ON THE VALUE FOR OLA-OPTIMAL STOPPING PROBLEM .
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BY POTENTIAL THEORETIC METHOD

Masami Yasuda

Summary. The stopping problem on Markov process with OLA(One-stage
Look Ahead) policy is considered. 1Its associated optimal value could
be expressed explicitly by a potential for a charge of the positive
part of the difference between the immediate reward and the one-
period-after reward., As application to the best choice problem, the
optimal value of three problems: the classical secretary problem, the
problem with a refusal probability and the one with random number of

objects are calculated,

1. Introduction. The optimal stopping problem is a special case
of Markov decision processes. The decision maker can either select

to stop, in which case he receives reward and the process terminates,
or to pay cost and continue observing the state. If the decision is
made to continue, then he proceeds to the next state according to the
given transition probability. The objective is to choose the policy
which maximizes the expected value. A policy for the decision process
means to take the adaptation of a stopping time of the process. '
Let X o1 n=0¢,1,2,.. be a Markov chain over a state space § 1n Rl.
We assume that S is countable, but this is inessential for our
discussioh{ In the last section 3 the cases of the unit interval are
considered. The optimal stopping problem is to find a stopping time
T which maximizes the expectation of payoff v(i;t) starting at i.

Let us denote the optimal value by

(1.1) v(i) = sup v (i;T)
T ™
| T-1 |
= sup E[r(xT) - E c(xn) | xg=i], 1€S

T > n=g

where r(i) means an immediate reward and c(i) a paying cost. The
admissible class of the policies is the set of all finite stopping
times. The detailed analyses are discussed by many authors such as
Chow/Robbins/Siegmund{(l1]}, Shiryaev(1ll] and so on. '

Consider the set of states for which stopping immediately is at

least as good as stopping after exactly one more period. Denote this
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set by
(1.2) B
where Pr (i)

{ies ; r(i) > Pr(i) - c(i)}
P(i,j)xr(j) and P(i,j), i,j€S, is a stationary

7.
transition probabiliii. The policy, defined by the hitting time of
this set B, is called a "One-stage Look Ahead"(abridged by OLA) policy
by Ross[10), since it compares stopping immediately with stopping
after one period. Under certain conditions, He shows that the OLA
policy 1s optimal. The OLA policy is useful for many problems and
also extendpd to the continuous parameter process by Prabhu[8].

Our aim of this note is to obtain, by applying the potential
operator, the explicit optimal value associated with the OLA policy
for stopping'problems. With this result, we will give, in the section
3, the expliéit solutioﬁ of the various versions for the best choice
problem in the asymptotic form. The first is the classical problem
and the second is the case with the refusal probability. Also the
solution for the case of random number of objects is calculated. The
last case was reduced to a functional optimality equation by an ad hoc
method in Yasuda[l3].

The motivation for this approach arose in connection with the
results of Darling[2] and that of Hordijk([5]. The former gave the
upper bound of the optimal value by a potential operator and the

latter gave a sufficient condition to find an optimal stopping time.

2. Markov potential and the optimal value, For a transition

probability P=P(i,j),i,jes, a function f=£f(i), ieS, is called a charge
if lim [{I+P+...+Pk}f](i) for each igS, exists and is finite-valued.
Function g--g(i),ies is a potential if there exists a charge f such
that g(i) = lim [{I+P+...+Pk]f](i), icS. We shall use the notation
g(i)= Nf(i), ies. o
' The relation between Markov Potential Theory and Dynamic
Programming or Markov Decision Process 1is discussed by Hordijk([5].
Since, as in the section 1, the optimal stopping problem is a special
case of Markov Decision Process, the optimality equation of the
stopping problem is reduced as follows.
(2.1) | v(i) = max{r (i), Pv(i) - c(i)}, 1€ES,
Fundamental in such an investigation of Dynamic Programming is the
unigueness of the equation (2.1) and the determination of the optimal
policy and the optimal value,

In this note we consider the optimal stopping problem, for which

the OLA policy is optimal. To give a sufficient condition, we prepare
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the next two propositions. The subset B of S in (1.2) 1s closed if
(2.2) P(i,j) = @ for ieB, jEeB
where B denotes the complement of the set B. The process is stable
if the sequence deiined by vg(i)=r(i),

vn(i) = max{r(i), Pvn_l(i) - c(i)} for n2l,

converges uniformly and lim vn(i) = v(i) for 1€S.

N — o0

Proposition 2.1 (Ross{l10]). If the process is stable and the set B is
closed, then the OLA policy is optimal. |

Although this situation occurs in many appliCations and 1s useful

to determine the stopping region, the proposition does not state the

optimal value. The stability is somewhat less satisfactory to check in

the application because the optimal value is unknown, So we impose
assumption on a potential of the chain. Our aim is to calculate the
optimal expected value under the closedness and the following
equalization assumption in stead of the stability assumption, and
express it explicitly by using a potential. We call the problem where
the OLA policy is optimal as the OLA-optimal stopping problem,

Proposition 2.2 (Hordijki[5]). Suppose that _
(2.3) v(i) = Pv(i) - c(i) when i¢g '={ies ; v(i) = xr(i)}.

If the value function is a potential; then the hitting time of set T
becomes optimal.
Proof. This is a special case in Theorem 4.1 of Hordijk(5]. Q.E.D.

Let 'PA’ denote the restriction to a subset A of the transition
probability P, i.e.,
(2.4) P,(i,3) = P(i,J)1,(J) if 1,]Jes,
where 1, denotes the indicator of set A.

When the stability is dropped, as Ross shows, a stopping problem
does not imply the optimality of the OLA policy. So we must impose a
condition so as to preserve the OLA principle. The condition of
equalizing for the reward function due to a potential notion is

considered.

Assumption 2,1. We assume that
. k " - . bty
(2.5) 11mk ;m[(PEL r](1) = @ for 1eB

where B denotes the complement of the set B defined by (1.2), and
that the potential for P that

is,

r-c is finite-valued with respect to P

B 5
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(2.6) .[NE(PBr-c)](i) < » for 1ieB.

The assumption (2.5) is eguivalent to
1imk__ém E[r(}k)1{T>k};xn¢B,n=1,..,k—1] = @ )
where 1t 1is the hitting time of B. The property 1imk_; o (Pﬁ) v =
for the optimal value is called equalizing in Optimal Gambling (Dubins
/Savage[3] or Hordijk[5]). One might say that here the actually
received in the time period up to N and the promised earnings equalize
as N tends to infinity. If the optimal value satisfies this property,

the assumption (2.5) holds since v(i),; x(i), ieS by (2.1).

Theorem 2.1. Under the assumptions (2.5) and (2.6), the OLA policy

Tg is optimal, that is, the optimal policy is the hitting,time. of B.
The optimal value v(i) = v(ijty) is given by
+ | r(i) on B
(2.7) v(i) = (i) + N(Pr-r-c) (1) = _
| NE(PBr-c)(i) on B

where + is the positive part of the function, and N and Nz are

potentials with respect to P and P= respectively.

Proof. The proof for the optimality of the OLA policy is similar to
Ross[18] and Hordijk[5)]. 1In generally if v(i), 1€ S is a solution of
the optimality equation(2.l), then v(i) > r(i) and v(i) > Pv(i) - c(1)
for ieS. So

n-1 |
v(i) 2 Pnr(i) - z. Pkc(i) for each n.
k=0

It yields that

v(i) > v(i; T ) for any policy T < <=,

Therefore it islsufficient to assert the followings to show the

optimality. One is that, for the OLA policy Tt its value equals the

’
right hand side of' (2.7), that is, v(i;'cB) =Br(i) on B and NE(PBr_
c) (i) on B, and the second is that it satisfies the optimality
equation (2.1).

Because of the definition of the OLA policy, v(i) = r(i) on B and
v(i) = Pv(i)~-c(i) = ng(i) + PBr(i) - c(i) on B. Hence we get the
first assertion immediately. . |

Nextly we show that it satisfies the optimality equation (2.1).
From Pf(1) = PBf(i), ieB for any f£=f£(i), we have

IPv(i) - c(i) = PBv(i) - c(1) = PBr(i) - ¢c(i) = Pr(i) - c(1i)

on B, Hence



575

max{x (i), Pv(i) - c(i)}
= max{r(i), Pr(i) - c(i)}
= r (1) for 1eB.
On the other hand, by substitution of (2.7),
IPv(i) - ¢c(i) = PEv(i) + PBv(i) - c(1)
= [PENE(PBr-C)](i) + PBr(i) - c(1)
= [NE(PBr-C)](i)p i€s.
On ieB, that
r(i) < Pr(i) - c(i) = P= r(1) + P r(1) - c(1)
implies (i) - Pﬁr(i) < PBr(i) - c(1) And by the assumptlon (2.6),
r(i) ¢ [Nz(Pgr - c)] (i) for ieB. Combining the above assertions,

max{r (i), Pv(i) - c(i))
= max{r (i), [Ng(Pyr- -c)] (i)}
= [Ng (P r- c)](1) for ieB.

Thus the value v(1) v(1;t ) satisfies the optlmallty equat1on.
_ It now remains to calculate the potential N(Pr-r-c) (1), ieS.
From the definition of the set B in (1.2), we have (Pr-r-c) (1)=G on

B. So the support of charge is the complement of B and hence
N(Pr-r-c)  (i)=¢ on B. .
on other hand, since (Pr—r—c)+(i) = (Pr-r-c) (i) = (P§r+PBr—r-c)(i) for

ieB, we have that
P(Pr—r—c)+(i) = P (Pr r-c) (i)
= ((P ) r+PBPBr PRI~ P-c)(1), ieB. |
Repeating this procedure to take the expectatlon up to k times and

adding these,
{I+P+P2+...+P } (Px~r~c) (i)
= (Pg) r(1) + [{(P )k 1+(P§)k'2+..+1§}(PBr-C)](i) - r(i), ieB.
Hence
N (Pr-r-c) (i) = [N (Ppr-c)] (i) - r(i), ieB

follows immediately from the assumptions (2.5) and (2.6). Q.E.D.

We remark that the upper bound on the optimal value in Theorem
3.6 of Darling|2] equals exactly the optimal value in this case. That
is, the bound holds with equality when the OLA policy is optimal and
it is equalizing. This explicit solution and the proposition 2.1, 2.2
determine the optimal value and policy completely in the OLA-optimal
stoPping_problem. -

3. The Best Choice Problem. In this section we apply the
previous method to the typical stopping problem known as the best
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choice problem. By taking a scale limit, the asymptotic form of the
problem is considered in order to get an analytical explicit solution.
In the ésymptotic form the state space of the problem is not countable
but the unit interval. However immediately the previous method can be
applied to the case. Some of results are well known and the optimal
values are already obtained by some method, for example, by using
differential equation. Here we intend to illustrate it for the
application which optimal value can be determined by the unified
previous method. Each of these are cases whose problem is the OLA-

optimal stopping one.

3.1, The Classical Secretary Problem, The secretary problem,

variously called dowry problem or Googol, is an optimal stopping
problem based on relative ranks for bbjects arriving in a random
fashion; the objective is to find the stopping rule that maximizes the
probability of stopping at the best object of the sequenCe. The
optimality equation for the optimal value v(i), ieS, the maximal

probability of win, on the state space s={1,2,..,n} is as follows.

v(i)= max{i/n, i Z v(3)/((3-1y '},  ie{l,2,...,n=-1}, vin)=1
j=i+l
where there are no costs. This formulation of the problem as Markov
Process is given by Dynkin and Yushkevitch[4]. Also refer to
Chow/Robbins/Siegmund (1] or Shiryaev([ll]. To consider the problem in
the asymptotic form, take the scale limit by i/mn --> x as i,n ~=> o,

It becomes that

1

(3.1) ' v(x) = max{ x , X f v(y)y-zdy}, sz=[G,1];
| X

The solution of (3.1) is well known as

e_l | on (G, e_ljr

(3.2) v(x) =
_ X on [e~t, 1].

Now we extend the problem by changing the reward function r(X)=Xx,

which means probability of choosing the best object in the classical

secretary problem, to a general reward r(x). To ensure the OLA

policy is still optimal, we assume, for a function h(x) defined by

(3.3) h(x) = r(x) - X f r(y)y_zdy on ([@,1],
X

that
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i) each term of the function h(x) is finite-valued on [@,1], and
ii) it changes its sign from - to + only once as X increases @ to
1 and so the equation h(x)=@ has a unique solution a. '

The optimality equation (3.1) with the reward function r (x) 1is
1 -2
(3.4) v(x) = max{r(x), X [ viy)y “ay}l, xe{d,1].
x .

provided that the underlying Markov chain is unchanged. The solution

of this equation (3.4) is given by
‘{ r(e) on [0,al,

r(x) on [q,l]

(3.5) | v(x) =

where o is defined by (3.3i1).
In fact, one can show this (3.5) by applying the previous result.,
Straightforward calculation yields that the set B becomes [a ,1] and

it is closed with respect to the transition probability:

{ xy-zdy for @<x<y<1,

il

P('X,GY)
0 otherwise,
We have PBr(x) = r(a)(x/a) and (PE)nPBr(x) = r(o) (x/a)logn(a/x)_/n!
for xe¢{@,0a), n=06,1,2,... Hence
NEPBr(x) r(a)(x/a){1+log(a/x)+2_llogz(a/x)+...
+(nl)

llogn(d/x)+...},
= r (Q)
for xe[@,a] and thus the assumption (2.6) is satisfied. Also we can

check the condition of (2.5):

(P5) "z (x) = x [ *{z(y)y ?10g" " (y/x)/(n-1) 1 }dy
X

tends to zero as n —>» o for xel[@,al.

3.2, A Problem with Refusal Probabilitx. A variant of the best

choice problem is a case with a refusal probability discussed by
smith[12]. We can also formulate the problem as optimal stopping on a
Markov chain. The asymptotic form of the transition probability is

obtained immediately and we have

{j PY-l(x/y)pdy - @<x<y<l,

P(x,dy) = |
@ | otherwise

where p is a given parameter @ < p < 1, which quantity l-p means a

probability of the refusal. When there is no refusal, i.e., p=l, it
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reduces to the classical secretary problem discussed in the section
3.1. Similarly as before, the optimality equation for the stopping
problem with refusal probability p is ”

1 .
(3.6) v(x) = max{r(x), [ py “(x/y)Pv(y)dy},  xel(o,1].
) _
Define a function h(x) by
' 1, |
(3.7) . h(x) =x(x) - [ {py ~(x/y)Pr(y)}ay, xe(@,1].
X

Under the same assumptions as (3.3i) and (3.3ii), we obtain the

optimal value with refusal probability as follows.

_{rca) “on [0,a],

r (x) on [0,1]

(3.8) v(ix) =

where o is a unique solution of h(x)=0 in (3.7).

Another method to solve the best choice problem is given by
Mucci{7], which method reduces the value to the solution of a
differential equation. '

Let
1

vix) = [ {oy t(x/v)Pr(y)}dy,  xelo,1]
X

which means a conditional optimal value. This satisfies

dv(x)/dx = - px-l(r(x)—V(x))+, Xx€e[@,1l]
(3.9)

V(l)=0.
The optimal value at the beginning v* = V(0d) equals r(a).

3.3. A Problem with Random Number of Objects. The discussion

of the problem for variant on the random number of objects is given by
Presman/Sonin([9]. The random environment in the problem means that
there is a distribution ¢(x) over xe[@,1] which denotes the random
number of objects. If we adapt the approach by the differential
equation(3.9), the following functional equation is obtained by
~ Yasuda[l3]. For xe[0,1], '

dv (x) 1
(3.10)

V(x)[1-o(x)]) " tda(x) - x T (r(x)-v(x))tax,

V(l) = 0

where we set



579

1 4 -1
(3.11) R(x) = x(1-0(x)) ~ [y “d&y).
X

When the distribution is absolutely continuous, (3.10) reduces to a
differential equation such as (3.9). Let us define

1 1
g(x) = [y laely) and h(x) = g(x) - [y lg(y)dy for xe[0,1].
X X

We assume conditions on the distribution #(x) so that these functions
R(x), g9(x) and h(x) are well defined.,. The following result is
obtained already by Yasuda([l3].

If h(x) changes its sign only once from - to + as x varies from 0

to 1, and if ®¢(x) is continuous for @ < x < 1, then the optimal value
at the beginning v* = V(@) is given by
(3.12) v o= (1-9(@))V(a) = aga)
where o is a unique solution of h(x)=0 for xe[d,1l].

This can be also obtained by applying the previous method. Since
the optimality equation with random number of objects in the

asymptotic form is, for xe(@,1],

1
(3.13) v(x) = max{R(x),.XI1-¢(x))'l [ (1—¢(y))y"2v(y)dy},
X
we have
' R(a) on [0,a];,
(3.14) v(x) =
R(x) on {a,l].

In fact, it is equivalent to the classical secretary problem

1
w(x) = max{r(x), x [ y"zw(y)dy}

X
with the function
(3.15) wi(x) = (1-d(x))v(x)
and with the reward function
. | LI
(3.16) r(x) = x [ y ~dé(y).

| X -

Hence the solution (3.14) is immediately obtained by the result of
(3.5) . This method is simpler than the ad hoc treatment of the
functional equation (3.10) .
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