Dynamic Programming creates The Golden
Ratio, too
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Abstract

Since ancient times of Greek as the Parthenon at Athens, the Golden
Ratio has been keeping to give a profound influence in many various fields.
Mathematicians love the number to explain the nature of the universe
and of human life. It comes up even with a formula for the human de-
cision making process; aesthetics, etc. Also in the typical sequential or
multi-stage decision processes, the rule is not exceptional. We will show
a few explicit famous problems which cooperate with Dynamic Program-
ming: Allocation problem and Linear-Quadratic control problem. For
both problems, there appears the Golden Ratio(¢) in the solution of Bell-
man equation.
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1 Introduction

The Golden Ratio(¢ = 1.161803- - -) has been a profound influence since
ancient times such as the Parthenon at Athens. The shape of the Golden
Ratio is supposed to be interesting in a graphic forms for their sculptures
and paintings. The beauty appears even in the ingredient of nature crea-
tures. The most influential mathematics textbook by Euclid of Alexandria
defines the proportion. These information presents a broad sampling of
¢—related topics in an engaging and easy-to-understand format.

The Fibonacci sequence(1,1,2,3,5,8,13,- - - ) occurs closely the Golden
Ratio between two successive numbers. It is known also that the diago-
nal summation produces the Fibonacci sequence in the Pascal’s triangle.
These repeated procedure or iteration have something in common.

The principle of Dynamic Programming is said to 'divide and conquer’.
In fact, if it is not possible to work out directly, divide up a problem
into smaller ones. The basic idea of Dynamic Programming is aiming
to provide effective sub-problem to the original problem. The Bellman’s
curse of dimensionality conquers the computational explosion with the
problem dimension through the use of parametric representations. The
more it’s in a complex, the more it is divided. When a problem were



needed in a multi-stage or sequential decision, we should consider the
problem in repeatedly. If the procedure of this reduction gives a self-
similar one, the methodology shows its effectiveness. The Golden Ratio is
created repeatedly by its own in a quite same form. Recurrence relations
are ubiquitous including that a beautiful continued fraction represents the
Golden number. It is interesting that this quite introductory problem of
Dynamic programming produce the basic mathematical aspects.

In the following section, we treat a few exact problems which is typi-
cal of Dynamic Programming; Allocation problem and Linear-Quadratic
Control problem. However problems are in a simple fashion, it figure out
the essence of Dynamic Programming.

2 Dynamic Programming

The conceptual cluster of Dynamic Programming are profound ed through-
out the mathematics. Not only the analytical aspect of optimization
method, but also the repeated structure of investigate problem. To give a
useful explanation and an interesting implication, we show some problems
which are quit easy and explicitly solved.

First the general setting of Dynamic Programming problem are illus-
trated. It is composed as (S, A,r,T). Let S be a state space in the
Euclidean space R and A = (A;), Az C R,z € S means a feasible action
space depending on a current state x € S. The immediate reward is a
function of r = r(z,a,t),x € S,a € Az,t =0,1,2,---. And the terminal
reward K = K(x),z € S is given. The transition law from the current x
to the new y = m(x,a,t) by the action or decision a € A, at a time ¢.
If the transition law m(z,a,t) does not depend t, it is called a stationary
m(z,a,t) and we treat it in this paper. Here we consider additive costs
and the optimal value of a; will be depend on the decision history. Assume
its value at time t denoted by x:, which enjoy the following properties:

(a) The value of z; is observable at time t¢.

(b) The sequence {z.} follow a recurrence in time:
ZTe+1 = m(we, ag, t). (2.1)

It is termed that the function y = m(z, 7(z,t), t) means a move from
the current x to the next y at t so the law of motion or the plant
equation by adapting a policy a = 7(z,t).

(c) The set of a; may adopt depends on z+ and ¢.

(d) The cost function Cx(z,t) starting a state x at time-to-go Ty = T —1
to optimize over all policies 7 has the additive form;

T-1

Cr(zo,to) = Z r(ze, ae,t) + K(z7) (2.2)

t=to
with zg = x4, and
Te4+1 = m(ZEt,ﬂ'(ZEt,t),t), at = 71—(mt,t)

where T is a given finite planning horizon.

Let
F(z,t) = inf Cx (z, ).



It is well known that the optimization with state structure of recursively
satisfies the optimality equation(DP equation):

F(z,t+1)= aigngw [r(z,a,t) + F(m(z,a,Tt),t)] (2.3)

with the boundary F(z,T) = K(x) where Ty =T —tforz € S,0 <t <T.

All of these are referred from text books by Bertsekas[1], Whittle[4],
Sniedovich[5], etc.

The relation between The Golden ratio formula and Fibonacci se-
quence is known as [7] etc. To produce the Fibonacci sequence, it is
a good example in a recursive programming[6]. Also the Fibonacci se-
quence are related with continued fraction. For the notation of continued
fraction, we adopt ourself to the following notations:
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Note that the Golden number satisfy the quadratic equation: ¢
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1 + ¢. By using this relation repeatedly, ¢ = 14+ — =14+ ——— =
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sometimes called as a dual Golden number) is denoted ¢! = 0.618--- =
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This reproductive property suggests our fundamental claim for the
following a typical example of Dynamic Programming. Before we solve
the problem, let us induce sequences {¢.} as

1 11

¢n+1:1+m:1+ﬁ¢7 (nZl), ¢1:1. (24)

Also let {¢n} as
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i.e. (2.5)
S DL SR P S RN S A
s an-‘—l 1 + (2711 1+ " - .
The sequence {¢,} of (2.4) satisfies
1 1 1 1
n =14 ———
Pn1 14+ 14+ 14+ ¢t
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Similarly {¢,} of (2.5) satisfies
1 11 1,
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From this definition, it is seen easily that

lim ¢n =¢=(V5+1)/2 (2.6)
lim ¢, =1/¢ = (V5-1)/2 (2.7)



3 Linear-Quadratic Control problem

The Linear Quadratic(LQ) control problem is to consider minimizing a
control for the linear system over the quadratic cost function. If the state
of system {z;} moves on

Tt+1 :xt+at7 t:O71727"' (31)

with g = 1 by an input control {a¢, —00 < a; < oo} . The cost incured
is
> (@i +al)+a7 (3.2)
t=0,1,2,-- , T—1
LQ of the DP equation
ver1(z) = min {r(a,z) +vi(a + x)} (3.3)

a€Ay

where
r(a,x) = a® + 22,
a€ Ay =(—00,00),x € (—00,00)

Theorem 3.1
The solution of (3.3) is given by

{ vo(z) = pra’

’Ut(ZE) = ¢T7t$27t = 13 27 e
using the Golden number related sequence {¢,} by (2.4).

(Proof) The proof is immediately obtained by the elementary quadratic
minimization and then the mathematical induction. O

4 Allocation problem

Allocation problem or sometime called as partition problem is the problem
of the form
vi41(z) = min {r(a,z) + v¢(a)} (4.1)

a€Ay

fort=0,1,2,--- ,T, where

r(a,z) = a® + (z — a)?,
a€ A, =10,z],x € (—00,00).

Theorem 4.1
The solution of (4.1) is given by using the dual golden number as

{ vo(z) = dra’

’Ut({E) = Q3T7t$27t = 1327 o

(Proof) Using the Schwartz inequality, the following holds immediately:
For given positive constants A and B with a fixed z,

2
T

in {Aa® + Bz —a)’} = —————.
min {Aa” + Bz —a)} = 1775

0

So the proof could be done inductively. O



Remark 1 : We note here that the number ¢! = 0.618- - - of reciprocal
of the Golden number is called sometimes The Dual Golden number. The
above two problems are closely related.

Remark 2 : It is seen that the same quadratic function of the form;
v(z) = Cz? where c is a constant, becomes a solution if the DP equation
is, for Allocation and LQ,

Vi1 (z) = min {r(a,x) + Z/Oa ve(y)/y dy} (4.2)

a€Ay

wn) = min {rta,0)+2 [ )y o (43)

a€Ay

respectively. Refer to [3].
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