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In this note, we study an approximation property of regular fuzzy

neural network(RFNN). It is shown that any fuzzy-valued measurable

function can be approximated by the four-layer RFNN in the sense of

fuzzy integral norm for the finite sub-additive fuzzy measure on � .
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In neural network theory, the learning ability of a neural network is

closely related to its approximating capabilities, so it is important and

interesting to study the approximation properties of neural networks.
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The studies on this matter were undertaken by many authors and a

great number of important results were obtained.

� J.G Attali, G. Pages, Approximation of functions by a multilayer
perceptron: a new approach, Neural Networks 10(1997) 1069-1081,

� R.M Burton, H.G. Dehling, Universal approximation in �-mean by

neural networks, Neural Networks 11(1998) 661-667,

� F Scarselli, A.G. Tsoi, Universal approximation using feedforward

neural networks: a survey of some existing methods, and some new

results, Neural Networks 11(1998) 15-17.
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The similar approximation problems in fuzzy environment were

investigated by

� J.J Buckley, Y. Hayashi, Fuzzy input-output controllers are

universal approximators, Fuzzy Sets and Systems 58(1993)

273-278,

� J.J Buckley, Y. Hayashi, Can fuzzy neural nets approximate

continuous fuzzy function, Fuzzy Sets and Systems 61(1994) 43-51,

� P. Liu, Analyses of regular fuzzy neural networks for approximation

capabilities, Fuzzy Sets and Systems 114(2000) 329-338,

� P. Liu, Universal approximations of continuous fuzzy-valued
functions by multi-layer regular fuzzy neural networks, Fuzzy Sets

and Systems 119(2001) 313-320.
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In P. Liu(2001) proved that continuous fuzzy-valued function can be

closely approximated by a class of regular fuzzy neural networks

(RFNNs) with real input and fuzzy-valued output.

In this note, by using Lusin’s theorem on fuzzy measure space, we

show that such RFNNs is pan-approximator for fuzzy-valued
measurable function.

That is, any fuzzy-valued measurable function can be approximated

by the four-layer RFNNs in the sense of fuzzy integral norm for the

finite sub-additive measure on � .
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We suppose that ��� �� is a metric space, and that � and � are the

classes of all open and closed sets in ��� ��, respectively, and � is

Borel �-algebra on� , i.e., it is the smallest �-algebra containing �.

A set function � � � � ������ is called a fuzzy

measure(Narukawa/Murofushi(2004)), if it satisfies the following
properties:

(FM1) ���� � �;

(FM2) � � � implies ���� 	 ����.

A fuzzy measure � is called null-additive (Wang/Klir(1992)), if for any

	�
 
 � and ��
 � � � imply ��	 � 
 � � ��	�; sub-additive

(Pap(1995)), if for any 	�
 
 � we have

��	 � 
 � 	 ��	� � ��
 �.
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In this paper, we always assume that � is a finite, sub-additive and

continuous fuzzy measure on �.

Consider a nonnegative real-valued measurable function � on � and

the fuzzy integral of � on � with respect to �, which is denoted by

���
�

�
� �

� 	
�

������

�� � ��� � ���� � �� ����
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Theorem 0.1 (Lusin’s theorem (Li/Yasuda(2004), Song/Li(2003))

Let ��� �� be metric space and � be null additive fuzzy measure on

�. If � is a real-valued measurable function on 	 
 �, then, for

every � � �, there exists a closed subset 
� 
 � such that � is

continuous on 
� and ��	 � 
�� � ��
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In this section, we study an approximation property of the four-layer

RFNNs to fuzzy-valued measurable function in the sense of fuzzy

integral norm for fuzzy measure on � .
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Let ���� � be the set of all bounded fuzzy numbers, i.e., for

�� 
 ���� �, the following conditions hold:

(i) � � 
 ��� �� ��� � � 
 � � ����� � �� is the closed interval

of � ;

(ii) The support Supp� ��� � cl� 
 � � ����� � �� � is a bounded
set;

(iii) � 
 � � ����� � � �� �.

For simplicity, supp( ��) is also written as ���. Obviously, ��� is a

bounded and closed interval of � . For �� 
 ���� �, let

��� � ���� � �
�
� � for each � 
 ��� � and we denote

� ��� �

�
�������

����� � � ��
�
� ���
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Proposition 0.1 Liu(2001) Assume ��� ���� ��� 
 ���� �, and

���� ��� 
 ���� ��� � � �� � � � � ��.
Then

(1) �� �� � ���� �� � ���� 	 � ��� ��� ���� ����,

(2) ��
��

���

����
��

���
���� 	

��
���

�� ���� ����.
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For ��� �� 
 ���� �, define metric � ��� ��� between �� and �� by

� ��� ��� � 	
�

�������
�� ���� ����

where � means Hausdorff metric: for ��� � � ,

������

����
�

	
�
	��

���

��

���� ���� 	
�

��

���
	��

���� ���
�
�
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It is known that ����� �� � is a completely separable metric space

(Diamond/Kloeden(1994)).

Let � be a measurable set in � � , ���� � �� �� finite fuzzy measure

space. Let ��� � denote the set of all fuzzy-valued measurable

function

�
 � � � ���� ��

For any �
�� �
� 
 ��� �, � �
�� �
�� is measurable function on

���� � � �, we will write a fuzzy integral norm as

��� �
�� �
�� � ���
�


� �
�� �
����
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Proposition 0.2 Let �
�� �
�� �
� 
 ��� �, then

��� �
�� �
�� 	 ����� �
�� �
�� ���� �
�� �
����
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Proof. From subadditivity of �, we have

��� �
�� �
�� � ���
�


� �
�� �
���

�

�
�������

� � ��� � �� �
�� �
�����

	

�
�������

� � ��� �

�� �
�� �
���
�

� � �
�� �
���
�

���

	

�
�������

� � ���� � � �
�� �
���
�

�

���� � � �
�� �
���
�

����

Because of the elementary inequality: � � ��� �� 	 �� � �� � �� � �� where � � � � �,
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we have

��� �
�� �
�� 	

�
�������

� � ��� � � �
�� �
���
�

�

�� � ��� � � �
�� �
���
�

��

	

�
�������

�� � ��� � � �
�� �
���
�

��

�

�
�������

�� � ��� � � �
�� �
���
�

��
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Definition 0.1 (Liu(2001)) A fuzzy-valued function �� � � � ���� �

is called a fuzzy-valued simple function, if there exist

���� ���� � � � � ��� 
 ���� �, such that � � 
 � ,

����� �

��
���

��� � �����

where �� 
 � � � �� � � �� � � � � �� �� � �� � � �� �� !� and

� �
��

��� ��.
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Immediately, if ��� � denotes the set of all fuzzy-valued simple

functions, then ��� � � ��� �.
Similar to the proof of Proposition 0.2 and by using subadditivity of

�, we can obtain the following proposition.

Proposition 0.3 Let � be a finite, sub-additive and continuous

fuzzy measure on � . If �
 
 ��� �, then for every � � �, there exists

��� 
 ��� � such that

��� �
� ���� � ��
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Define

���� �
�

�"

����� �"��� �

��
���

��� �����
�

where

����� �

��
���

���� � ��� � �#� � ����

and � is a given extended function of � � � � � (bounded,

continuous and nonconstant), and

� 
 � � ���� ���� � �#� � ��� 
 ���� �.
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For any �" 
 ����, �" is a four-layer feedforward RFNN with

activation function �, threshold vector ����� � � � � ���� in the first

hidden layer(cf. Liu(2001).
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Restricting fuzzy numbers ���� � �#� � ��� 
 ���� �, respectively, to be

real numbers $�� � %�� &� 
 � , we obtain the subset ����� of ����:

����� �
�

�"

����� �"��� �

��
���

��� $����
�
�

where

$���� �

��
���

$�� � ��� � %� � &���
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Let define two classes of pan-approximation which is fundamental to

our results.

Definition 0.2

(1) ����� is call the pan-approximator of ��� � in the sense of �� ,

if for � �� 
 ��� �, � � � �, there exists �"� 
 ����� such that

������ �"�� � ��

(2) For �
 
 ��� �, ���� is call the pan-approximator for �
 in the

sense of �� , if � � � �, there exists �"� 
 ���� such that

��� �
� �"�� � ��
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By using Lusin’s theorem (Theorem 0.1), Proposition 0.2 and 0.3 we

can obtain the main result in this paper, which is stated in the

following.
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Theorem 0.2 Let ���� � �� �� be fuzzy measure space and � be

finite, sub-additive and continuous. Then,

(1) ����� is the pan-approximator of ��� � in the sense of �� .

(2) ���� is the pan-approximator for �
 in the sense of �� .
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Proof. By using the conclusion of (1) and Proposition 0.3 we can

obtain (2). Now we only prove (1). Suppose that ����� is a

fuzzy-valued simple function, i.e.,

����� �

��
���

����� �
��� �� 
 � ��

For arbitrarily given � � �, applying Theorem 0.1 (Lusin’s theorem)

to each real measurable function �����, for every fixed

� � 	 � 	  �, there exists closed set 
� 
 � � � such that


� � '� ��� ��'� � 
�� �

�
� 

and ����� is continuous on 
�.
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Therefore, for every � there exist a Tauber-Wiener function � and

�� 
 (� $
�

��� $
�

��� � � � � $
�

���

, &
�

��� &
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Now we estimate the first part in the above formula. If � 
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Thus, combining with the previous evaluation, we obtain
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The proof of (1) is now completed. �

J.G Attali, G. Pages, Approximation of functions by a multilayer perceptron: a new approach, N
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