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Approximation of fuzzy neural networksbyusing Lusin's theorem
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In this note, we study an approximation property of regular fuzzyneural network(RFNN). It is shown that any fuzzy-valued measurablefun
tion 
an be approximated by the four-layer RFNN in the sense offuzzy integral norm for the �nite sub-additive fuzzy measure on R .Keywords:Fuzzy measure; Lusin's theorem; Approximation; Regular fuzzy neuralnetwork
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In neural network theory, the learning ability of a neural network is
losely related to its approximating 
apabilities, so it is important andinteresting to study the approximation properties of neural networks.
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The studies on this matter were undertaken by many authors and agreat number of important results were obtained.� J.G Attali, G. Pages, Approximation of fun
tions by a multilayerper
eptron: a new approa
h, Neural Networks 10(1997) 1069-1081,� R.M Burton, H.G. Dehling, Universal approximation in p-mean byneural networks, Neural Networks 11(1998) 661-667,� F S
arselli, A.G. Tsoi, Universal approximation using feedforwardneural networks: a survey of some existing methods, and some newresults, Neural Networks 11(1998) 15-17.
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The similar approximation problems in fuzzy environment wereinvestigated by� J.J Bu
kley, Y. Hayashi, Fuzzy input-output 
ontrollers are universalapproximators, Fuzzy Sets and Systems 58(1993) 273-278,� J.J Bu
kley, Y. Hayashi, Can fuzzy neural nets approximate
ontinuous fuzzy fun
tion, Fuzzy Sets and Systems 61(1994) 43-51,� P. Liu, Analyses of regular fuzzy neural networks for approximation
apabilities, Fuzzy Sets and Systems 114(2000) 329-338,� P. Liu, Universal approximations of 
ontinuous fuzzy-valuedfun
tions by multi-layer regular fuzzy neural networks, Fuzzy Sets andSystems 119(2001) 313-320.
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In P. Liu(2001) proved that 
ontinuous fuzzy-valued fun
tion 
an be
losely approximated by a 
lass of regular fuzzy neural networks(RFNNs) with real input and fuzzy-valued output.In this note, by using Lusin's theorem on fuzzy measure spa
e, we showthat su
h RFNNs is pan-approximator for fuzzy-valued measurablefun
tion.That is, any fuzzy-valued measurable fun
tion 
an be approximated bythe four-layer RFNNs in the sense of fuzzy integral norm for the �nitesub-additive measure on R .
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We suppose that (X; �) is a metri
 spa
e, and that O and C are the
lasses of all open and 
losed sets in (X; �), respe
tively, and B isBorel �-algebra on X, i.e., it is the smallest �-algebra 
ontaining O.A set fun
tion � : B ! [0;+1) is 
alled a fuzzymeasure(Narukawa/Murofushi(2004)), if it satis�es the followingproperties:(FM1) �(;) = 0;(FM2) A � B implies �(A) � �(B).A fuzzy measure � is 
alled null-additive (Wang/Klir(1992)), if for anyE;F 2 B and �(F ) = 0 imply �(E [ F ) = �(E); sub-additive(Pap(1995)), if for any E;F 2 B we have �(E [ F ) � �(E) + �(F ).
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In this paper, we always assume that � is a �nite, sub-additive and
ontinuous fuzzy measure on B.Consider a nonnegative real-valued measurable fun
tion f on A andthe fuzzy integral of f on A with respe
t to �, whi
h is denoted by(S) RA f d�, sup0��<+1 [� ^ �(fx : f(x) � �g \A)℄
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Theorem 0.1 (Lusin's theorem (Li/Yasuda(2004), Song/Li(2003))Let (X; �) be metri
 spa
e and � be null additive fuzzy measure on B.If f is a real-valued measurable fun
tion on E 2 B, then, for every� > 0, there exists a 
losed subset F� 2 B su
h that f is 
ontinuous onF� and �(E � F�) < �:
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In this se
tion, we study an approximation property of the four-layerRFNNs to fuzzy-valued measurable fun
tion in the sense of fuzzyintegral norm for fuzzy measure on R .
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Let F0(R ) be the set of all bounded fuzzy numbers, i.e., for~A 2 F0(R ), the following 
onditions hold:(i) 8 � 2 (0; 1℄; ~A� , fx 2 R j ~A(x) � �g is the 
losed interval of R ;(ii) The support Supp( ~A) , 
lfx 2 R j ~A(x) > 0g � is a bounded set;(iii) fx 2 R j ~A(x) = 1g 6= ;.For simpli
ity, supp( ~A) is also written as ~A0. Obviously, ~A0 is abounded and 
losed interval of R . For ~A 2 F0(R ), let ~A� = [a�� ; a+� ℄for ea
h � 2 [0; 1℄ and we denotej ~Aj , _�2[0;1℄(ja�� j _ ja+� j):
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Proposition 0.1 Liu(2001) Assume ~A; ~A1; ~A2 2 F0(R ), and~Wi; ~Vi 2 F0(R )(i = 1; 2; � � � ; n).Then(1) d( ~A � ~A1; ~A � ~A2) � j ~Aj � d( ~A1; ~A2),(2) d( nXi=1 ~Wi; nXi=1 ~Vi) � nXi=1 d( ~Wi; ~Vi).
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For ~A; ~B 2 F0(R ), de�ne metri
 d( ~A; ~B) between ~A and ~B byd( ~A; ~B) , sup�2[0;1℄ dH( ~A�; ~B�)where dH means Hausdor� metri
: for A;B � R ,dH(A;B), max�supx2A infy2B(jx� yj); supy2B infx2A(jx� yj)� :
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It is known that (F0(R ); d) is a 
ompletely separable metri
 spa
e(Diamond/Kloeden(1994)).Let T be a measurable set in R n , (T;B \ T; �) �nite fuzzy measurespa
e. Let L(T ) denote the set of all fuzzy-valued measurable fun
tion~F : T ! F0(R ):For any ~F1; ~F2 2 L(T ), d( ~F1; ~F2) is measurable fun
tion on(T;B \ T ), we will write a fuzzy integral norm as4S( ~F1; ~F2) , (S) ZT d( ~F1; ~F2)d�:
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Proposition 0.2 Let ~F1; ~F2; ~F3 2 L(T ), then4S( ~F1; ~F3) � 2(4S( ~F1; ~F2) +4S( ~F2; ~F3)):
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Proof. From subadditivity of �, we have4S( ~F1; ~F3) = (S) ZT d( ~F1; ~F3)d�= _�2[0;1)f� ^ �(T \ (d( ~F1; ~F3))�g

� _�2[0;1)f� ^ �(T \(d( ~F1; ~F2)�2 [ d( ~F2; ~F3)�2 ))g� _�2[0;1)f� ^ [�(T \ d( ~F1; ~F2)�2 )

+�(T \ d( ~F2; ~F3)�2 )℄g:

Be
ause of the elementary inequality: a ^ (b+ 
) � (a ^ b) + (a ^ 
) where a; b; 
 � 0,
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we have 4S( ~F1; ~F3) � _�2[0;1)f� ^ �(T \ d( ~F1; ~F2)�2 )

+� ^ �(T \ d( ~F2; ~F3)�2 )g� _�2[0;1)[� ^ �(T \ d( ~F1; ~F2)�2 )℄

+ _�2[0;1)[� ^ �(T \ d( ~F2; ~F3)�2 )℄
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� _�2[0;1) h�2 ^ �(T \ d( ~F1; ~F2)�2 )

+ �2 ^ �(T \ d( ~F1; ~F2)�2 )i+ _�2[0;1) h�2 ^ �(T \ d( ~F2; ~F3)�2 )

+ �2 ^ �(T \ d( ~F2; ~F3)�2 )i
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� _�2 2[0;1) h�2 ^ �(T \ d( ~F1; ~F2)�2 )i

+ _�2 2[0;1) h�2 ^ �(T \ d( ~F1; ~F2)�2 )i

+ _�2 2[0;1) h�2 ^ �(T \ d( ~F2; ~F3)�2 )i

+ _�2 2[0;1) h�2 ^ �(T \ d( ~F2; ~F3)�2 )i

= 2�4S( ~F1; ~F2) +4S( ~F2; ~F3)� :



Approximation 9/10

Abstra
tIntrodu
tionPreliminariesApproximation in fuzzymean by RFNNApproximation 1/10Approximation 2/10Approximation 3/10Approximation 4/10Approximation 5/10Approximation 6/10Approximation 7/10Approximation 8a/10Approximation 8b/10Approximation 8
/10Approximation 9/10Approximation 10/10Main TheoremPf of Main Theorem
RIMS 2006 right footer { 23 / 45

De�nition 0.1 (Liu(2001)) A fuzzy-valued fun
tion ~� : T ! F0(R )is 
alled a fuzzy-valued simple fun
tion, if there exist~A1; ~A2; : : : ; ~Am 2 F0(R ), su
h that 8 x 2 T ,~�(x) = mXk=1 ~Ak � �Tk(x)where Tk 2 B \ T (k = 1; 2; : : : ;m); Ti \ Tj = ; (i 6= j) andT = Smk=1 Tk.



Approximation 10/10

Abstra
tIntrodu
tionPreliminariesApproximation in fuzzymean by RFNNApproximation 1/10Approximation 2/10Approximation 3/10Approximation 4/10Approximation 5/10Approximation 6/10Approximation 7/10Approximation 8a/10Approximation 8b/10Approximation 8
/10Approximation 9/10Approximation 10/10Main TheoremPf of Main Theorem
RIMS 2006 right footer { 24 / 45

Immediately, if S(T ) denotes the set of all fuzzy-valued simplefun
tions, then S(T ) � L(T ).Similar to the proof of Proposition 0.2 and by using subadditivity of �,we 
an obtain the following proposition.Proposition 0.3 Let � be a �nite, sub-additive and 
ontinuous fuzzymeasure on R . If ~F 2 L(T ), then for every � > 0, there exists~�� 2 S(T ) su
h that 4S( ~F ; ~��) < �:
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De�ne H[�℄ , ( ~H ����� ~H(x) = nXi=1 ~Wi Vi[�℄)where Vi[�℄ , mXj=1 ~Vij � �(x � ~Uj + ~�j)and � is a given extended fun
tion of � : R ! R (bounded, 
ontinuousand non
onstant), and x 2 R ; ~Wi ; ~Vij ; ~Uj ; ~�j 2 F0(R ).
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For any ~H 2 H[�℄, ~H is a four-layer feedforward RFNN with a
tivationfun
tion �, threshold ve
tor ( ~�1; : : : ; ~�m) in the �rst hidden layer(
f.Liu(2001).



Main Theorem 3/6

Abstra
tIntrodu
tionPreliminariesApproximation in fuzzymean by RFNNMain TheoremMain Theorem 1/6Main Theorem 2/6Main Theorem 3/6Main Theorem 4/6Main Theorem 5/6Main Theorem 6/6Pf of Main Theorem
RIMS 2006 right footer { 28 / 45

Restri
ting fuzzy numbers ~Vij ; ~Uj ; ~�j 2 F0(R ), respe
tively, to be realnumbers vij ; uj ; �j 2 R , we obtain the subset H0[�℄ of H[�℄:

H0[�℄ , ( ~H ����� ~H(x) = nXi=1 ~Wi vi[�℄) :

where vi[�℄ , mXj=1 vij � �(x � uj + �j):
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Let de�ne two 
lasses of pan-approximation whi
h is fundamental toour results.De�nition 0.2(1) H0[�℄ is 
all the pan-approximator of S(T ) in the sense of 4S , iffor 8 ~� 2 S(T ), 8 � > 0, there exists ~H� 2 H0[�℄ su
h that4S(~�; ~H�) < �:(2) For ~F 2 L(T ), H[�℄ is 
all the pan-approximator for ~F in thesense of 4S , if 8 � > 0, there exists ~H� 2 H[�℄ su
h that4S( ~F; ~H�) < �:
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By using Lusin's theorem (Theorem 0.1), Proposition 0.2 and 0.3 we
an obtain the main result in this paper, whi
h is stated in thefollowing.
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Theorem 0.2 Let (T;B \ T; �) be fuzzy measure spa
e and � be�nite, sub-additive and 
ontinuous. Then,(1) H0[�℄ is the pan-approximator of S(T ) in the sense of 4S .(2) H[�℄ is the pan-approximator for ~F in the sense of 4S .
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Proof. By using the 
on
lusion of (1) and Proposition 0.3 we 
anobtain (2). Now we only prove (1). Suppose that ~�(x) is afuzzy-valued simple fun
tion, i.e.,~�(x) = mXk=1�Tk(x) � ~Ak (x 2 T ):

For arbitrarily given � > 0, applying Theorem 0.1 (Lusin's theorem) toea
h real measurable fun
tion �Tk(x), for every �xed k (1 � k � m),there exists 
losed set Fk 2 B \ T su
h thatFk � Lk and �(Lk � Fk) < �2mand �Tk(x) is 
ontinuous on Fk.
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Therefore, for every k there exist a Tauber-Wiener fun
tion � andpk 2 N; v0k1; v0k2; � � � ; v0kpk , �0k1; �0k2; � � � ; �0kpk 2 R , andw0k1;w0k2; � � � ;w0kpk 2 R n su
h that���� �Tk(x)� pkXj=1 v0kj � �(hw0kj ; xi+ �0kj) ����< �2 mXk=1 j ~Akj

for x 2 Lk. Note that we 
an assume Pmk=1 j ~Akj 6= 0, without any lossof generality.
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Denote L = Tmk=1 Lk, then T = L [ (T � L). By the subadditivity of�, we have �(T � L) = �(Smk=1(T � Lk))�Pmk=1 �(T � Lk) < �2 :We take �1 = 0; �k =Pk�1i=1 pi; k = 2; � � � ;m, and p =Pmk=1 pk. Fork = 1; 2; � � � ;m; j = 1; 2; � � � ; p, we denote

vkj = ( v0k(j��k); if �k < j � �k+1;0 otherwise;
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�kj = ( �0k(j��k); if �k < j � �k+1;0 otherwise;

wkj = ( w0k(j��k); if �k < j � �k+1;0 otherwise;then, for any k 2 f1; 2; � � � ;mg, we havePpj=1 vij � �(hwkj; xi+ �kj)=Ppkj=1 v0ij � �(hw0kj; xi+ �0kj):
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Now denote that~H(x) = mXk=1 ~Ak �0� pXj=1 vkj � �(hwkj; xi+ �kj)1A ;

then ~H 2 H0[�℄.In the reminder part of this se
tion we will prove 4S( ~H; ~�) < �.
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Denote Bkj = vkj � �(hwkj; xi+ �kj)and B0kj = v0ij � �(hw0kj ; xi+ �0kj):By using Proposition 0.1 and noting �(T � L) < �=2, we have4S( ~H; ~�)= (S) ZT d( ~H; ~�)d�

= _0��<+1 h� ^ �(T \ (d( ~H; ~�))�)i :
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Sin
e �(T \ d( ~H; ~�)�)

= �0�T \ d0� mXk=1 ~Ak � pXj=1Bkj ;mXk=1�Tk(x) � ~Ak!�
!

� � �(L [ (T � L)) \ (Cmp)��� � (L \ (Cmp)�) + � ((T � L) \ (Cmp)�)
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where the notation of set Cmp is assigned as

Cmp = mXk=1 j ~Akj � d pXk=1Bkj ; �Tk(x)! :
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Hen
e 4S( ~H; ~�) is dominated by_0��<+1 �� ^ � �L \ (Dmp)���+ _0��<+1 [� ^ � ((T � L))℄

� _0��<+1 h� ^ ��L \ �D0mp���i+ �2
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Here, for simpli
ity, we use the notations of

Dmp = mXk=1 j ~Akj � ������ pXj=1Bkj � �Tk(x)������and D0mp = mXk=1 j ~Akj � d0� pkXj=1B0kj � �Tk(x)1A :
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Now we estimate the �rst part in the above formula. If x 2 L, then forevery k = 1; 2; � � � ;m, we have x 2 Lk, hen
e���� �Tk(x)� pkXj=1 v0kj � �(hw0kj ; xi+ �0kj) ����< �2 mXk=1 j ~Akj ;for every k = 1; 2; � � � ;m. That is, for x 2 L,

D0mp = mXk=1 j ~Akj � d0� pkXj=1B0kj � �Tk(x)1A < �2 :
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Therefore, _0��<+1 h� ^ ��L \ �D0mp���i

= _�2[0; �2 ℄ h� ^ ��L \ �D0mp���i

+ _�2[ �2 ;1) h� ^ ��L \ �D0mp���i

= _�2[0; �2 ℄ h� ^ ��L \ �D0mp���i

� �2 :
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Thus, 
ombining with the previous evaluation, we obtain4S( ~H; ~�)� W0��<+1 h� ^ ��L \ �D0mp���i+ �2< �:The proof of (1) is now 
ompleted. 2
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