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Abstract
We are concerned with dynamic optimization processes from a viewpoint of

Golden optimality. A path is called Golden if any state moves to the next state
repeating the same Golden section in each transition. A policy is called Golden
if it, together with a relevant dynamics, yields a Golden path. The probelm is
whether an optimal path/policy is Golden or not. This paper minimizes a quadratic
criterion and maximizes a square-root criterion over an infinite horizon. We show
that a Golden path is optimal in both optimizations. The Golden optimal path is
obtained by solving a corresponding Bellman equation for dynamic programming.
This in turn admits a Golden optimal policy.

1 Introduction

Recently the Golden optimal solution, its duality, and its equivalence have been discussed
in static optimization problems [4–6]. In this paper we consider the Golden optimal
solution in dynamic optimization problems.

We consider two typical types of criterion — quadratic and square-root — in a deter-
ministic optimization. We minimize quadratic criteria

I(x) =
∞∑

n=0

[
x2

n + (xn − xn+1)
2
]
, J(x) =

∞∑
n=0

[
(xn − xn+1)

2 + x2
n+1

]
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and maximize square-root criteria

K(x) =
∞∑

n=0

βn
(√

xn +
√

xn − xn+1

)
, L(x) =

∞∑
n=0

βn
(√

xn − xn+1 +
√

xn+1

)

, respectively. Here β is 0 < β < 1. The differences between I and J and between K and
L are

J(x) = I(x)− x2
0

L(x) = K(x) +
∞∑

n=0

(
βn−1 − βn

)√
xn (β−1 = 0).

We show that a Golden path is optimal in these four optimization problems. The Golden
optimal path is obtained by solving Bellman equation for dynamic programming [3, 7].

2 Golden Paths

A real number

φ =
1 +

√
5

2
≈ 1.618

is called Golden number [1,2,8]. It is the larger of the two solutions to quadratic equation

x2 − x− 1 = 0. (1)

Sometimes (1) is called Fibonacci quadratic equation. The Fibonacci quadratic equation
has two real solutions: φ and its conjugate φ := 1− φ. We note that

φ + φ = 1, φ ·φ = −1.

Further we have

φ2 = 1 + φ, φ
2

= 2− φ

φ2 + φ
2

= 3, φ2 ·φ2
= 1.

A point (2−φ)x splits an interval [0, x] into two intervals [0, (2−φ)x] and [(2−φ)x, x].
A point (φ− 1)x splits the interval into [0, (φ− 1)x] and [(φ− 1)x, x]. In either case, the
length constitutes the Golden ratio (2− φ) : (φ− 1) = 1 : φ. Thus both divisions are the
Golden section.

Definition 2.1 A sequence x : {0, 1, . . .} → R1 is called Golden if and only if either

xt+1

xt

= φ− 1 or
xt+1

xt

= 2− φ.

Lemma 2.1 A Golden sequence x is either

xt = x0(φ− 1)t or xt = x0(2− φ)t.
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Fig. 1 Golden paths x = c(φ− 1)t c = 1, 2, 3
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Fig. 2 Golden paths (c) x = c(2− φ)t c = 1, 2, 3
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We remark that
(φ− 1)t = φ−t, (2− φ)t = (1 + φ)−t

where
φ− 1 = φ−1 ≈ 0.618, 2− φ = (1 + φ)−1 ≈ 0.382

Let us introduce a controlled linear dynamics with real parameter b as follows.

xt+1 = bxt + ut t = 0, 1, . . . (2)

where u : {0, 1, . . .} → R1 is called control. If ut = pxt, the control u is called proportional,
where p is a real constant, proportional rate. A sequence x satisfying (2) is called path.

Definition 2.2 A proportional control u on dynamics (2) is called Golden if and only if
it generates a Golden path x.

Lemma 2.2 A proportional control ut = pxt on (2) is Golden if and only if

p = −b + φ− 1 or p = −b + 2− φ. (3)

3 Control processes

This section minimizes two quadratic cost functions

∞∑
n=0

[
x2

n + (xn − xn+1)
2
]

and
∞∑

n=0

[
(xn − xn+1)

2 + x2
n+1

]
.

Both problems are solved as a control process with criterion

∞∑
n=0

(
x2

n + u2
n

)
and

∞∑
n=0

(
u2

n + x2
n+1

)

under a common additive dynamics with a given initial state

xn+1 = bxn + un, x0 = c

where c ∈ R1.

3.1 Quadratic in current state

Let us now consider a control process with an additive transition T (x, u) = bx + u. Here
b is a constant, which represents a characteristics of the process :

minimize
∞∑

n=0

(
x2

n + u2
n

)

subject to (i) xn+1 = bxn + un
C(c) n ≥ 0

(ii) −∞ < un < ∞
(iii) x0 = c.
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Let v(c) be the minimum value of C(c). Then the value function v satisfies Bellman
equation [3]:

v(x) = min
−∞<u<∞

[
x2 + u2 + v(bx + u)

]
. (4)

Eq. (4) has a quadratic form v(x) = vx2, where v ∈ R1.

Lemma 3.1 The control process C(c) with characteristic value b (∈ R1) has a propor-
tional optimal policy f∞, f(x) = px, and a quadratic minimum value function v(x) = vx2,
where

v =
b2 +

√
b4 + 4

2
, p = − v

1 + v
b.

The proportional optimal policy f∞ splits at any time an interval [0, x] into [0, (b +

p)x] =

[
0,

bx

1 + v

]
and

[
bx

1 + v
, x

]
. In particular, when b = 1, the quadratic coefficient

v is reduced to the Golden number

φ =
1 +

√
5

2
≈ 1.618

Further the division of [0, x] into

[
0,

x

1 + φ

]
and

[
x

1 + φ
, x

]
is Golden. A quadratic

function w(x) = ax2 is called Golden if a = φ.

Theorem 3.1 The control process C(c) with characteristic value b = 1 has a Golden
optimal policy f∞, f(x) = (1 − φ)x, and the Golden quadratic minimum value function
v(x) = φx2.

3.2 Qquadratic in next state

Here we consider the cost function r : X×U → R1 which is quadratic in current control
and next state :

r(x, u) = u2 + (bx + u)2.

Then a control process is represented by the following sequential minimization problem :

minimize
∞∑

n=0

(
u2

n + x2
n+1

)

subject to (i) xn+1 = bxn + un
C′(c) n ≥ 0

(ii) −∞ < un < ∞
(iii) x0 = c.

The value function v satisfies Bellman equation [3]:

v(x) = min
−∞<u<∞

[
u2 + (bx + u)2 + v(bx + u)

]
. (5)

Eq. (5) has a quadratic solution v(x) = vx2, where v ∈ R1.
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Lemma 3.2 The control process C′(c) with characteristic value b has a proportional op-
timal policy f∞, f(x) = px, and a quadratic minimum value function v(x) = vx2, where

v =
b2 − 2 +

√
b4 + 4

2
, p = − 1 + v

2 + v
b.

The policy f∞ splits an interval [0, x] into

[
0,

bx

2 + v

]
and

[
bx

2 + v
, x

]
. When b = 1,

the coefficient v is reduced to the inverse Golden number

φ−1 = φ− 1 =
−1 +

√
5

2
≈ 0.618

Further the division of [0, x] into [0, (2− φ)x] and [(2− φ)x, x] is Golden. A quadratic
function w(x) = ax2 is called inverse Golden if a = φ−1.

Theorem 3.2 The control process C′(c) with characteristic value b = 1 has a Golden
optimal policy f∞, f(x) = (1 − φ)x, and the inverse Golden quadratic minimum value
function v(x) = (φ− 1)x2.

4 Allocation processes

This section maximizes two discounted square-root reward functions

∞∑
n=0

βn
(√

xn +
√

xn − xn+1

)
and

∞∑
n=0

βn
(√

xn − xn+1 +
√

xn+1

)
.

Both problems are solved as an allocation process with criterion

∞∑
n=0

βn (
√

xn +
√

un ) and
∞∑

n=0

βn (
√

un +
√

xn+1 )

under a common subtractive dynamics with a given initial state

xn+1 = xn − un, x0 = c

where c ≥ 0.

4.1 Square-root in current state

Let us now consider an allocation process with a subtractive transition T (x, u) = x− u :

Maximize
∞∑

n=0

βn (
√

xn +
√

un )

subject to (i) xn+1 = xn − un
A(c) n ≥ 0

(ii) 0 ≤ un ≤ xn

(iii) x0 = c.
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Let v(c) be the maximum value of A(c). Then the maximum value function v satisfies
the following Bellman equation:

v(x) = Max
0≤u≤x

[√
x +

√
u + βv(x− u)

]
. (6)

Eq. (6) has a square-root form v(x) = v
√

x , where v ∈ R1.

Let us adopt a proportional policy f∞ (f(x) = px) with proportional rate p (0 <

p < 1). Then state x under the control u = px goes deterministically to the next state
T (x, u) = x−u = x−px = (1−p)x. Thus we have x = (1−p)x+px. The state transition
of control process A(c) governed by the proportional policy f∞ means that the current
control u = px splits the state interval [0, x] into two intervals [0, (1−p)x] and [(1−p)x, x].
When the split yields a Golden section, the proportional policy f∞ (f(x) = px) is called
Golden.

Lemma 4.1 The allocation process A(c) has a proportional optimal policy f∞, f(x) = px,

and a square-root maximum value function v(x) = v
√

x , where

v =
2

1− β2
, p =

(1− β2)2

(1 + β2)2
.

We remark that the coefficient v is the solution to

v = 1 +
√

1 + (βv)2 , v ≥ 2.

Let us solve 1− p = φ− 1 or 2− φ. Then we have the following result.

Theorem 4.1 When β = φ (1 −√φ− 1 ) ≈ 0.346 or β =
√

φ −√φ− 1 ≈ 0.486, the
proportional policy f∞, f(x) = px, is Golden optimal.

4.2 Square-root in next state

Now we consider an allocation process with transition T (x, u) = x− u :

Maximize
∞∑

n=0

βn (
√

un +
√

xn+1 )

subject to (i) xn+1 = xn − un
A′(c) n ≥ 0

(ii) 0 ≤ un ≤ xn

(iii) x0 = c.

Let v(c) be the maximum value of A′(c). Then the maximum value function v satisfies
an optimality equation:

v(x) = Max
0≤u≤x

[√
u +

√
x− u + βv(x− u)

]
. (7)

Eq. (7) has a square-root solution v(x) = v
√

x , where v ∈ R1.

Let us adopt a proportional policy f∞ (f(x) = px) with p (0 < p < 1). Then the
current control u = px splits the interval [0, x] into [0, (1− p)x] and [(1− p)x, x].
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Lemma 4.2 The allocation process A′(c) has a proportional optimal policy f∞, f(x) =
px, and a square-root maximum value function v(x) = v

√
x , where

v =
β +

√
2− β2

1− β2
, p =

1− β
√

2− β2

2
.

Note that the coefficient v is the positive solution to

v =
√

1 + (1 + βv)2 .

By solving 1− p = φ− 1, we have the following result.

Theorem 4.2 When β =
√

1− 2
√

2φ− 3 ≈ 0.168, the proportional policy f∞, f(x) =
px, is Golden optimal.
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