sub-σ-fields of M which is right continuous,

i.e. Mt =
⋂

r:r>t Mr for all t ≥ 0, and fuzzy random variables X̃t are Mt-adapted, i.e.

random variables X̃−
r,α and X̃+

r,α (0 ≤ r ≤ t; α ∈ [0, 1]) are Mt-measurable. And M∞
denotes the smallest σ-field containing

⋃
t≥0 Mt. We call (X̃t,Mt)t≥0 a ‘fuzzy stochastic

process’.

3. American put option with uncertainty of stock prices

In this section, we introduce American put option with fuzzy prices and we discuss its

properties. Let {at}t≥0 be an Mt-adapted stochastic process such that the map t �→
at(ω) is continuous on [0,∞) and 0 < at(ω) ≤ St(ω) for almost all ω ∈ Ω. We give a

fuzzy stochastic process of the stock price process {S̃t}t≥0 by the following fuzzy random

variables:

S̃t(ω)(x) := L((x − St(ω))/at(ω)) (3.1)

for t ≥ 0, ω ∈ Ω and x ∈ R, where L(x) := max{1 − |x|, 0} (x ∈ R) is the triangle

type shape function(Fig.3.1) and {St}t≥0 is defined by (1.3). Hence, at(ω) is a spread of

triangular fuzzy numbers S̃t(ω) and corresponds to the amount of fuzziness in the process.

Then at(ω) should be an increasing function of the stock price St(ω) since the fuzziness

in the process depends on the volatility σ and stock price St(ω) in (1.3) (see Assumption

S in the next section). The α-cuts of (3.1) are

S̃t,α(ω) = [S̃−
t,α(ω), S̃+

t,α(ω)] = [St(ω) − (1 − α)at(ω), St(ω) + (1 − α)at(ω)]. (3.2)

Let K be a strike price (K > 0). We define the fuzzy price process by a fuzzy stochastic

process {P̃t}t≥0:

P̃t(ω) := e−rt(1{K} − S̃t(ω)) ∨ 1{0} for t ≥ 0, ω ∈ Ω, (3.3)
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Fig. 3.1. Fuzzy random variable S̃t(ω)(x).

where ∨ is given by (2.1), and 1{K} and 1{0} denote the crisp numbers K and zero

respectively. Their α-cuts are

P̃t,α(ω) = [max{e−rt(K − S̃+
t,α(ω)), 0},max{e−rt(K − S̃−

t,α(ω)), 0}].
Then, we obtain E(supt≥0 supα∈[0,1] P̃

+
t,α) ≤ K < ∞ since S̃−

t,α(ω) ≥ 0 for t ≥ 0, α ∈ [0, 1]

and ω ∈ Ω.

In this paper, we deal with a model with the time space T = [0, T ], where T is a

positive constant and is called an expiration date. A map τ : Ω �→ T is called a stopping

time if

{ω ∈ Ω | τ (ω) ≤ t} ∈ Mt for all t ∈ T.

An exercise time in American put option is given by a stopping time τ with values in

[0, T ]. For an exercise time τ , we define

P̃τ (ω) := P̃t(ω) if τ (ω) = t for t ∈ T, ω ∈ Ω. (3.4)

Then, P̃τ is a fuzzy random variable. The expectation of the fuzzy random variable P̃τ is

a fuzzy number(see (2.2))

E(P̃τ )(x) := sup
α∈[0,1]

min{α, 1E(P̃τ )α
(x)}, x ∈ R, (3.5)

where E(P̃τ )α =
[∫

Ω
P̃−

τ,α(ω) dP (ω),
∫

Ω
P̃+

τ,α(ω) dP (ω)
]
. In American put option, we must

maximize the expected values (3.5) of the price process by stopping times τ , and we need

to evaluate the fuzzy numbers (3.5) since the fuzzy max order (2.1) on R is a partial order

and not a linear order. In this paper, we consider the following estimation regarding the

price process {P̃t}T
t=0 of American put option. Let g : C(R) �→ R be a map such that

g([x, y]) := λx + (1 − λ)y, [x, y] ∈ C(R), (3.6)

where λ is a constant satisfying 0 ≤ λ ≤ 1. This scalarization is used for the evaluation

of fuzzy numbers (Fortemps and Roubens [3]), and λ is called a pessimistic-optimistic

indicator. We call g a linear ranking function and we evaluate fuzzy numbers ã by∫ 1

0

g(ãα) dα, (3.7)
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where ãα is the α-cut of fuzzy numbers ã. When we apply a linear ranking function g to

(3.5), its evaluation follows ∫ 1

0

g(E(P̃τ )α) dα. (3.8)

Now we analyze (3.8) by α-cuts technique of fuzzy numbers. The α-cuts of fuzzy

random variables (3.2) are

S̃t,α(ω) = [St(ω) − (1 − α)at(ω), St(ω) + (1 − α)at(ω)], ω ∈ Ω, (3.9)

and so we put

S̃±
t,α(ω) := St(ω) ± (1 − α)at(ω), ω ∈ Ω (3.10)

for t ∈ T and α ∈ [0, 1]. Therefore, the α-cuts of (3.3) are

P̃t,α(ω) = [P̃−
t,α(ω), P̃+

t,α(ω)] := [e−rt max{K − S̃+
t,α(ω), 0}, e−rt max{K − S̃−

t,α(ω), 0}],
(3.11)

and we obtain E(maxt∈�supα∈[0,1] P̃
+
t,α) ≤ K < ∞ since S̃−

t,α(ω) ≥ 0, where E(·) is the

expectation with respect to some risk-neutral equivalent martingale measure([1],[9]). For

a stopping time τ , the expectation of the fuzzy random variable P̃τ is a fuzzy number

whose α-cut is a closed interval

E(P̃τ )α = E(P̃τ,α) = [E(P̃−
τ,α), E(P̃+

τ,α)] for α ∈ [0, 1], (3.12)

where P̃τ (ω),α(ω) = [P̃−
τ (ω),α(ω), P̃+

τ (ω),α(ω)] is the α-cut of fuzzy number P̃τ (ω). Using the

linear ranking function g, from (3.7) the evaluation of the fuzzy random variable P̃τ is

given by the integral ∫ 1

0

g(E(P̃τ,α)) dα. (3.13)

Put the value (3.13) by P (τ ). Then, from (2.2), the terms (3.8) and (3.13) coincide:

P (τ ) =

∫ 1

0

g(E(P̃τ,α)) dα =

∫ 1

0

g(E(P̃τ )α) dα. (3.14)

Therefore P (τ ) means an evaluation of the expected price of American put option when

τ is an exercise time. Further, we have the following equality.

Lemma 3.1. For a stopping time τ (τ ≤ T ), it holds that

P (τ ) =

∫ 1

0

g(E(P̃τ,α))dα =

∫ 1

0

E(g(P̃τ,α))dα = E

(∫ 1

0

g(P̃τ,α(·)) dα

)
. (3.15)

We put the ‘optimal expected price’ by

V := sup
τ

P (τ ) = sup
τ

∫ 1

0

g(E(P̃τ,α)) dα. (3.16)
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In the next section, this paper discusses the following optimal stopping problem regarding

American put option with fuzziness.

Problem P. Find a stopping time τ ∗ (τ ∗ ≤ T ) and the optimal expected price V such

that

P (τ ∗) = V , (3.17)

where V is given by (3.16).

Then, τ ∗ is called an ‘optimal exercise time’.

4. The optimal expected price and the optimal exercise time

In this section, we discuss the optimal fuzzy price V and the optimal exercise time τ ∗, by

using dynamic programming approach. Now we introduce an assumption.

Assumption S. The stochastic process {at}t∈� is represented by

at(ω) := cSt(ω), t ∈ T, ω ∈ Ω,

where c is a constant satisfying 0 < c < 1.
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Fig. 4.1. Fuzzy stock price S̃t(ω)(x) and Assumption S.

Since (1.3) can be written as

d log St = µdt + σdBt, t ≥ 0, (4.1)

one of the most difficulties is estimation of the actual volatility σ ([8, Sect.7.5.1]). There-

fore, Assumption S is reasonable since at(ω) corresponds to a size of fuzziness(Figs.3.1

and 4.1) and so it is reasonable that at(ω) should depend on the fuzziness of the volatility

σ and the stock price St(ω) of the term σSt(ω) in (1.3). In this model, we represent by

c the fuzziness of the volatility σ, and we call c a fuzzy factor of the process. From now
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on, we suppose that Assumption S holds. By putting b±(α) := 1 ± (1 − α)c (α ∈ [0, 1]),

from (3.2) we have
S̃±

t,α(ω) = St(ω) ± (1 − α)at(ω)
= b±(α)St(ω), ω ∈ Ω

(4.2)

for t ∈ T and α ∈ [0, 1]. Then, from (3.11) and (4.2), we have the fuzzy price process:

P̃±
τ,α(ω) = e−rτ(ω) max{K − b∓(α)Sτ (ω), 0}, ω ∈ Ω. (4.3)

For a stopping time τ (τ ≤ T ), we define a random variable

Πτ(ω) :=

∫ 1

0

g(P̃τ,α(ω)) dα, ω ∈ Ω. (4.4)

From Lemma 3.1, P (τ ) = E(Πτ) is the evaluated price of American put option when τ

is an exercise time. Then we have the following representation about (4.4).

Lemma 4.1. For a stopping time τ (τ ≤ T ), it holds that

Πτ(ω) = e−rτ(ω)fP (Sτ(ω)), ω ∈ Ω, (4.5)

where fP is a function on (0,∞) such that

fP (y) :=

{
K − y − 1

2
cy(2λ− 1) + λϕ1(y) if 0 < y < K,

(1 − λ)ϕ2(y) if y ≥ K,
(4.6)

and

ϕ1(y) :=
1

2cy
max{0,−K + y + cy}2, y > 0, (4.7)

ϕ2(y) :=
1

2cy
max{0, K − y + cy}2, y > 0. (4.8)

Next, to analyze the optimal fuzzy price V , we introduce the follwowing stochastic

process {Zt}t∈�: Let t ∈ T. Define

Zt := ess sup
τ : stopping times with values in�,τ≥t

E(Πτ |Mt). (4.10)

Refer to [9] regarding the essential supremum. Then Zt are right continuous with respect

to t since Πt and Mt are right continuous with respect to t. The random variables Zt is

called Snell’s envelope(Fakeev [2]). Hence, by using dynamic programming approach, we

obtain the following optimality characterization for the stochastic process regarding the

optimal fuzzy price V by random variables Zt.

Lemma 4.2. For t ∈ T, the following (i) — (iii) hold:

(i) For almost all ω ∈ Ω, it holds that

Zt(ω) ≥ Πt(ω).

Particularly it holds that V = E(Z0|S0 = y).
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(ii) For almost all ω ∈ Ω, it holds that

Zt(ω) ≥ E(Zs|Mt)(ω), s ∈ [t,∞) ∩ T.

(iii) For almost all ω ∈ Ω satisfying Zt(ω) > Πt(ω), there exists ε > 0 such that

Zt(ω) = E(Zs|Mt)(ω), s ∈ [t, t + ε) ∩ T.

Now we give an optimal stopping time for Problem P. We define fuzzy price processes

by

V P (y, t) = sup
τ : stopping times, t≤τ≤T

E(ertΠτ |St = y) (4.12)

for y > 0 and t ∈ T. Then we note that V P (y, 0) = V , which is the optimal expected

price defined in (3.16). Since the stock price process {St}t≥0 is Markov from (3.1), the

following theorem regarding the fuzzy price processes (4.12) holds by Lemma 4.2 and

(4.5). Next, we define an operator

L :=
1

2
σ2y2 ∂2

∂y2
+ ry

∂

∂y
+

∂

∂t
on [0,∞) × [0, T ). (4.13)

Then we obtain the following optimality equations.

Theorem 4.1 (Free boundary problem). Suppose that Assumption S holds. Then, the

fuzzy price V P (y, t) satisfies the following equations:

L(e−rtV P (y, t)) ≤ 0 in the sense of Schwartz distributions, (4.14)
L(e−rtV P (y, t)) = 0 on D, (4.15)
V P (y, t) ≥ fP (y), (4.16)
V P (y, T ) = fP (y), (4.17)

where D := {(y, t) ∈ [0,∞) × [0, T ) | V P (y, t) > fP (y)}. The corresponding optimal

exercise time is

τ ∗(ω) = inf{t ∈ T | V P (St(ω), t) = fP (St(ω))}, ω ∈ Ω. (4.18)

5. A numerical example

Now we give a numerica example to illustrate our idea in Sections 3 and 4.

Example 5.1. Put an expiration date T = 7, an interest rate of a bond r = 0.05, a

fuzzy factor c = 0.05, an initial stock price y = 25 and a strike price K = 30. If we take a

linear ranking function g with λ = 0.5 in (3.6), Fig. 5.1 shows the corresponding optimal

expected price V P (y, 0) for each initial stock price y.
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Fig. 5.1. The optimal expected price V P (y, 0) and the function fP (y).

(λ = 1/2, c = 0.05,K = 30, y: initial stock price)

The optimal expected price V (y) = V P (y, 0) at initial stock price y = 25 changes

corresponding to the pessimistic-optimistic index λ in the definition (3.6) of the linear

ranking function g(see Table 5.1).

Table 5.1. The optimal expected price V (y) = V P (y, 0) and the index λ (y = 25).

λ 1/3 1/2 2/3
V (y) 6.09478 5.95986 5.86189

In Table 5.1, the pessimistic-optimistic index λ(0 ≤ λ ≤ 1) means the pessimistic degree

in the writer’s decision making.
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