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Abstract

We are concerned with dynamic optimization processes from a viewpoint of
Golden optimality. A path is called Golden if any state moves to the next state
repeating the same Golden section in each transition. A policy is called Golden
if it, together with a relevant dynamics, yields a Golden path. The probelm is
whether an optimal path/policy is Golden or not. This paper minimizes a quadratic
criterion and maximizes a square-root criterion over an infinite horizon. We show
that a Golden path is optimal in both optimizations. The Golden optimal path is
obtained by solving a corresponding Bellman equation for dynamic programming.
This in turn admits a Golden optimal policy.

Introduction

Recently the Golden optimal solution, its duality, and its equivalence have been discussed
in static optimization problems [4-6]. In this paper we consider the Golden optimal
solution in dynamic optimization problems.

We consider two typical types of criterion — quadratic and square-root — in a deter-

ministic optimization. We minimize quadratic criteria

I(x) = (22 4 (zp — 2n11)?] . J(2) = [(#n — Tps1)” + 20,4



and maximize square-root criteria

=D 0" (Vau + V=), L) =) 8" (VEw = Tt + VTar1)

, respectively. Here 3 is 0 < 3 < 1. The differences between I and J and between K and
L are

J(z) = I(x) — 2}
L(z) = K(z)+ > (8" = 8") V. (87 =0).

We show that a Golden path is optimal in these four optimization problems. The Golden
optimal path is obtained by solving Bellman equation for dynamic programming [3,7].

2 Golden Paths

A real number

S

1
= +2 ~ 1.618

is called Golden number [1,2,8]. It is the larger of the two solutions to quadratic equation

22 —r—1=0. (1)

Sometimes (1) is called Fibonacci quadratic equation. The Fibonacci quadratic equation
has two real solutions: ¢ and its conjugate ¢ := 1 — ¢. We note that

6+o=1 0G=-
Further we have
=1+, ¢ =2-¢
P+o =3 ¢*d =1
A point (2— ¢)x splits an interval [0, z] into two intervals [0, (2—¢)z] and [(2— ¢)x, x].
A point (¢ — 1)x splits the interval into [0, (¢ — 1)z] and [(¢ — 1)z, x]. In either case, the

length constitutes the Golden ratio (2 — ¢) : (¢ — 1) = 1: ¢. Thus both divisions are the
Golden section.

Definition 2.1 A sequence = : {0,1,...} — R! is called Golden if and only if either

T X
t41 :(25_1 or t+1 _ 2_¢
Tt Ty

Lemma 2.1 A Golden sequence x is either

v = 20(0— 1) or = 20(2— @)



Fig. 1 Golden paths r = ¢(¢p —1)! ¢=1,2,3

Fig. 2 Golden paths (¢) z =¢(2 —¢)! ¢=1,2,3



We remark that
(p—1f=0" (2-9)'=010+¢)"
where

p—1=¢ 1 = 0618, 2—¢=(14+¢)"" = 0.382

Let us introduce a controlled linear dynamics with real parameter b as follows.
xt+1:bxt+ut t:O,l, (2)

where v : {0,1,...} — R!is called control. If u; = px;, the control u is called proportional,
where p is a real constant, proportional rate. A sequence x satisfying (2) is called path.

Definition 2.2 A proportional control u on dynamics (2) is called Golden if and only if
it generates a Golden path x.

Lemma 2.2 A proportional control u, = pxy on (2) is Golden if and only if

p=-b+op—1 or p=—-b+2-—2¢. (3)

3 Control processes

This section minimizes two quadratic cost functions

Z [a:i + (zp — Tpt1) 2 and Z — Tpi1)® + :L‘,ZHJ .

n=0

Both problems are solved as a control process with criterion

i x +u and i(“i+$i+1)
n=0

n=0

under a common additive dynamics with a given initial state
Tpy1 = bxy + Uy, Tg=rcC

where ¢ € R'.

3.1 Quadratic in current state

Let us now consider a control process with an additive transition T'(z,u) = bz + u. Here
b is a constant, which represents a characteristics of the process :

minimize (xi + ui)
n=0
subject to (i) z,+1 = bz, + Uy,
C(e) J W)t n>0
(i) —oo<u, < oo
(i) xo=c.



Let v(c) be the minimum value of C(c¢). Then the value function v satisfies Bellman
equation [3]:
v(z) = min [z +u® + (b +u)]. (4)

—oo<u<oo

Eq. (4) has a quadratic form v(z) = vz?, where v € R

Lemma 3.1 The control process C(c) with characteristic value b (€ R') has a propor-
tional optimal policy f°°, f(x) = pz, and a quadratic minimum value function v(z) = vr?,
where

b2+\/m v

= — b.
2 p 14+

v =

The proportional optimal policy f°° splits at any time an interval [0, x| into [0, (b +

] 0 bx d x
x] = an

P "1+ 1+

v is reduced to the Golden number

, x] . In particular, when b = 1, the quadratic coefficient

1++/5

= ~ 1.618
¢ 2
Further the division of [0, z] into [(), * } and {L, x} is Golden. A quadratic
1+ ¢ 1+ ¢

function w(z) = ax? is called Golden if a = ¢.

Theorem 3.1 The control process C(c) with characteristic value b = 1 has a Golden
optimal policy >, f(z) = (1 — @)z, and the Golden quadratic minimum value function

v(r) = ga?.
3.2 (Qquadratic in next state

Here we consider the cost function r : XxU — R! which is quadratic in current control
and next state :

r(z,u) = u® + (bx +u)*.

Then a control process is represented by the following sequential minimization problem :

minimize Z (ui + xiﬂ)
n=0

subject to (1) zp+1 = bz, + u,

C'(c) ) (i) - n>0
(i) —oo<wu, < oo
(iii) xo=rc.
The value function v satisfies Bellman equation [3]:
v(z) = min  [u®+ (bz +u)® + v(bx + u)] . (5)

—oo<u<oo

Eq. (5) has a quadratic solution v(x) = va?, where v € RL.
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Lemma 3.2 The control process C'(c) with characteristic value b has a proportional op-
timal policy >, f(x) = px, and a quadratic minimum value function v(x) = va?, where

b —2+ Vbt +4 1+vb

v =

2 p 24w

]and[ bz ,:U].Whenbzl,

The policy f splits an interval [0, x] into {O, P
v

T

24 v

the coefficient v is reduced to the inverse Golden number

—1++/5
2

pl=¢p—1= ~ 0.618

Further the division of [0, z] into [0, (2 — ¢)z] and [(2 — ¢)z, x] is Golden. A quadratic
function w(z) = az? is called inverse Golden if a = ¢~1.

Theorem 3.2 The control process C'(c) with characteristic value b = 1 has a Golden
optimal policy =, f(x) = (1 — ¢)x, and the inverse Golden quadratic minimum value
function v(z) = (¢ — 1)22.

4 Allocation processes

This section maximizes two discounted square-root reward functions

D 8" (Vo + V= zan ) and 5" (Ve = Tagt +V/Tar)
n=0 n=0

Both problems are solved as an allocation process with criterion

D B (Vi + V) and Y6 (Vg + /T

under a common subtractive dynamics with a given initial state
Tpy1 = Tp — Un, To=C¢C

where ¢ > 0.

4.1 Square-root in current state

Let us now consider an allocation process with a subtractive transition 7T'(z,u) =z — u :

Maximize Y 8" (v + v/t
n=0

subject to (1) Zp+1 = Ty — Un
A(c) J ) o n>0



Let v(c) be the maximum value of A(c¢). Then the maximum value function v satisfies
the following Bellman equation:

o(z) = Max [V + Vi + oz — u)]. (6)

Eq. (6) has a square-root form v(z) = vy/x, where v € RL.

Let us adopt a proportional policy f (f(x) = px) with proportional rate p (0 <
p < 1). Then state x under the control u = pz goes deterministically to the next state
T(x,u) =2 —u=1x—pr=(1—p)x. Thus we have x = (1 — p)x + pz. The state transition
of control process A(c) governed by the proportional policy f*° means that the current
control u = px splits the state interval [0, z] into two intervals [0, (1—p)z]| and [(1—p)z, x].
When the split yields a Golden section, the proportional policy f* (f(z) = pz) is called
Golden.

Lemma 4.1 The allocation process A(c) has a proportional optimal policy f*°, f(x) = px,
and a square-root mazimum value function v(x) = vy/x, where

2 _ -y

- T ey
We remark that the coefficient v is the solution to
v=1+ W, v > 2.
Let ussolve 1 —p=¢ — 1 or 2 — ¢. Then we have the following result.
Theorem 4.1 When 3= ¢ (1 —+/¢p—1)=0.346 or f=+/d —+/¢—1 = 0.486, the
proportional policy [, f(x) = px, is Golden optimal.
4.2 Square-root in next state

Now we consider an allocation process with transition T'(z,u) = — u :

Maximize Zﬁ" (Vun + V/Tns1)
n=0

subject to (1) ZTpi1 = T, — U
wg P e T e
(i) 0<wu, <z,
(ili) = =c.
Let v(c) be the maximum value of A’(¢). Then the maximum value function v satisfies
an optimality equation:

v(z) = ol\g/luag}i: [Vu +Vz—u + pu(z —u)]. (7)

Eq. (7) has a square-root solution v(z) = v\/x, where v € R!.
Let us adopt a proportional policy f* (f(x) = px) with p (0 < p < 1). Then the
current control u = pz splits the interval [0, z] into [0, (1 — p)z] and [(1 — p)z, z].

7



Lemma 4.2 The allocation process A’(c) has a proportional optimal policy f, f(x) =
px, and a square-root mazimum value function v(x) = v/, where

BV _1-5/2- P
1-3 2 '

Note that the coefficient v is the positive solution to

v =14+ (1+pv)2.

By solving 1 — p = ¢ — 1, we have the following result.

Theorem 4.2 When = \/1— 224 — 3 = 0.168, the proportional policy f>, f(x) =
px, s Golden optimal.
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