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Approximation of fuzzy neural networksbyusing Lusin's theorem
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In this note, we study an approximation property of regular fuzzyneural network(RFNN). It is shown that any fuzzy-valued measurablefuntion an be approximated by the four-layer RFNN in the sense offuzzy integral norm for the �nite sub-additive fuzzy measure on R .Keywords:Fuzzy measure; Lusin's theorem; Approximation; Regular fuzzy neuralnetwork
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In neural network theory, the learning ability of a neural network islosely related to its approximating apabilities, so it is important andinteresting to study the approximation properties of neural networks.
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The studies on this matter were undertaken by many authors and agreat number of important results were obtained.� J.G Attali, G. Pages, Approximation of funtions by a multilayerpereptron: a new approah, Neural Networks 10(1997) 1069-1081,� R.M Burton, H.G. Dehling, Universal approximation in p-mean byneural networks, Neural Networks 11(1998) 661-667,� F Sarselli, A.G. Tsoi, Universal approximation using feedforwardneural networks: a survey of some existing methods, and some newresults, Neural Networks 11(1998) 15-17.
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The similar approximation problems in fuzzy environment wereinvestigated by� J.J Bukley, Y. Hayashi, Fuzzy input-output ontrollers are universalapproximators, Fuzzy Sets and Systems 58(1993) 273-278,� J.J Bukley, Y. Hayashi, Can fuzzy neural nets approximateontinuous fuzzy funtion, Fuzzy Sets and Systems 61(1994) 43-51,� P. Liu, Analyses of regular fuzzy neural networks for approximationapabilities, Fuzzy Sets and Systems 114(2000) 329-338,� P. Liu, Universal approximations of ontinuous fuzzy-valuedfuntions by multi-layer regular fuzzy neural networks, Fuzzy Sets andSystems 119(2001) 313-320.
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In P. Liu(2001) proved that ontinuous fuzzy-valued funtion an belosely approximated by a lass of regular fuzzy neural networks(RFNNs) with real input and fuzzy-valued output.In this note, by using Lusin's theorem on fuzzy measure spae, we showthat suh RFNNs is pan-approximator for fuzzy-valued measurablefuntion.That is, any fuzzy-valued measurable funtion an be approximated bythe four-layer RFNNs in the sense of fuzzy integral norm for the �nitesub-additive measure on R .
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We suppose that (X; �) is a metri spae, and that O and C are thelasses of all open and losed sets in (X; �), respetively, and B isBorel �-algebra on X, i.e., it is the smallest �-algebra ontaining O.A set funtion � : B ! [0;+1) is alled a fuzzymeasure(Narukawa/Murofushi(2004)), if it satis�es the followingproperties:(FM1) �(;) = 0;(FM2) A � B implies �(A) � �(B).A fuzzy measure � is alled null-additive (Wang/Klir(1992)), if for anyE;F 2 B and �(F ) = 0 imply �(E [ F ) = �(E); sub-additive(Pap(1995)), if for any E;F 2 B we have �(E [ F ) � �(E) + �(F ).
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In this paper, we always assume that � is a �nite, sub-additive andontinuous fuzzy measure on B.Consider a nonnegative real-valued measurable funtion f on A andthe fuzzy integral of f on A with respet to �, whih is denoted by(S) RA f d�, sup0��<+1 [� ^ �(fx : f(x) � �g \A)℄
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Theorem 0.1 (Lusin's theorem (Li/Yasuda(2004), Song/Li(2003))Let (X; �) be metri spae and � be null additive fuzzy measure on B.If f is a real-valued measurable funtion on E 2 B, then, for every� > 0, there exists a losed subset F� 2 B suh that f is ontinuous onF� and �(E � F�) < �:
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In this setion, we study an approximation property of the four-layerRFNNs to fuzzy-valued measurable funtion in the sense of fuzzyintegral norm for fuzzy measure on R .
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Let F0(R ) be the set of all bounded fuzzy numbers, i.e., for~A 2 F0(R ), the following onditions hold:(i) 8 � 2 (0; 1℄; ~A� , fx 2 R j ~A(x) � �g is the losed interval of R ;(ii) The support Supp( ~A) , lfx 2 R j ~A(x) > 0g � is a bounded set;(iii) fx 2 R j ~A(x) = 1g 6= ;.For simpliity, supp( ~A) is also written as ~A0. Obviously, ~A0 is abounded and losed interval of R . For ~A 2 F0(R ), let ~A� = [a�� ; a+� ℄for eah � 2 [0; 1℄ and we denotej ~Aj , _�2[0;1℄(ja�� j _ ja+� j):
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Proposition 0.1 Liu(2001) Assume ~A; ~A1; ~A2 2 F0(R ), and~Wi; ~Vi 2 F0(R )(i = 1; 2; � � � ; n).Then(1) d( ~A � ~A1; ~A � ~A2) � j ~Aj � d( ~A1; ~A2),(2) d( nXi=1 ~Wi; nXi=1 ~Vi) � nXi=1 d( ~Wi; ~Vi).
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For ~A; ~B 2 F0(R ), de�ne metri d( ~A; ~B) between ~A and ~B byd( ~A; ~B) , sup�2[0;1℄ dH( ~A�; ~B�)where dH means Hausdor� metri: for A;B � R ,dH(A;B), max�supx2A infy2B(jx� yj); supy2B infx2A(jx� yj)� :
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It is known that (F0(R ); d) is a ompletely separable metri spae(Diamond/Kloeden(1994)).Let T be a measurable set in R n , (T;B \ T; �) �nite fuzzy measurespae. Let L(T ) denote the set of all fuzzy-valued measurable funtion~F : T ! F0(R ):For any ~F1; ~F2 2 L(T ), d( ~F1; ~F2) is measurable funtion on(T;B \ T ), we will write a fuzzy integral norm as4S( ~F1; ~F2) , (S) ZT d( ~F1; ~F2)d�:
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Proposition 0.2 Let ~F1; ~F2; ~F3 2 L(T ), then4S( ~F1; ~F3) � 2(4S( ~F1; ~F2) +4S( ~F2; ~F3)):
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Proof. From subadditivity of �, we have4S( ~F1; ~F3) = (S) ZT d( ~F1; ~F3)d�= _�2[0;1)f� ^ �(T \ (d( ~F1; ~F3))�g

� _�2[0;1)f� ^ �(T \(d( ~F1; ~F2)�2 [ d( ~F2; ~F3)�2 ))g� _�2[0;1)f� ^ [�(T \ d( ~F1; ~F2)�2 )

+�(T \ d( ~F2; ~F3)�2 )℄g:

Beause of the elementary inequality: a ^ (b+ ) � (a ^ b) + (a ^ ) where a; b;  � 0,
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we have 4S( ~F1; ~F3) � _�2[0;1)f� ^ �(T \ d( ~F1; ~F2)�2 )

+� ^ �(T \ d( ~F2; ~F3)�2 )g� _�2[0;1)[� ^ �(T \ d( ~F1; ~F2)�2 )℄

+ _�2[0;1)[� ^ �(T \ d( ~F2; ~F3)�2 )℄
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� _�2[0;1) h�2 ^ �(T \ d( ~F1; ~F2)�2 )

+ �2 ^ �(T \ d( ~F1; ~F2)�2 )i+ _�2[0;1) h�2 ^ �(T \ d( ~F2; ~F3)�2 )

+ �2 ^ �(T \ d( ~F2; ~F3)�2 )i
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� _�2 2[0;1) h�2 ^ �(T \ d( ~F1; ~F2)�2 )i

+ _�2 2[0;1) h�2 ^ �(T \ d( ~F1; ~F2)�2 )i

+ _�2 2[0;1) h�2 ^ �(T \ d( ~F2; ~F3)�2 )i

+ _�2 2[0;1) h�2 ^ �(T \ d( ~F2; ~F3)�2 )i

= 2�4S( ~F1; ~F2) +4S( ~F2; ~F3)� :
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De�nition 0.1 (Liu(2001)) A fuzzy-valued funtion ~� : T ! F0(R )is alled a fuzzy-valued simple funtion, if there exist~A1; ~A2; : : : ; ~Am 2 F0(R ), suh that 8 x 2 T ,~�(x) = mXk=1 ~Ak � �Tk(x)where Tk 2 B \ T (k = 1; 2; : : : ;m); Ti \ Tj = ; (i 6= j) andT = Smk=1 Tk.
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Immediately, if S(T ) denotes the set of all fuzzy-valued simplefuntions, then S(T ) � L(T ).Similar to the proof of Proposition 0.2 and by using subadditivity of �,we an obtain the following proposition.Proposition 0.3 Let � be a �nite, sub-additive and ontinuous fuzzymeasure on R . If ~F 2 L(T ), then for every � > 0, there exists~�� 2 S(T ) suh that 4S( ~F ; ~��) < �:
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De�ne H[�℄ , ( ~H ����� ~H(x) = nXi=1 ~Wi Vi[�℄)where Vi[�℄ , mXj=1 ~Vij � �(x � ~Uj + ~�j)and � is a given extended funtion of � : R ! R (bounded, ontinuousand nononstant), and x 2 R ; ~Wi ; ~Vij ; ~Uj ; ~�j 2 F0(R ).
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For any ~H 2 H[�℄, ~H is a four-layer feedforward RFNN with ativationfuntion �, threshold vetor ( ~�1; : : : ; ~�m) in the �rst hidden layer(f.Liu(2001).
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Restriting fuzzy numbers ~Vij ; ~Uj ; ~�j 2 F0(R ), respetively, to be realnumbers vij ; uj ; �j 2 R , we obtain the subset H0[�℄ of H[�℄:

H0[�℄ , ( ~H ����� ~H(x) = nXi=1 ~Wi vi[�℄) :

where vi[�℄ , mXj=1 vij � �(x � uj + �j):
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Let de�ne two lasses of pan-approximation whih is fundamental toour results.De�nition 0.2(1) H0[�℄ is all the pan-approximator of S(T ) in the sense of 4S , iffor 8 ~� 2 S(T ), 8 � > 0, there exists ~H� 2 H0[�℄ suh that4S(~�; ~H�) < �:(2) For ~F 2 L(T ), H[�℄ is all the pan-approximator for ~F in thesense of 4S , if 8 � > 0, there exists ~H� 2 H[�℄ suh that4S( ~F; ~H�) < �:



Main Theorem 5/6

AbstratIntrodutionPreliminariesApproximation in fuzzymean by RFNNMain TheoremMain Theorem 1/6Main Theorem 2/6Main Theorem 3/6Main Theorem 4/6Main Theorem 5/6Main Theorem 6/6Pf of Main Theorem
RIMS 2006 right footer { 30 / 45

By using Lusin's theorem (Theorem 0.1), Proposition 0.2 and 0.3 wean obtain the main result in this paper, whih is stated in thefollowing.
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Theorem 0.2 Let (T;B \ T; �) be fuzzy measure spae and � be�nite, sub-additive and ontinuous. Then,(1) H0[�℄ is the pan-approximator of S(T ) in the sense of 4S .(2) H[�℄ is the pan-approximator for ~F in the sense of 4S .
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Proof. By using the onlusion of (1) and Proposition 0.3 we anobtain (2). Now we only prove (1). Suppose that ~�(x) is afuzzy-valued simple funtion, i.e.,~�(x) = mXk=1�Tk(x) � ~Ak (x 2 T ):

For arbitrarily given � > 0, applying Theorem 0.1 (Lusin's theorem) toeah real measurable funtion �Tk(x), for every �xed k (1 � k � m),there exists losed set Fk 2 B \ T suh thatFk � Lk and �(Lk � Fk) < �2mand �Tk(x) is ontinuous on Fk.
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Therefore, for every k there exist a Tauber-Wiener funtion � andpk 2 N; v0k1; v0k2; � � � ; v0kpk , �0k1; �0k2; � � � ; �0kpk 2 R , andw0k1;w0k2; � � � ;w0kpk 2 R n suh that���� �Tk(x)� pkXj=1 v0kj � �(hw0kj ; xi+ �0kj) ����< �2 mXk=1 j ~Akj

for x 2 Lk. Note that we an assume Pmk=1 j ~Akj 6= 0, without any lossof generality.
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Denote L = Tmk=1 Lk, then T = L [ (T � L). By the subadditivity of�, we have �(T � L) = �(Smk=1(T � Lk))�Pmk=1 �(T � Lk) < �2 :We take �1 = 0; �k =Pk�1i=1 pi; k = 2; � � � ;m, and p =Pmk=1 pk. Fork = 1; 2; � � � ;m; j = 1; 2; � � � ; p, we denote

vkj = ( v0k(j��k); if �k < j � �k+1;0 otherwise;
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�kj = ( �0k(j��k); if �k < j � �k+1;0 otherwise;

wkj = ( w0k(j��k); if �k < j � �k+1;0 otherwise;then, for any k 2 f1; 2; � � � ;mg, we havePpj=1 vij � �(hwkj; xi+ �kj)=Ppkj=1 v0ij � �(hw0kj; xi+ �0kj):
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Now denote that~H(x) = mXk=1 ~Ak �0� pXj=1 vkj � �(hwkj; xi+ �kj)1A ;

then ~H 2 H0[�℄.In the reminder part of this setion we will prove 4S( ~H; ~�) < �.
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Denote Bkj = vkj � �(hwkj; xi+ �kj)and B0kj = v0ij � �(hw0kj ; xi+ �0kj):By using Proposition 0.1 and noting �(T � L) < �=2, we have4S( ~H; ~�)= (S) ZT d( ~H; ~�)d�

= _0��<+1 h� ^ �(T \ (d( ~H; ~�))�)i :
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Sine �(T \ d( ~H; ~�)�)

= �0�T \ d0� mXk=1 ~Ak � pXj=1Bkj ;mXk=1�Tk(x) � ~Ak!�
!

� � �(L [ (T � L)) \ (Cmp)��� � (L \ (Cmp)�) + � ((T � L) \ (Cmp)�)
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where the notation of set Cmp is assigned as

Cmp = mXk=1 j ~Akj � d pXk=1Bkj ; �Tk(x)! :
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Hene 4S( ~H; ~�) is dominated by_0��<+1 �� ^ � �L \ (Dmp)���+ _0��<+1 [� ^ � ((T � L))℄

� _0��<+1 h� ^ ��L \ �D0mp���i+ �2
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Here, for simpliity, we use the notations of

Dmp = mXk=1 j ~Akj � ������ pXj=1Bkj � �Tk(x)������and D0mp = mXk=1 j ~Akj � d0� pkXj=1B0kj � �Tk(x)1A :
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Now we estimate the �rst part in the above formula. If x 2 L, then forevery k = 1; 2; � � � ;m, we have x 2 Lk, hene���� �Tk(x)� pkXj=1 v0kj � �(hw0kj ; xi+ �0kj) ����< �2 mXk=1 j ~Akj ;for every k = 1; 2; � � � ;m. That is, for x 2 L,

D0mp = mXk=1 j ~Akj � d0� pkXj=1B0kj � �Tk(x)1A < �2 :
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Therefore, _0��<+1 h� ^ ��L \ �D0mp���i

= _�2[0; �2 ℄ h� ^ ��L \ �D0mp���i

+ _�2[ �2 ;1) h� ^ ��L \ �D0mp���i

= _�2[0; �2 ℄ h� ^ ��L \ �D0mp���i

� �2 :
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Thus, ombining with the previous evaluation, we obtain4S( ~H; ~�)� W0��<+1 h� ^ ��L \ �D0mp���i+ �2< �:The proof of (1) is now ompleted. 2

J.G Attali, G. Pages, Approximation of funtions by a multilayer pereptron: a new approah, Neural Networks 10(1997) 1069-1081. J.J Bukley, Y. Hayashi, Fuzzy input-output ontrollersare universal approximators, Fuzzy Sets and Systems 58(1993) 273-278. J.J Bukley, Y. Hayashi, Can fuzzy neural nets approximate ontinuous fuzzy funtion, Fuzzy Sets and Systems61(1994) 43-51. R.M Burton, H.G. Dehling, Universal approximation in p-mean by neural networks, Neural Networks 11(1998) 661-667. P Diamond, P. Kloeden, Metri Spaes of FuzzySets, World Sienti� Publishing, 1994. J. Li, M. Yasuda, Lusin's theorem on fuzzy measure spaes, Fuzzy Sets and Systems 146(2004) 121-133. P. Liu, Analyses of regular fuzzy neuralnetworks for approximation apabilities, Fuzzy Sets and Systems 114(2000) 329-338. P. Liu, Universal approximations of ontinuous fuzzy-valued funtions by multi-layer regular fuzzy neuralnetworks, Fuzzy Sets and Systems 119(2001) 313-320. P. Liu, Theory of fuzzy neural networks and its appliations, Ph.D. Thesis (in Chinese), Beijing Normal University, 2002. P. Liu,Approximation analyses of feedforward regular fuzzy neural network with two hidden layers, Fuzzy Sets and Systems 150(2005) 373-396. Y. Narukawa, T. Murofushi, Regular non-additivemeasure and Choquet integral, Fuzzy Sets and Systems 143(2004) 373�379. E. Pap, Null-additive Set Funtions, Kluwer, Dordreht, 1995. F Sarselli, A.G. Tsoi, Universal approximationusing feedforward neural networks: a survey of some existing methods, and some new results, Neural Networks 11(1998) 15-17. J. Song, J. Li, Regularity of null-additive fuzzy measure onmetri spaes, International Journal General Systems 2003, Vol.33(3): 271-279.. Z. Wang, G. J. Klir, Fuzzy Measure Theory, Plenum, New York, 1992.


	Abstract
	Introduction
	Introduction 1/4
	Introduction 2/4
	Introduction 3/4
	Introduction 4/4

	Preliminaries
	Preliminaries 1/3
	Preliminaries 2/3
	Preliminaries 3/3

	Approximation in fuzzy mean by RFNN
	Approximation 1/10
	Approximation 2/10
	Approximation 3/10
	Approximation 4/10
	Approximation 5/10
	Approximation 6/10
	Approximation 7/10
	Approximation 8a/10
	Approximation 8b/10
	Approximation 8c/10
	Approximation 9/10
	Approximation 10/10

	Main Theorem
	Main Theorem 1/6
	Main Theorem 2/6
	Main Theorem 3/6
	Main Theorem 4/6
	Main Theorem 5/6
	Main Theorem 6/6

	Pf of Main Theorem
	Pf of Main Thm 1/13
	Pf of Main Thm 2/13
	Pf of Main Thm 3/13
	Pf of Main Thm 4/13
	Pf of Main Thm 5/13
	Pf of Main Thm 6/13
	Pf of Main Thm 7/13
	Pf of Main Thm 8/13
	Pf of Main Thm 9/13
	Pf of Main Thm 10/13
	Pf of Main Thm 11/13
	Pf of Main Thm 12/13
	Pf of Main Thm 13/13


