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Abstract.

We are concerned with dynamic optimization processes from a
viewpoint of Golden optimality. A path is called Golden if any state
moves to the next state repeating the same Golden section in each
transition. A policy is called Golden if it, together with a relevant
dynamics, yields a Golden path. The probelm is whether an optimal
path/policy is Golden or not. This paper minimizes a quadratic cri-
terion and maximizes a square-root criterion over an infinite horizon.
We show that a Golden path is optimal in both optimizations. The
Golden optimal path is obtained by solving a corresponding Bellman
equation for dynamic programming. This in turn admits a Golden
optimal policy.

Introduction

Recently the Golden optimal solution, its duality, and its equivalence
have been discussed in static optimization problems [4, 5, 6].
paper we consider the Golden optimal solution in dynamic optimization
problems.
We consider two typical types of criterion — quadratic and square-
root — in a deterministic optimization. We minimize quadratic criteria

= Z [xi + (zn — $n+1)2] , J(@) = Z [(wn —py1)? + 55314—1]
n=0 n=0

and maximize square-root criteria

K(:z:) = Zﬁn (\/ﬁJr xn*xn+1)a
n=0

L(z) =Y 8" (VI — Tni1 +/Fni1)
n=0
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respectively. Here 3 is 0 < 3 < 1. The differences between I and J and
between K and L are

J(@) = I(z) - aj

L(xz) = K@)+ Y_ (8" =8") van (57" =0).

We show that a Golden path is optimal in these four optimization prob-
lems. The Golden optimal path is obtained by solving Bellman equation
for dynamic programming [3, 7].

§2. Golden Paths

A real number

S

1+
0= 2

is called Golden number [1, 2, 8]. It is the larger of the two solutions to
quadratic equation

~ 1.618

(1) ?—x—1=0.

Sometimes (1) is called Fibonacci quadratic equation. The Fibonacci
quadratic equation has two real solutions: ¢ and its conjugate ¢ :== 1—¢.
We note that

Further we have
¢ =1+6,6 =2-9
Prd =309 =1
A point (2—¢)a splits an interval [0, 2] into two intervals [0, (2—¢)z]
and [(2 — ¢)z,z]. A point (¢ — 1) splits the interval into [0, (¢ — 1)x]

and [(¢ — 1), z]. In either case, the length constitutes the Golden ratio
(2—¢):(¢p—1) =1:¢. Thus both divisions are the Golden section.

Definition 2.1. A sequence z : {0,1,...} — R! is called Golden if
and only if either

T €T
g —1or L =2
Lt Lt

Lemma 2.1. A Golden sequence x is either

= 20(¢p— 1) orzy = 20(2 — ¢)".
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Fig. 1 Golden paths z = c¢(¢ — 1)t ¢ =1,2,3
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-1,2,3

c(2-9¢)tc

Fig. 2 Golden paths (c) =
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We remark that
@-1'=¢" 2-9)=(1+¢)"
where
p—1=¢ ' = 0618 2—¢ = (1+¢)"' = 0.382

Let us introduce a controlled linear dynamics with real parameter b
as follows.

(2) xt+1:bxt+utt:0,1,...

where u : {0,1,...} — R is called control. If u; = px;, the control u
is called proportional, where p is a real constant, proportional rate. A
sequence x satisfying (2) is called path.

Definition 2.2. A proportional control u on dynamics (2) is called
Golden if and only if it generates a Golden path x.

Lemma 2.2. A proportional control uy = pxs on (2) is Golden if
and only if

(3) p=-bt+op—1orp=—-b+2—0.

83. Control processes

This section minimizes two quadratic cost functions

Z [22 + (2 — 2041)?] and Z (@0 = 2ng1)? + 2044 ] -
n—0 n=0

Both problems are solved as a control process with criterion

Z (wi + ui) and Z (ufI + ZCi_H)
n=0 n=0

under a common additive dynamics with a given initial state
Tyl = bxy + Uy, o =cC

where ¢ € RL.

+
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3.1. Quadratic in current state

Let us now consider a control process with an additive transition
T(x,u) = bz +wu. Here b is a constant, which represents a characteristics
of the process :

minimize Z (wi + ui)
n=0
(o) subject to (1) @pt1 = by + uy >0
c n
(i) —oo<u, <o -

(i) =y =c.

Let v(c) be the minimum value of C(c¢). Then the value function v
satisfies Bellman equation [3]:

(4) v(z) = min  [2® +u® 4+ v(bz +u)].

—oo<u<oo

Eq. (4) has a quadratic form v(z) = va?, where v € R!.

Lemma 3.1. The control process C(c) with characteristic value b (€
RY) has a proportional optimal policy >, f(x) = px, and a quadratic
minimum value function v(x) = va?, where

b2 4+ Vbt 4+ 4 v

D PE T

The proportional optimal policy f°° splits at any time an interval
b b
[0, 2] into [0, (b + p)x] = [0, %] and [H—Iv’ x} . In particular,

when b = 1, the quadratic coefficient v is reduced to the Golden number

Further the division of [0, z] into [O, ﬁ} and [ is Golden.

5]
1+¢’x

A quadratic function w(z) = az? is called Golden if a = ¢.

Theorem 3.1. The control process C(c) with characteristic value
b =1 has a Golden optimal policy [, f(x) = (1 — ¢)x, and the Golden

quadratic minimum value function v(z) = ¢x2.

+
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3.2. Qgquadratic in next state

Here we consider the cost function 7 : XxU — R! which is quadratic
in current control and next state :

r(z,u) = u? 4 (b +u)?

Then a control process is represented by the following sequential mini-
mization problem :

o0

minimize Z (ui + xiﬂ)
n=0
(o) subject to (1)  @p41 = bz, + uy n>0
(i) —oo<u, <0 -
(i) xo=c.
The value function v satisfies Bellman equation [3]:
(5) v(z) = min  [u®+ (b +u)® +v(bz + u)] .

—oo<u<oo

Eq. (5) has a quadratic solution v(z) = va?, where v € R!.

Lemma 3.2. The control process C'(c) with characteristic value b
has a proportional optimal policy f°°, f(x) = px, and a quadratic mini-

mum value function v(x) = va?, where

b> — 24 Vbt +4 _ 14w,

v ’ 24w

2

b b
The policy f°° splits an interval [0, z] into |0, 2f ] and [ z x] .
v

240’
When b = 1, the coefficient v is reduced to the inverse Golden number

Further the division of [0, z] into [0, (2 — ¢)z] and [(2 — ¢)z, z] is Golden.
A quadratic function w(z) = az? is called inverse Golden if a = ¢~ 1.

Theorem 3.2. The control process C'(c) with characteristic value
b =1 has a Golden optimal policy [, f(x) = (1 — ¢)x, and the inverse
Golden quadratic minimum value function v(x) = (¢ — 1)z2.

+
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§4. Allocation processes

This section maximizes two discounted square-root reward functions

Z@n (VTr + /T — Tpp1 ) and Zﬂn (VZn — Tng1 + /Tnt1) -
n=0 n=0

Both problems are solved as an allocation process with criterion
oo oo
> B (Van +un) and > 8" (vin + /Tni1)
n=0 n=0
under a common subtractive dynamics with a given initial state
Tnt+l = Tp — Up, o = C
where ¢ > 0.

4.1. Square-root in current state

Let us now consider an allocation process with a subtractive transi-
tion T'(z,u) =x —u :

Maximize Y 8" (\/Tn + /in)
n=0

subject to (1) @py1 = Tpn — Uy
(ii)) 0<u, <a,

(ili) xo=c.

A(c)

Let v(c) be the maximum value of A(c¢). Then the maximum value
function v satisfies the following Bellman equation:

(6) v(@) = Max [Va +vu + fu(e —u)].
Eq. (6) has a square-root form v(z) = v\/z, where v € R!.

Let us adopt a proportional policy f°° (f(x) = pz) with proportional
rate p (0 < p < 1). Then state x under the control u = px goes
deterministically to the next state T'(z,u) = 2 —u = . — pxr = (1 —
p)x. Thus we have x = (1 — p)x + px. The state transition of control
process A(c) governed by the proportional policy f°° means that the
current control u = px splits the state interval [0, 2| into two intervals
[0, (1 — p)z] and [(1 — p)x, ]. When the split yields a Golden section,
the proportional policy f*° (f(z) = px) is called Golden.

+
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Lemma 4.1. The allocation process A(c) has a proportional optimal
policy £, f(x) = px, and a square-root maximum value function v(x) =
vy/x , where

2 -y
T aeE T Ay

We remark that the coefficient v is the solution to

v=1++1+(v)?, v>2.

Let ussolve 1 —p=¢ —1 or 2 — ¢. Then we have the following result.

Theorem 4.1. When 8= ¢ (1 —/d—1) = 0.346 or B = /¢ —
Vo —1 = 0.486, the proportional policy f°°, f(x) = px, is Golden opti-
mal.

4.2. Square-root in next state

Now we consider an allocation process with transition T'(z,u) =
T—u:

Maximize Z 6" (\/ﬁ + M)

n=0
subject to (1)  @p41 = Tp — Uy
(i) 0<wu, <z,

(i) zo=c.

A'(c)

Let v(c) be the maximum value of A’(¢). Then the maximum value
function v satisfies an optimality equation:

(7) v(z) = Max [Vu + vz —u + fBv(z —u)].

0<u<z

Eq. (7) has a square-root solution v(z) = v/, where v € R!.

Let us adopt a proportional policy f*° (f(x) = px) with p (0 <
p < 1). Then the current control u = px splits the interval [0, x] into
[0, (1 = p)a] and [(1 - p)a, z].

Lemma 4.2. The allocation process A’(c) has a proportional opti-
mal policy [, f(x) = px, and a square-root mazimum value function
v(x) = vy/x, where

v = 7p:

FEVITFE -
1— 32 2 '
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Note that the coefficient v is the positive solution to

v=+/14(1+pv)2.

By solving 1 — p = ¢ — 1, we have the following result.

Theorem 4.2. When 3 = /1 —2/2¢ —3 = 0.168, the propor-
tional policy f*°, f(x) = px, is Golden optimal.
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