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THE OPTIMAL VALUE OF MARKOYV STOPPING PROBLEMS
WITH ONE-STEP LOOK AHEAD POLICY

MASAMI YASUDA * Chiba University

Abstract

This paper treats stopping problems on Markov chains in which the OLA (one-step

. look ahead) policy is optimal. Its associated optimal value can be exphicitly expressed

by a potential for a charge function of the difference between the immediate reward

and the one-step-after reward. As an application to the best choice problem, we shall

obtain the value of three problems: the classical secretary problem, a problem with a
refusal probability and a problem with a random number of objects.

OPTIMAL STOPFING PROBLEM; MARKOYV POTENTIAL THEORY

1. Introduction

Let {x,; n = 0} be a Markov chain over a state space S on the real line with stationary
transition probabilities P(x, dy), x, yE€S. The aim of the optimal stopping problem 1s
to find a stopping time 7 which maximizes the expectation of some payoft consisting of
an immediate reward r(x) and a sampling cost ¢(x). The optimal value i1s denoted by

(1.1) v(x)= sup E r(x,)-—-—t‘:l c(x,) | xo=x], xXES

O0=1<x _ n=_ -

where the sup is taken over all finite stopping times. It 1s known that the value satisfies
the optimality equation ' '

(1.2) v(x) = max{r(x), — c(x) + Pv(x)}, xES.

The detailed analyses are discussed by many authors including Chow et al. [2].

We restrict ourselves to stopping problems in which the OLA (one-step look ahead)
policy is optimal. Consider the set of states for which stopping immediately 1s at least as
good as stopping after exactly one more period:

(1.3) . B = {xES; r(x) = Pr(x) — ¢(x)}

where Pr(x) = [sr(y)P(x, dy). The OLA policy is a rule that stops at the first time the
process enters a state in this set. This policy is known to be optimal whenever the set 1s
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closed (Chow et al. [2], Ross [15], Cowan and Zabczyk [3] and Bojdecki [1]). This is the
Markov version of the ‘monotone case’ in [2].

Our aim in this note is to obtain, by calculating a potential of the Markov chain, the
optimal value associated with the OLA policy. We give in Section 3 the explicit solution
of various versions for the best choice problem as application. The first is the classical
problem and the second is a case with a refusal probability. The solution for a problem
with a random number of objects is also calculated. The last case was reduced to a
functional optimality equation by an ad hoc method in Yasuda [17], but the global form
of the solution was not calculated explicitly.

The motivation for this approach has arisen in connection with the results of Darling
[4] and Hordijk [10]. The former gave an upper bound for the optimal value by the
potential operator and the latter gave a sufficient condition to find an optimal stopping
time on the value by the potential.

2. The Markov potential and the OLA policy

For transition probabilities P(x, dy), x, y €S, a function f(x), xES, is called a
charge if Nf(x) = ZF_, Pf(x), x €S, exists where P° = I (the identity) and P**! = PP*,
k=1,2,---. A function g(x), x €S is a potential if there exists a charge f such that
g = Nf. The support of a charge is the set on which the charge is not 0, the support of a
potential is the support of its charge (refer to Kemeny et al. [11]). The relation between
Markov potential theory and dynamic programming or Markov decision process is
discussed by Hordijk [10].

The well-known condition for the optimality of the OLA policy is as follows.

Lemma 2.1. Assume that (i) the subset B of S defined in (1.3) is closed; i.e.
2.1 P(x,dy)=0 forxEB,dy€B,

(ii) the first hitting time 7(B) of the set B is finite with probability 1 for any initial state x,.
Then the OLA policy is optimal, that is, the first hitting time of B is the optimal stopping
time whenever r(x) is bounded above and c(x) is non-negative.

Let P, f(x) = [, f(y)P(x,dy) for A C S and let

Ny fx) = ﬁo Pp)(x), xES.

We assume that

2.2) lizn [(Ps)rlx)=0  forx€EB

where B denotes the complement of the set B.

The property lim, (P5)*v(x) = 0 for the optimal value v = v(x) is called equalizing in
optimal gambling (Dubins and Savage [5], Hordijk [10]). One might say that here the
earnings actually received in the time period up to k and the promised earnings equalize
as k tends to oo.
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Theorem 2.2. Assume that the OLA policy is optimal by Lemma 2.1. Under (2.2),
the optimal value is given by

r(x) on B
2.3) v(X)=r(x)+NPr—r—c)t(x)=
Ns(Pgr —c)(x) onB

where ()™ is the positive part of a function.

Proof. First we show that v(x), x €S, defined by the right hand side of (2.3) satisfies
the optimality equation (1.2). On x € B, for any f = f(x), it holds that Pf(x) = P f(x).
From this and the closedness of the set B,

Pu(x) — c(x) = Ppv(x) — c(x) = Ppr(x) — c(x) = Pr(x) — c(x).
Hence
max{r(x), Pv(x) — c(x)} = max{r(x), Pr(x) — c(x)} = r(x) for x €EB.
On x € B, by substitution of (2.3), it holds that
Pu(x) — c(x) = Pyv(x) + Pyv(x) — c(x)

= Pg[Np(Ppr — )I(x) + Ppr(x) — c(x)

= (PgNg — I)NPyr — c)(x)

= [Np(Ppr — ¢)I(x).
Simultaneously, on x € B,

r(x) <Pr(x) — c(x) = Pgr(x) + Ppr(x) — c(x)

s0 r(x) — Pgr(x) < Pyr(x) — c(x). Applying the operator N; to both sides of this
inequality, we get, by assumption (2.2), r(x) = [Nz(Psr — ¢)](x) for x €B. Combining
the two assertions, we have

max{r(x), Pv(x) — c(x)}
= max{r(x), [Ng(Pgr — ¢)](x)} = [Ns(Pgr — c)](x) forxE€B.

Since the hitting time of B is optimal by the assumption, v(x) is the corresponding
expected payoff and so it equals the optimal value.

Next, we calculate the potential N(Pr — r — ¢) *(x), x €S. From the definition of the
set Bin (1.3), clearly we have (Pr — r — ¢) *(x) = 0 on B. So the support of the charge is
the complement of B and hence

NPr—r—c)t(x)=0, XEB.

Since (Pr —r —¢)*(x) = (Pr — r — c)(x) = [Pgr + Pgr — r — c](x) for x €EB, we have
that
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PPr—r—c)*(x)=Ps(Pr—r —c)(x)
= [(P3)*r + PgPpr — Psr — Pgc](x), XEB.
Repeating this procedure to take the expectation up to k times, it implies that
{(I+P+P+ .- +PYPr—r—c)t(x)
= (P )+ H{(P)F T+ (P -+ I} (Pyr — Olx) — H(x),  XEB.

Hence
N(Pr—r—c)*(x)=[Nz(Pgr — o)](x)—r(x), x€EB
follows.

We remark that the upper estimated bound on the optimal value in Theorem 3.6 of
Darling [4] equals exactly the optimal value in this case. That is, the bound holds with
equality when the OLA policy is optimal and it is equalizing. The optimal stopping
region is the complement of the support of the potential for the positive part of the
difference between the reward for continuing for one step and the reward for stopping
immediately.

3. The best choice problem

In this section we apply the previous method to the typical stopping problem known as
the best choice problem or secretary problem. Refer to Freeman [8] for a review of the
problem.

3.1. The classical secretary problem. The secretary problem is an optimal stopping
problem based on relative ranks for objects arriving in a random fashion; the objective is
to find the stopping rule that maximizes the probability of stopping at the best object of
the sequence {1, 2,- - -, n}. In the Markov formulation of the problem, by Dynkin and
Yushkevitch [7], state / occurs when the ith arrival is relatively best, its reward equals
i/n, i.e., the conditional probability that this relatively best arrival is best of all n (see
also Chow et al. [2]). The optimality equation for the optimal value v(i), iES =
{1,2,- -, n}, the maximal probability of win in the model, is then

v(i)=max{i/n,i 5 v(j)/((j—l)j)}, I€(1,2, -, n—1),

3.1 _
v(n)=1.

Solving this equation, the optimal value when starting from the initial object, that is,
the maximal probability of choosing the best object, v(1) can be obtained. To consider
the problem in the asymptotic form (infinite problem), we shall take the scale limit by
i/n—x as i, n— oo. This reduces the equation (3.1) to

3.2) v(x) = max{x, Pv(x)}, x€[0, 1]

where the transition probability
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xy~idy for0=x<y=l,

(3.3) P(x, dy) ={

0 otherwise.

The equation is a typical form of (1.2) with the reward function r(x) = x, no cost,
¢(x) = 0 and the state space S = [0, 1]. The solution of (3.2) is

e ! on[0,e],
(3.4) v(x)=

x on[e ' 1]

Hence the optimal value v(0) = e~ ! is the maximal probability of win in the infinite
problem, as is well known from the literature (see Gianini and Samuels [9]).

Now we extend the problem by changing the reward function to a general reward r(x)
in order to expand application. The optimality equation (3.1) for the reward function
r(x), which we intend to consider, becomes

(3.5) v(x) = max{r(x), Pv(x)}, x€[0, 1].

However, the OLA rule does not hold — that is, the OLA policy is not always optimal —
for a general reward case. To ensure the property, we assume, for a function 4(x),
x €]0, 1] defined by

(3.6) h(x)=r(x)— Pr(x),

that

(3.61) h(x) is finite-valued on [0, 1],

(3.6ii) it changes its sign from — to + only once as x increases from 0 to 1.

So the equation 4(x) = 0 has a unique solution « in the unit interval.
In conclusion, if (3.6) is assumed, then the unique solution of this equation (3.5) is
given by

r(@  on[0,a],
(3.7 v(x) =

r(x)  onle, 1],

where « is defined by (3.6i1).

Although we can confirm it directly, we calculate the potential for this process and the
solution (3.7) of the optimality equation (3.5) is given by applying the previous result
(2.3) of Theorem 2.2. Immediately it is shown that B = [a, 1] by (2.1), and it is closed
with respect to P. So Pr(x) = r(a)(x/a) and

(Pg)"Pgr(x) = r(a)(x/a)log"(a/x)/n!

for x€[0,a],n=0, 1, 2,- - -. Hence we have
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NpPyr(x) = r(a)(x/a){1 + log(a/x) + 2 ~'logXa/x) + - - - 4+ (n!) ~'log"(a/x) + - - -}
= r()

for x €[0, a]. We can check the condition (2.2) by showing that
(Poyre) =x [ (r(y)y~log(p/x)(n — i)y

for x €[0, «], tends to 0 as n — 0.

3.2. A problem with refusal probability. A variant of the best choice problem is a case
with a refusal probability discussed by Smith [16]. There is a fixed probability 1 — p
which allows the applicant to refuse an offer of employment in the model. When p = 1 it
reduces to the classical secretary problem discussed in Section 3.1. Hence the optimality
equation is given by

(3.8) v(x)=max{pr(x)+(1—p)x [y vomax [ ly-2v<y)dy}, x€[0, 1]

in the asymptotic form (infinite problem). This is because when one makes the decision
to stop, there is a probability p of attaining success r(x) and 1 — p of failure and
consequent obligation to continue the observation. Smith [16] had calculated the
optimal value as v(0) = p1~? when r(x) = x.

The difficulty with the optimality equation (3.8) is that it is not in the form of (3.5). Let
us therefore define the following new transition probability:

py~Hx/yydy for0=x<y=l,
(3.9 P(x,dy) =

0 otherwise,

and consider the optimality equation (3.5) for this transition probability (3.9). We claim
that (3.8) is equivalent to (3.5). This follows from the fact that the second terms of the
right-hand sides of both (3.5) and (3.8), satisfy the same differential equation:

df(x)idx = — px~(r(x) — fx)*, O0<x<1, Al—)=0.

Although the transition probability (3.9) is more general than (3.3), it is possible to
obtain the solution in the same way. We define, as in (3.6), a function h,(x) by

(3.10) hy(x) = r(x) — Pr(x), x€[0, 1].

If h, satisfies (3.6i) and (3.6ii), so that the OLA policy is optimal for (3.9), then we obtain
the solution by applying Theorem 2.2, namely

r(e) on|[0,a],
3.11) v(x) =

r(x) onle, 1],

where « is the unique solution of ,(x) = 0 in (3.10). We note that, when r(x) = x, then
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v(x) = p¥1-» for x€[0, p"*~»], =x for xE[p"!~#, 1] which is consistent with
Smith [16].

3.3. A problem with random number of objects. In the classical version, the number
of objects to be observed is fixed. We now consider the problem in which the number is
random with known probability function. Presman and Sonin [13] formulated the
probability model as a Markov chain and derived the optimality equation: that is, let
w(i),i = 1, 2, - - be the optimal value and p; be a probability that the number of objects
equals Z, then

(3.12) w(i)=max{§ik"pkn,-“, i ink(k(k—l))“n,-“w(k)]r,

k=i k=i+1

where m; =2, p,. If we assume that the random number is bounded with
probability 1,

(3.13) n = sup{k; p; >0} < oo,

we can obtain the asymptotic form (infinite problem) in the unit interval by taking a
scaling limit i/n — x as i, n — oo of appropriate sequences of finite problems.

Let ®(x), x €[0, 1] be the limiting distribution function of /| p;=1—1m; I €
{1,2,- -+, n}. The optimality equation (3.12) is reduced to

(3.14) w(x) = max{R(x), Pw(x)}, x€[0, 1]
where
R(x)=x(1 — ®(x)) " f Y= dD(y)

and

x(1=®x) "'y (1 —P(y)dy for0=x<y=1,
(3.15) P(x,dy) =

0 otherwise.

We could not apply the previous method to this transition probability. However a simple
scheme on the equation (3.14) yields the reduction to the classical problem (3.5) with
transition function given by (3.3), and a general reward.

Similarly as before, define a function A4(x) for x €[0, 1] by

(3.16) hatx) = g0~ [ gy
where
1
g(X)=f y='dd(y).

We assume that
(3.161) R(x) and hg(x) are well defined on x €[0, 1],

(3.16ii) he(x) changes its sign only once from — to + as x varies from O to 1.
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To solve (3.14), let v(x) = (1 — ®(x))w(x). So it becomes

3.17) v(x) = max J‘xg(x), xfl y‘zv(y)a’y} .

Then, using the assumption (3.16), the solution (3.17) is immediately obtained by the
result of (3.7) as

‘ozg(a), x €10, «f,
v(x)=
xg(x), x€la,l].
Hence

aga)(1 —®(x)) "', x€[0,a],
(3.18) w(x) =
R(x), X Ela, 1].

This accords with the result of Yasuda [15] but this method is simpler than the ad hoc
treatment of the functional equation approach adapted there. To give an example, if the
the random number of objects is uniformly distributed ®(x) = x, x €[0, 1], then the
assumption (3.16) is satisfied and o« = e =% The solution is derived by (3.18) as

2e (1 —x)"!, x€[0,e7?],
w(x) =
—x(1—x)""'log(x), xE[e 2 1].

Since the optimal value starting at the initial object is w(0), it equals 2¢ =2 and this value
is well known from, for instance, Rasmussen and Robbins [14].
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