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ABSTRACT

This note concerns with a special case of Markov decision process, whose reward
function is convex in the action variable and the system dynamics is linear. We show
that the derivative of the optimal value in the Markov decision process reduces a game
value for the two person zero-sum stopping game. The result is the discrete version of
so-called the singular stochastic control. By this discussion, a slight extension of the
previous results is obtained. It will be applied to the smoothmg problem such as the
inventory or the cash management.

1. INTRODUCTION

Stopping game problem is motivated from the two-person zero
sum game version of the optimal stopping problem. There are many
papers which discuss existence of the optimal strategy and the
solution of optimality equation. See Dynkin (1969), Neveu (1975). On
the other hand the singular stochastic control by Harrison, Sellke and
Taylar (1983) is known as the descendant from a sequential decision
* or a stochastic control problem. In the theory of Brownian motion, the
connection between stopping game problem and the singular
stochastic control was pointed out by Karatzas and Shereve (1984,
1985). These two problems have the same feature of the model
structure. That means the monotonicity of optimal policies as in
sequential® decision processes (Serfozo (1976), Heyman and Sobel
(1982)). In this paper Markov decision processes with special
structure are formulated as the optimization problem and we clarify
its connection with the stopping game problem. By this argument a
slight extension for results is obtained and the fundamental condition
will be seen that the linearity of dynamic system and the convexity of
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2 5. . M. YASUDA

reward. It will be applied to the smoothing problem such as the:
inventory or the cash management of Schil (1976) and Beckman
(1961).

2. FORMULATION OF MARKOV DECISION PROCESSES

In this section we will formulate Markov decision processes,
whose optimal value and optimal policy are explicitly derived.

2.1. Formulation

The Markov decision processes consist of four components

(S, A, r, P%): Let a state space S and an action A be (- o, =) in the real
Euclid space respectively. A reward functlon is denoted by
r=r(xa),xe€S,ae A such that

rx,a), if a>0
rix,a) =4 0, : if a=0 : 2.1)

r_(x, a), if a<0

where r,(x, @) are continuous in x, convex in a, and it tends to « as
a — * oo respectively. For the dominance of two functions r,,

>0, if a>0
rdx,a)-r(x,a){ =0, if a=0 2.2)
<0, if a<0. -

Furthermore the reward function is assumed that each of r,
decomposed as the sum of 7§ and r} respectively

Folx, @) = ri@) + rix + a). C o (2.3)

For a transition probability P* = {P*(x, ); x,y € S}, a € A, assume that
there exists a random variable £ with its density p; such that

P*fx) = [ )P, dy) := Elflx + a + E)]
o (2.4)

= [ fx+ a+ pe(t)dt
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for any integrable function f on S. The most essential is that the
system dynamics is a linear case and its random disturbance £ has a
density with respect to Lebesgue measure on S. So Pf(x) = P’fx + a)
holds and it is smooth in x. Especially P%x) = Elfx + £)] will be used
in the following Stephan problem.

The finite horizon Markov decision processes are defined by the
policy, the mapping from the state space to the action space, which is
denoted by {fily-12,.., x€ S,fi(x)e A and the discount factor

0 <B < 1. The aim of Markov decision process is to minimize the total
discounted expected cost v,(x):

n
v, (%) :=inf z Bk'lr(xk S e | % =x (2.5)
| =2

with the initial state x, where {x;} is the induced Markov chain with
the non-stationary transition probability {P%).
In case of the infinite horizon, the total expected reward v(x):

v(x) = inf Z Bk_"lr(xk s o) |2y =2« : (2.6)
(Y k=1 .

is minimized with respect to policies {f}}.

Under these formulation, the optimality equation for the finite
horizon case is given as follows: .

Vo(x) = min r(x, a),
oo oo

' 2.7
v(x) = min {r(x, @) + BP%;_4(x)}, 1 <i<n.
—oog <00

Similarly it is obtained the infinite horizon case as

v(x) = min {r(x, a) + pPv(x)}. (2.8)
—coY oo
These cases of the Markov decision processes are bounded from below

and so it is a positive case. Then we can prove the next lemma by
Bertsekas (1973, 1976).

LEMMA 2.1 If the infinite Markov decision process (S, A, r, P%)
satisfies the previous assumption, there exists a stationary policy and
the solution of the optimality equation equals the optimal value.
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2.2. Explicit form of the optimal policy

The optimal policy for the Markov decision process (S, A, r, P) is
described explicitly. Firstly we consider the ﬁnlte case problem and
then the infinite case by induction.

THEOREM 2.1. For the finite Markov decision process (S, A, r, P%),
there exist two thresholds L; and U for each i=1,2,..,n and the

optimal policy f;" is given by
Li ~-X . lf x< Li ; ) )
JACIERN if L;<x<U,; 2.9)
U-~-x, if Ug<x;

its associated optimal value v; equals

ryx, L;—x)+ BPov,-(Li), if x<L;;
Vi1 (%) =4 BP v, (%), | if Lisx<U;; (2.10)
r(x, U;—x) + BP%U), if U,sx.
PROOF. First we note that vy(x) is convex in x and vy(x) - o as
x| — ee. So _
w;(x, @) :=r(x, a) + PP (%) =ry(x) + ro(x + a) + BPOvi(x + a)b (2.11)

is also convex in a and wj(x,a)— ~ as a — e for fixed x from
(2.1)—(2.3). Since the feasible action space is a € A = (— e, ), these
exists its minimum with respect to y=x+a e (-, =) for all x
respectively.

L;:= argnﬁn {ro) + BPovi(y)}

~00gy<oo

' (2.12)
U; == argmin {ri(y) + BP%;()}
—oo<y<oo
and satisfy, because (2.2),
L;<U; (2.13)

for each i.

To consider the minimization of w;(x, @) with respect to a for each
x, we divide the feasible action space into three: a >0,a=0,a<0.
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That is,

( min{r,(x, a) + BPv;_;(x)} ‘
a0

0,
min (wi(x, a)} = min ﬁP V;-1(x) [
—w<a<oo
min(r_(x, @) + BP*v;_(x))

a0

. J

from (2.1). In case of ¢ 20, by (2.3) and (2.4)
min {r (x, a) + ﬁP“v,-_l(x)}
a0
=min {rj(x) + ry(x + a) + BPovi;1(x + a)}
a0 ] .

= min {r}(y) + BP%_;()} + ri(x)
y2x

with a fixed x. By (2.12), the minimization is achieved in y* as follows:
. L, if L;zx;

Cla if Li<x.
That is,

. Li—x, if L;2x;
a" = v (2.14)
0, if L;<x.

Similarly, the case of a <0 could be shown as

U-x if U2ax
a :=y .—x= (2'15)
0, if U;<x.

Combined the case of @ = 0 with (2.14) and (2.15), the optimal policy
f; is explicitly determined. Its associated value for the optimal policy
“is immediate. 0 -

As a remark, this optimal policy is same as that of the inventory
problem. Schil discussed it with a setup cost but no cost in this
situation. If we impose the cost the optimal policy reduces “both side
(s, S)-policy”. We must find also the threshold value, L, U as free
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6 . M. YASUDA

boundaries in the stochastic control problem (Bensoussan and Lions
(1982)).

3. INFINITE HORIZON PROBLEM

In the previous section we show the explicit form of the optimal
policy. Imposing a discount factor for the reward (cost) function in the
infinite horizon problem are considered here. In order to avoid the
trivial case, we assume that the finiteness of the reward for each
policy and let define '

v(x) = lim v,(x). . 8.1

N—rc0

Then the problem is to find L, U and v(x) such that
ryx, L-2)+pPu(L), if x<L,
v(x) ={ BP"(x), o if L<x<U, =~ (32
r:(x, U-x)+BPw(U), if U<z,

because of the finite horizon in (2.10). Since v,(x) is convex for each
n, v(x) is v(x). Also we have assumed that the random variable £ has |

a density and is absolutely continuous, so Pv(x)=E[v(x+§)] is
differentiable in x for each point. Therefore

. dv(x) b

- is well-defined. Then differentiating (3.2), it leads to the next relation.
flx) = BPOf(x), L<x<U,

3 or_(x,
fL) = -ﬁy , t(U)=-l-%a—) : (3.4)
x=L =U

Further, by letting

_oar, ar,
d(x, a) = ™ (%, a) - S (x? a), 55
. or_ or_ )
y(x, a) = ™ (x, @) - Sa (x, a)

the above (3.3) and (3.4) imply the Stephan problem as stated in the
next theorem.
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' THEOREM 3.1. The infinite horizon Markov decision problem
(S A, r, P*) could be reduced to the following problem, so called as two
phase Stephan problem: For given data ¢, y and PO by (3.5), (2.4), find

fx), L, U such that
¢(x’ L- x)) x< L’
fix) =4 BP"fx), L<xsU, (3.6)-
yx, U~-x), U=<x.

PROOF. The proof is 1mmed1ate from the discussion of (3.4) and
3.5)0 '

It is seen that the Stephan problem (3.6) is equivalent to the
variational equation

fix) - BP°flx) < 0,
fix) - f9) - x(x, y — 1) <0, 3.7

o) - BP"f(x)}{f(x) - fy) = xx, y — %)) =

associated with

o(x,a), if a>0,
- X, @) =10, if a=0, (3.8)
y(x,a), if a<O.

Harrison, Sellke and Taylar (1983) had solved the variational
inequality with -a constant number yx(x,a)=Kifa>0,=0 if
a=0,=Hifa <0 in the Brownian motion system. Their coefficient of
the system is constant so I-— BPO corresponds to the differential

“operator with a constant coefficient.

4. STOPPING GAME AND ITS DERIVATIVE

The zero-sum two-person stopping game for Markov chain
{Xi}i0,19,.. is to find a stopping time 7, ¢ so as to minimize/maximize
payoff for each player. The payoff of each player are defined by two
kind function of py(x) and py(x) as follows:
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8 M. YASUDA
&(x) :=sup inf E[R(t, 0)| X, =x], .
120 o20 (4. 1)

&(x) = infsupE[R(7, o) | X, = x]
020120

where E(1, 6) = B°py (X)) + BOpa(X, )I(m,,, respectively.

The discussion, as in the usual game theory, leads to seek an
equilibrium point:

8(x) =g(x) =g(x). (4.2)
If we impose an appropriate condition on payoff function such as
P1(x) > pa(x) ) (4.3)

with pj(x) 5 — oo (x - — ) and py(x) > o0 (x = «). The equilibrium
point exists in the class of the ordinary stopping times (Yasuda
(1985)), that is, a class of pure strategies and the game value g(x) by
(4.2) satisfies the optimality equation:

max{p4(x), BPg(x)}
g(x) =1 pPg(x) @9
min{p,(x), BPg(x))

‘where P is a transition probability for Markov chain {X}}. If we write
a free boundary ! and u such that {p;(x) =BPg(x)}={x<!} and
{pa(x) < BPg(x)} = {x =2 u}. Then (4.4) could be rewritten as

p1(x) if x<l,
g(x)=1 PPg(x) if l1<x<u, 4.5)

Pa(x) if u<x.

This Stephan problem is the same form of that of (3. 6) in the Markov
decision process with convex reward.

Karatzas and Shereve (1984, 1985) have derived this connection
between optimal stopping and stochastic control in the diffusion
processes. ‘

To make in concord with the previous result, let us assume that
the reward ¢(x,a), y(x,a) are simply dependent on x. So let

P1(x) = y(x, @), pa(x) = Y(x, a) and P’f(x) = Pf(x) for every fix), then we
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A MARKOV DECISION PROCESS 9

could obtain the next theorem. Thus we have a slight extension of the
previous result.

THEOREM 4.1. The derivative (3.3) of the optimal value in the
Markov decision processes with convex reward is consistent with the
game value (4.1) of the zero-sum stopping game.
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