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1 Introduction

In a real application of Markov decision processes ([1,5,7,13,16]) (MDP, in
short), we often encounter the case where the required data is not known
precisely and perfectly. In fact, in many instances, the required data in MDPs
must be estimated through the measurement of various phenomena, so that
it naturally includes imprecision or ambiguity of the observing system. Also,
it requires to be more “robust” in the sense that it is reasonably efficient in
approximations.

In order to deal with these uncertain data and flexible requirements, Kruce
et al.[8] have used a fuzzy set representation for homogeneous Markov chains
with uncertain transition matrices, in which ergodic theorems are obtained
in fuzzy environment. In this paper, we shall develop a fuzzy treatment for
uncertain MDPs which allow for fluctuating transition matrices at each step
in time. The MDPs with uncertain transition matrices are described by the
use of fuzzy sets, in which we fined a Pareto optimal policy maximizing the
infinite horizon fuzzy expected discounted reward(FEDR) over all stationary
policies under some partial order relation.

Associated with each stationary policy the corresponding contractive operator
is given on fuzzy numbers, whose fixed point represents the infinite horizon
FEDR. Moreover, the Pareto optimal policies are characterized by maximal
solutions of an optimal inclusion including efficient set-functions. As a numer-
ical example, the machine maintenance problem is considered.

Recently, applying Hartfiel’s[3,4] interval method for Markov chains, Kurano
et al.[10] have introduced a decision model, called a controlled Markov set-
chain, which is robust for rough approximation of transition matrices in MDPs.
Our fuzzy decision model examined in this paper includes a controlled Markov
set-chain as a special case. So, the results obtained here can be thought of as a
fuzzy extension of those in [10]. For the optimization of fuzzy dynamic system,
refer to [9,18]. The non-discounted reward problem for a controlled Markov
set-chain was developed in [6,11].

This paper is organized as follows: In Section 2, we shall give some notation
on fuzzy sets and interval arithmetics and obtain the preliminary lemmas. In
Section 3, we describe a nonhomogeneous MDPs by the use of fuzzy sets and
specify the optimization problem. In Section 4, the infinite horizon FEDR from
a stationary policy is given as a fixed point of a corresponding operator, which
is used to obtain the optimality equation and characterize a Pareto optimal
policy in Section 5.

2



2 Notation and preliminary lemmas

Let R, Rn and Rn×n be set of real numbers, real n-dimensional column vectors
and real n × n matrices, respectively. Also denote by R+, Rn

+ and Rn×n
+ , the

subsets of entrywise non-negative elements in R, Rn and Rn×n, respectively.
We provide each space of R, Rn and Rn×n with the componentwise relation
≤ and < respectively. For any set X, we will denote a fuzzy set ã on X by
its membership function ã : X → [0, 1]. Denote by F(X) the set of all fuzzy
sets on X. For the theory of fuzzy sets, refer to Zadeh[19] and Novák[15]. The
α-cut (α ∈ [0, 1]) of the fuzzy set ã ∈ F(X) is defined as

ãα := {x ∈ X | ã(x) ≥ α} (α > 0) and ã0 := cl{x ∈ X | ã(x) > 0},
where “cl” denote the closure of the set. For any interval Y in R, ã ∈ F(Y ) is
called a fuzzy number on Y if ã has the following properties (i) − (iv):

(i) ã is normal, i.e., there exists an x0 ∈ Y with ã(x0) = 1;
(ii) ã is convex, i.e., ã(αx + (1 − α)y) ≥ ã(x) ∧ ã(y) for all x, y ∈ Y and

α ∈ [0, 1], where a ∧ b = min{a, b};
(iii) ã is upper semi-continuous;
(iv) ã0 is a compact subset of Y .

Denote by Fc(Y ) the set of all fuzzy numbers on Y . Let C(Y ) be the set of all
closed and bounded intervals in Y . We note that ã ∈ Fc(Y ) means ãα ∈ C(Y )
for all α ∈ [0, 1]. Let Fc(Y )n be the set of all n-dimensional column vectors
whose elements are in Fc(Y ), i.e.,

Fc(Y )n := {ũ = (ũ1, ũ2, . . . , ũn)′ | ũi ∈ Fc(Y ) (1 ≤ i ≤ n)},
where d′ denotes the transpose of a vector d.

Let S := {1, 2, . . . , n} and P(S) the set of all probability distributions on S,
that is,

P(S) := {p = (p1, p2, . . . , pn) | pj ≥ 0 (1 ≤ j ≤ n),
n∑

j=1

pj = 1}.

From any p̃ = (p̃1, p̃2, . . . , p̃n)′ ∈ Fc([0, 1])n, we will construct the fuzzy set
[p̃] = [p̃1, p̃2, . . . , p̃n] on P(S) by the following membership function:

[p̃](p) = min
1≤j≤n

{p̃j(pj)} for any p = (p1, p2, . . . , pn) ∈ P(S). (2.1)

The above definition will be extended to the case of stochastic matrices. Let
P(S/S) be the set of all stochastic matrices on S, that is,

P(S/S) := {Q = (qij) | qij ≥ 0,
n∑

j=1

qij = 1 (1 ≤ i ≤ n)}.
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For any q̃i = (q̃i1, q̃i2, . . . , q̃in) ∈ Fc([0, 1])n (1 ≤ i ≤ n), we define the fuzzy set
Q̃ = [q̃1, q̃2, . . . , q̃n]′ on P(S/S) by the following membership function:

Q̃(Q) := min
1≤i≤n

{[q̃i](qi)}, (2.2)

where Q = (q1, q2, . . . , qn)′ ∈ P(S/S), qi = (qi1, qi2, . . . , qin) ∈ P(S) and [q̃i] is
the fuzzy set on P(S) defined by (2.1).

In order to describe the structural properties on the fuzzy sets defined in
(2.1) and (2.2), we need the concept of intervals of matrices. For the detail,
refer to [4,10,14]. For any nonnegative vector q = (q

1
, q

2
, . . . , q

n
) and q =

(q1, q2, . . . , qn) ∈ Rn
+ with q ≤ q, we define the set of probability distributions

〈q, q〉 ⊂ P(S) by

〈q, q〉 := {p = (p1, p2, . . . , pn) ∈ P(S) | q ≤ p ≤ q}. (2.3)

Similarly, for Q = (q
ij
), Q = (qij) ∈ Rn×n

+ with Q ≤ Q, we define the set of

stochastic matrices 〈Q,Q〉 ⊂ P(S/S) by

〈Q,Q〉 := {Q ∈ P(S/S) | Q ≤ Q ≤ Q}. (2.4)

Lemma 2.1 ([4]). For any Q, Q ∈ Rn×n
+ with Q ≤ Q and 〈Q, Q〉 6= ∅, 〈Q,Q〉

is a polyhedral convex set in the vector space Rn×n.

For any ã ∈ Fc([0, 1]), noting ãα ∈ C([0, 1]) (0 ≤ α ≤ 1), it will be denoted
by ãα = [min ãα, max ãα]. The structural property of the fuzzy sets defined in
(2.1) and (2.2) is given, whose proof is done by using Lemma 2.1.

Lemma 2.2. For any q̃i ∈ Fc([0, 1])n (1 ≤ i ≤ n), let Q̃ = [q̃1, q̃2, . . . , q̃n]′ be
a fuzzy set on P(S/S) defined by (2.1). Then, the α-cut of Q̃ (0 ≤ α ≤ 1) is
a polyhedral convex subset of P(S/S) and given by

Q̃α = 〈Q
α
, Qα〉, where Q

α
=

(
min(q̃ij)α

)
and Qα =

(
max(q̃ij)α

)
. (2.5)

Proof. Since q̃ij ∈ Fc([0, 1]), the α-cut (q̃ij)α belongs to C([0, 1]). By (2.1)
and (2.2), we observe that

Q̃α = {Q = (qij) ∈ P(S/S) | qij ∈ (q̃ij)α (1 ≤ i, j ≤ n)},

which implies that (2.5) holds. Thus, by Lemma 2.1, Q̃α has the required
property. 2

If u = ([a1, b1], [a2, b2], . . . , [an, bn])′ ∈ C(R+)n, u will be denoted by u = [a, b],
where a = (a1, a2, . . . , an)′, b = (b1, b2, . . . , bn)′ and [a, b] = {x ∈ Rn

+ | a ≤ x ≤
b}. For any u ∈ C(R+)n and Q,Q ∈ Rn×n

+ with Q ≤ Q and 〈Q,Q〉 6= ∅, we
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define their product by

〈Q,Q〉u = {Qu | Q ∈ 〈Q, Q〉, u ∈ u}. (2.6)

Lemma 2.3 (Lemma 1.4 in [10]).

〈Q,Q〉u ∈ C(R+)n for all u ∈ C(R+)n.

The following arithmetical notation is used in the sequel. Let Q̃ = [q̃1, q̃2, . . . , q̃n]′

be a fuzzy set on P(S/S) with q̃i ∈ F([0, 1])n (1 ≤ i ≤ n). Then, for
ũ = (ũ1, ũ2, . . . , ũn)′ ∈ Fc(R+)n, Q̃ũ ∈ F(Rn

+) is defined as follows:

(Q̃ũ)(x) = max
x=Qu

Q∈P(S/S),u∈Rn
+

{Q̃(Q) ∧ ũ(u)}, for x ∈ Rn
+, (2.7)

where
ũ(u) = min

1≤i≤n
{ũi(ui)} with u = (u1, u2, . . . , un) ∈ Rn

+. (2.8)

Lemma 2.4. For any ũ = (ũ1, ũ2, . . . , ũn)′ ∈ Fc(R+)n, we have:

(i) (Q̃ũ)α = Q̃αũα for α ∈ [0, 1];

(ii) Q̃ũ ∈ Fc(R+)n.

Proof. By (2.7) we get (Q̃ũ)α = {Qu | q ∈ Q̃α, u ∈ ũα}. From (2.8) it
holds ũα ∈ C(R+)n, so that (i) follows by the definition (2.6). Also, (ii) follows
obviously from Lemma 2.2 and 2.3. 2

The addition and the scalar multiplication on Fc(R+) are defined as follows:
For ã, b̃ ∈ Fc(R+) and λ ∈ R+, define

(ã + b̃)(x) := sup
x1,x2∈R+
x1+x2=x

{ã(x1) ∧ b̃(x2)},

λã(x) :=





ã(x/λ) if λ > 0

I{0}(x) if λ = 0
(x ∈ R+),

provided that IA is the indicator of a set A. It is easily shown that, for α ∈
[0, 1],

(ã + b̃)α = ãα + b̃α and (λã)α = λãα,

where the operation on sets is defined ordinary as A + B := {x + y | x ∈
A, y ∈ B} and λA = {λx | x ∈ A} for A,B ⊂ R+. The above operations
are extended to those on Fc(R+)n as follows: For ũ = (ũ1, ũ2, . . . , ũn)′, ṽ =
(ṽ1, ṽ2, . . . , ṽn)′ ∈ Fc(R+)n,

ũ + ṽ = (ũ1 + ṽ1, ũ2 + ṽ2, . . . , ũn + ṽn)′ and λũ = (λũ1, λũ2, . . . , λũn)′.
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For a = (a1, a2, . . . , an)′ ∈ Rn
+, I{a} = (I{a1}, I{a2}, . . . , I{an}) ∈ Fc(R+)n and

I{a}+ũ is described simply by a+ũ. The Hausdorff metric on C(R+) is denoted
by δ, i.e.,

δ([a, b], [c, d]) := |a− c| ∨ |b− d| for [a, b], [c, d] ∈ C(R+),

where x∨y = max{x, y} for x, y ∈ R. This metric can be extended to Fc(R+)n

by
δ(ũ, ṽ) = max

1≤i≤n
sup

α∈[0,1]
δ((ũi)α, (ṽi)α)

for ũ = (ũ1, ũ2, . . . , ũn)′, ṽ = (ṽ1, ṽ2, . . . , ṽn)′ ∈ Fc(R+)n. Then, it is known
(c.f.[12]) that the metric space (Fc(R+)n, δ) is complete.

3 The fuzzy description of MDPs

In order to deal with the vague data and flexible requirements for nonho-
mogenuous MDPs we shall use a fuzzy set representation. Let S and A be
finite sets denoted by S = {1, 2, . . . , n} and A = {1, 2, . . . , k}. Our sequential
decision model consists of four objects:

(S,A, {q̃ij(a) ∈ Fc([0, 1]), i, j ∈ S, a ∈ A}, r),
where r = r(i, a) is a function on S ×A with r ≥ 0. We interpret S as the set
of states of some system and A as the set of actions available at each state.
We denote by F the set of all functions from S to A. For any f ∈ F , we define
the fuzzy set Q̃(f) on P(S/S) as follows:

Q̃(f) := [q̃1(f), q̃2(f), . . . , q̃n(f)]′ where (3.1)

q̃i(f) := [q̃i1(f(i)), q̃i2(f(i)), . . . , q̃in(f(i))] (1 ≤ i ≤ n). (3.2)

Note that the basic notations of (3.1) and (3.2) are defined in (2.1) and (2.2).

A policy π is a sequence (f1, f2, . . .) of functions with ft ∈ F (t ≥ 1). Let Π
be the class of policies. We denote by f∞ the policy (h1, h2, . . .) with ht = f
for all t ≥ 1 and some f ∈ F . Such a policy is called stationary and denoted
simply by f ∈ F . The set of all stationary policies will be denoted by ΠF . For
any f ∈ F , let r(f) be an n-dimensional column vector whose i-th element
is r(i, f(i)). Applying Zadeh’s extension principle(cf. [15]), the fuzzy expected
total discounted reward up to time T from a policy π is a element of F(R+)n

and defined as follows:

ψ̃T (π) := (ψ̃T (1, π), ψ̃T (2, π), . . . , ψ̃T (n, π))′ (3.3)

and
ψ̃T (i, π)(x) := max{ min

1≤t≤T
Q̃(ft)(Qt)} (3.4)
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for all x ∈ R+, 1 ≤ i ≤ n, where the maximum is taken over

{Q1, Q2, . . . , QT | x = (r(f1) + βQ1r(f2) + · · ·
+ βT Q1Q2 · · ·QT r(fT+1))i, (3.5)

Qt ∈ P(S/S) (1 ≤ t ≤ T )}

and β is a discounted factor with 0 < β < 1.

Lemma 3.1 For any policy π ∈ Π, we have:

(i) ψ̃T (π) ∈ Fc(R+)n for all T ≥ 1;

(ii) {ψ̃T (π)} is a Caushy sequence.

Proof. We show that, for example, (i) holds for T = 2. By (3.3) – (3.5),

(ψ̃T (1, π)α, ψ̃T (2, π)α, . . . , ψ̃T (n, π)α)′

= {r(f1) + βQ1r(f2) + β2Q1Q2r(f3) | Qi ∈ Q̃(fi)α, 1 ≤ i ≤ 2}
= r(f1) + βQ̃(f1)α(r(f2) + βQ̃(f2)αr(f2)).

Therefore, Lemma 2.2 and 2.3 it follows that

(ψ̃T (1, π)α, ψ̃T (2, π)α, . . . , ψ̃T (n, π)α)′ ∈ C(R+)n,

which implies (i) for T = 2. By the same method as the case of T = 2, we
can prove (i) for any T . Also, (ii) follows easily from the properties of the
Hausdorff metric and the existence of the discount factor β (0 < β < 1). 2

By Lemma 3.1, we can define the infinite horizon fuzzy expected discounted
reward(FEDR) from a policy π by

ψ̃(π) := lim
T→∞

ψ̃T (π).

Here, we will give a partial order 4 on C(R+) by the definition: For [a, b],
[c, d] ∈ C(R+),

[a, b] 4 [c, d] if a ≤ c and b ≤ d,

[a, b] ≺ [c, d] if [a, b] 4 [c, d] and [a, b] 6= [c, d].

This partial order 4 on C(R+) is extended to that of Fc(R+), called a fuzzy
max order, as follows: For ũ, ṽ ∈ Fc(R+),

ũ 4 ṽ if ũα 4 ṽα for all α ∈ [0, 1],

ũ ≺ ṽ if ũ 4 ṽ and ũ 6= ṽ.

Also, as a further extension, the partial order on Fc(R+)n is given by the
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definition: For ũ = (ũ1, ũ2, . . . , ũn)′, ṽ = (ṽ1, ṽ2, . . . , ṽn)′ ∈ Fc(R+)n,

ũ 4 ṽ if ũi 4 ṽi for all i = 1, 2, . . . , n,

ũ ≺ ṽ if ũ 4 ṽ and ũ 6= ṽ.

Our problem is to maximize the ψ̃(π) over all π ∈ Π with respect to the partial
order 4.

The following lemma is used in the sequel whose proof is easily done.

Lemma 3.2 Let a sequence {ũn} ⊂ Fc(R+)n be such that ũ1 4 ũ2 4 · · · ,
and limk→∞ ũk = ũ for some ũ ∈ Fc(R+)n. Then, it holds that ũ1 4 ũ.

4 Stationary policies and operators

In this section, the infinite horizon FEDR from a stationary policy is given as a
unique fixed point of a corresponding operator. Associated with each function
f ∈ F is a corresponding operator U(f) : Fc(R+)n → Fc(R+)n defined as
follows: For ũ ∈ Fc(R+)n,

Uf ũ = r(f) + βQ̃(f)ũ, (4.1)

where the arithmetics in (4.1) are defined in (2.7). Note that from Lemma 1.4
Uf is well-defined.

For any policy π = (f1, f2, . . .), let π−l = (fl+1, fl+2, . . .) for each l ≥ 1. The
sequence {ψ̃T (π)}∞T=1 is recursively described.

Lemma 4.1 For any policy π = (f1, f2, . . .), we have

ψ̃T (π) = Uf1Uf2 · · ·Ufl
ψ̃T−l(π

−l) for each l ≥ 1. (4.2)

Proof. From (3.3)–(3.5) and Lemma 1.4 (i), we get ψ̃2(i, π)α = (r(f1) +
βQ̃(f1)r(f2))α = r(f1) + βQ̃(f1)αr(f2) for each α ∈ [0, 1]. Since ψ̃1(π

−1) =
r(f2), (4.2) holds for T = 2 and l = 1. By induction on T and l, we can easily
proved (4.2). 2

Lemma 4.2. Let f ∈ F . Then we have:

(i) Uf is a contraction with modulus β, i.e., for ũ, ṽ ∈ Fc(R+)n,

δ(Uf ũ, Uf ṽ) ≤ βδ(ũ, ṽ),

(ii) Uf is monotone, i.e., ũ 4 ṽ implies Uf ũ 4 Uf ṽ.
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Proof. For any ũ, ṽ ∈ Fc(R+)n, from the property of the Hausdorff metric,
it holds δ(Uf ũ, Uf ṽ) ≤ βδ(Q̃(f)ũ, Q̃(f)ṽ). Using Lemma 2.4 (i), we get

δ((Q̃(f)ũ)α, (Q̃(f)ṽ)α) = δ(Q̃(f)αũα, Q̃(f)αṽα) ≤ δ(ũα, ṽα).

So, we have δ(Uf ũ, Uf ṽ) ≤ βδ(ũ, ṽ), which implies (i). Also, (ii) follows obvi-
ously. 2

By Lemma 3.1, ψ̃T (f) = Uf ψ̃T−1(f) for all T ≥ 2. As T → ∞ in the above,

ψ̃(f) is a fixed point of Uf . Thus, the following characterization of ψ̃(f) are
immediate and so its proof is omitted.

Theorem 4.1. For any f ∈ F , ψ̃(f) is a unique solution of the following
fuzzy inclusion:

ũ = Uf ũ, ũ ∈ Fc(R+)n. (4.3)

Applying Lemma 2.4 (i), (4.3) can be rewritten by the following α-cut interval
equation:

ũα = r(f) + βQ̃(f)αũα, 0 ≤ α ≤ 1, (4.4)

where ũα =
(
(ũ1)α, (ũ2)α, . . . , (ũn)α

)′ ∈ C(R+)n and Q̃(f)α = 〈Q
α
, Qα〉 with

Q
α
≤ Qα. By a contraction of Uf , the following holds.

Corollary 4.1. For any f ∈ F and ũ ∈ Fc(R+)n, ψ̃(f) = lim
l→∞

U l
f ũ.

As a simple example, we consider a fuzzy treatment for a machine maintenance
problem([13], p.1, p.17–18).

Example 1. A machine can be operated synchronously, say, once an hour. At
each period there are two states; one is operating(state 1), and the other is in
failure(state 2). If the machine fails, it can be restored to perfect functioning by
repair. At each period, if the machine is running, we earn the return of $ 3.00
per period; the fuzzy set of probability of being in state 1 at the next step is
(0.6/0.7/0.8) and that of the probability of moving to state 2 is (0.2/0.3/0.4),
where for any 0 ≤ a < b < c ≤ 1, the fuzzy number (a/b/c) on [0, 1] is defined
by

(a/b/c)(x) =





(x− a)/(b− a) ∨ 0 if 0 ≤ x ≤ b,

(x− c)/(b− c) ∨ 0 if b ≤ x ≤ 1.

If the machine is in failure, we have two actions to repair the failed machine;
one is a usual repair, denoted by 1, that yields the cost of $ 1.00(that is, a
return of −$1.00) with the fuzzy set (0.3/0.4/0.5) of the probability moving
in state 1 and the fuzzy set (0.5/0.6/0.7) of the probability being in state 2;
another is a rapid repair, denoted by 2, that requires the cost of $2.00(that is,
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a return of −$2.00) with the fuzzy set (0.5/0.6/0.7) of the probability moving
in state 1 and the fuzzy set (0.3/0.4/0.5) of the probability being in state 2.

For the model considered, S = {1, 2} and there exists two stationary policies,
F = {f1, f2} with f1(2) = 1 and f2(2) = 2, where f1 denotes a policy of the
usual repair and f2 a policy of the rapid repair. The state transition diagrams
of two policies are shown in Figure 1.

(0.6/0.7/0.8) (0.2/0.3/0.4)

(0.5/0.6/0.7)

(0.3/0.4/0.5)

1 2

(a) Usual repair f1

(0.6/0.7/0.8) (0.2/0.3/0.4)

(0.3/0.4/0.5)

(0.5/0.6/0.7)

1 2

(b) Rapid repair f2

Figure.1 Transition diagrams.

We easily observe that

r(f1) =




3

−1


 and Q̃(f1) =




(0.6/0.7/0.8) (0.2/0.3/0.4)

(0.3/0.4/0.5) (0.5/0.6/0.7)


 ,

Now, applying Theorem 4.1, we can obtain the infinite horizon FEDR as a
unique solution of (4.4). We observe that

Q̃(f1)α =
〈




0.6 + 0.1α 0.2 + 0.1α

0.3 + 0.1α 0.5 + 0.1α


 ,




0.8− 0.1α 0.4− 0.1α

0.5− 0.1α 0.7− 0.1α




〉
.

So, putting ψ̃(f1)α = [(xα
1 , yα

1 )′, (xα
2 , yα

2 )′], the α-cut interval equations (4.4)
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with β = 0.9 become:

xα
1 = 3 + 0.9{(0.6xα

1 + 0.4xα
2 + 0.1α(xα

1 − xα
2 ))

∧(0.8xα
1 + 0.2xα

2 + 0.1α(−xα
1 + xα

2 ))},
yα

1 = 3 + 0.9{(0.6yα
1 + 0.4yα

2 + 0.1α(yα
1 − yα

2 ))

∨(0.8yα
1 + 0.2yα

2 + 0.1α(−yα
1 + yα

2 ))},
xα

2 = −1 + 0.9{(0.5xα
1 + 0.5xα

2 + 0.1α(xα
2 − xα

1 ))

∧(0.3xα
1 + 0.7xα

2 + 0.1α(−xα
1 + xα

2 ))},
yα

2 = −1 + 0.9{(0.5yα
1 + 0.5yα

2 + 0.1α(yα
2 − yα

1 ))

∨(0.3yα
1 + 0.7yα

2 + 0.1α(−yα
1 + yα

2 ))}.

After a simple calculation, we find

ψ̃(f1)α =
(
[
750 + 360α

73
,
1470− 360α

73
], [

1350 + 360α

73
,
1070− 360α

73
],

)′
,

which leads to

ψ̃(f1) =
(
(
750

73
/
1110

73
/
1470

73
), (

350

73
/
710

73
/
1070

73
)
)′

.

5 Pareto optimality

Here, we confine our attention to the class of stationary policies, which simpli-
fies our discussion in the sequel. A policy f ∗ ∈ ΠF is called Pareto optimal if
there does not exist f ∈ ΠF such that ψ̃(f ∗) ≺ ψ̃(f). In this section, we derive
the optimal inclusion, by which Pareto optimal policies are characterized.

The following important result is crucial to the development in the character-
ization of Pareto optimality.

Lemma 5.1. For any f, g ∈ F , suppose that

ψ̃(f)
{4
≺

}
Ugψ̃(f). (5.1)

Then, it holds that

ψ̃(f)
{4
≺

}
ψ̃(g). (5.2)

Proof. Suppose that ψ̃(f)
{
4
≺

}
Ugψ̃(f). Then, we have from Lemma 4.2 (ii)

that
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ψ̃(f)
{4
≺

}
Ugψ̃(f) 4 U l

gψ̃(f) (l ≥ 2),

So, taking the limit in the above as l → ∞, (5.2) follows from Lemma 3.2.
2

Let D be an arbitrary subset of Fc(R+)n. A point ũ ∈ D is called an efficient
element of D with respect to 4 on Fc(R+)n if and only if it holds that there
does not exist ṽ ∈ D such that ũ ≺ ṽ. We denote by eff(D) the set of all
elements of D efficient with respect to 4 on Fc(R+)n. For any ũ ∈ Fc(R+)n,
let U (ũ) := eff({Uf ũ | f ∈ F}). Note that U (ũ) ⊂ Fc(R+)n.

Here, we consider the following fuzzy inclusion including efficient set-functions
U (·) on Fc(R+)n:

ũ ∈ U (ũ), ũ ∈ Fc(R+)n. (5.3)

The inclusion of (5.3) is called an optimality equation, by which Pareto optimal
policies are characterized. A solution of (5.3), ũ, is called maximal if there does
not exist any solution ũ′ of (5.3) such that ũ ≺ ũ′. Pareto optimal policies
are characterized by maximal solutions of the optimality equation (5.3).

Theorem 5.1. A policy f is Pareto optimal if and only if a fixed point of the
corresponding Uf , ψ̃(f), is a maximal solution to the optimal inclusion (5.3).
Proof. The proof of “only if ”part is easily obtained from Lemma 5.1. In
order to prove “if ”part, suppose that ψ̃(f) is a maximal solution of (5.3) but
f is not Pareto optimal. Then, there exists f (1) ∈ F such that ψ̃(f) ≺ ψ̃(f (1)).
Now, suppose that ψ̃(f (1)) 6∈ eff(ψ̃(f (1))). This assumption assures that there
exists f (2) ∈ F satisfying ψ̃(f (1)) ≺ Uf (2)ψ̃(f (1)), which implies from (5.1)

that ψ̃(f (1)) ≺ ψ̃(f (2)). By repeating this method successively, we come to the
conclusion that there exists l such that f (l) ∈ F such that ψ̃(f) ≺ ψ̃(f (l)) and
ψ̃(f (l)) satisfies (5.3), which contradicts that ψ̃(f) is maximal, as required.
2

Remark. For vector-valued discounted MDPs, Furukawa[2] and White[17]
had derived the optimality equation including efficient set-function on Rn,
by that Pareto optimal policies are characterized. The form of the optimal
inclusion (5.3) is corresponding to a fuzzy version of MDPs.

Example 2. For the machine maintenance problem of Example 1 given in
Section 4, Pareto optimal policy is calculated by Theorem 5.1. From Example
1, we find that

Uf2ψ̃(f1) =
(
(
750

73
/
1110

73
/
1470

73
), (

349

73
/
709

73
/
1069

73
)
)′

,
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Recall that

Uf1ψ̃(f1) = ψ̃(f1) =
(
(
750

73
/
1110

73
/
1470

73
), (

350

73
/
710

73
/
1070

73
)
)′

,

which satisfies Uf2ψ̃(f1) ≺ ψ̃(f1). Thus, ψ̃(f1) ∈ eff({Uf ψ̃(f1) | f ∈ F ), so
that f1 is Pareto optimal from Theorem 5.1. In fact, we can find, by solving
(4.4) for f2, that

ψ̃(f2) =
(
(
930

91
/
1380

91
/
1830

91
), (

430

91
/
880

91
/
1330

91
)
)′

, and ψ̃(f2) ≺ ψ̃(f1).
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