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Abstract. Stimulated by Zadeh’s paper (J. of Statistical Planning and Inference,
105, 2002, 233-264), we will try to consider a perceptive analysis of the optimal
stopping problem. In this paper, the fuzzy perception value of the expectation of the
optimal stopped reward is characterized and calculated by a new recursive equation.
Also, a numerical example described by triangular fuzzy numbers is given.
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1. Introduction and notation

The stopping problem in a stochastic model is to maximize E(Xδ)
over all the stopping times δ for a given sequence of random variables
X = (X1, X2, . . . , Xn), which was solved elegantly by many authors, for
example (Chow, Robbins and Siegmund, 1971). However, in practice,
we are often faced with the case that the value of random variables is
partially observed by dimness of perception or measurement impreci-
sion. For example, in the classical stopping problem of selling or buying
an asset(Karlin, 1962), the price of the asset may not be observed
exactly. Usually it is linguistically and roughly perceived through ne-
gotiations e.g. about $10000, the price considerably larger than $10000,
etc. When it will take a long time to make an actual decision for the
problem, we are still wrapped in a fog of dimness. But immediately
before our decision making, the fog mist is cleared up and we can know
the true value of the price so that the optimal procedure could be
taken. Then, under dimness of perception or measurement imprecision,
how can we estimate in advance the future reward obtained from the
optimal procedure. A possible way of handling such a case is to use the
fuzzy set (Zadeh, 1965), whose membership function can describe the
perception value of price. Motivated by the example of the above, in this
paper we try the perceptive analysis (Baswell and Taylor, 1987; Zadeh,
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2002) of the stopping problem in which fuzzy perception is accommo-
dated. In a concrete form, if, for each sequence of random variables
X = (X1, X2, . . . , Xn), the perception level of X is given, the fuzzy
perception value of the expectation E(Xδ∗) of the optimal stopped
reward is characterized and calculated by a new recursive equation,
where δ∗ is an optimal stopping time w. r. t. X. The above problem of
estimating the perception value will be called the perceptive stopping
problem.

In remainder of this section, we will give some notation and the
definition of a fuzzy perception function referring (Baswell and Tay-
lor, 1987), by which the perceptive stopping problem is formulated in
the sequel. For non-perception approaches to fuzzy stopping problems,
refer to our previous works (Kurano etc., 2002; Yoshida etc., 2000).
Recently Zadeh wrote a summary paper of perception-based theory
(Zadeh, 2002).

For any set A, the fuzzy set on A will be denoted by its membership
function ã : A → [0, 1]. The α-cut of ã is given by ãα := {x ∈ A |
ã(x) ≥ α}(α ∈ (0, 1]) and ã0 := cl{x ∈ A | ã(x) > 0}, where cl{B} is
the closure of a set B. For the theory of fuzzy sets, we refer to (Zadeh,
1965) and (Dubois and Prade, 1980).

Let R be the set of all real numbers and R̃ the set of all fuzzy
numbers, i.e., r̃ ∈ R̃ means that r̃ : R → [0, 1] is normal, upper-
semicontinuous and fuzzy convex and has a compact support. Let C
be the set of all bounded and closed intervals of R. Then, obviously
for any r̃ ∈ R̃, it holds that r̃α ∈ C (α ∈ [0, 1]). So, we write r̃α =
[r̃−α , r̃+

α ] (α ∈ [0, 1]).
A partial order relation 4 on R̃, called the fuzzy max order (Ramı́k

and R̆imánek, 1985), is defined as follows: For s̃, r̃ ∈ R̃, s̃ 4 r̃, if s̃−α ≤ r̃−α
and s̃+

α ≤ r̃+
α for all α ∈ [0, 1], where s̃α = [s̃−α , s̃+

α ] and r̃α = [r̃−α , r̃+
α ].

Here, we define m̃ax{s̃, r̃} ∈ R̃ by

(1.1) m̃ax{s̃, r̃}(y) := sup
x1,x2∈R
y=x1∨x2

{s̃(x1) ∧ r̃(x2)} (y ∈ R),

where a ∧ b = min{a, b} and a ∨ b = max{a, b} for any a, b ∈ R. Then,
it is well-known (Ramı́k and R̆imánek, 1985) that s̃ 4 r̃ if and only if
r̃ = m̃ax{s̃, r̃}.

Let (Ω,M, P ) be a probability space. A map X̃ : Ω → R̃ is called
a fuzzy perception function if for each α ∈ [0, 1] the maps Ω 3 ω 7→
X̃−

α (ω) and Ω 3 ω 7→ X̃+
α (ω) are M-measurable for all α ∈ [0, 1],

where X̃α(ω) = [X̃−
α (ω), X̃+

α (ω)] := {x ∈ R | X̃(ω)(x) ≥ α}. Let X be
the set of all integrable random variables on (Ω,M, P ). For any fuzzy
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perception function X̃, the expectation EX̃ ∈ R̃ is defined by

(1.2) EX̃(x) = sup
X∈X
EX=x

µ̃(X̃)(X),

where µ̃(X̃) is a fuzzy set of X and defined by

(1.3) µ̃(X̃)(X) = inf
ω∈Ω

X̃(ω)(X(ω)) for all X ∈ X .

Obviously, we have

(1.4) E(X̃)α =
[ ∫

X̃−
α (ω)dP (ω),

∫
X̃+

α (ω)dP (ω)
]
, (α ∈ [0, 1]).

Note that a fuzzy set µ̃(X̃) on X is called fuzzy random vari-
able induced by X̃ (Baswell and Taylor, 1987). Regarding the another
(equivalent) definition of fuzzy random variables, we refer to (Kwaker-
naak, 1978) and (Puri and Ralescu, 1986). In this paper, the definition
of fuzzy random variables from a perceptive stand point by (Baswell
and Taylor, 1987) is adopted for modeling a fuzzy perceptive stopping
problem.

2. Stopped fuzzy perception rewards

Let X n be the set of all n-dimensional row vectors whose elements are
in X , i.e.,

X n = {X = (X1, X2, . . . , Xn) | Xt ∈ X , t = 1, 2, . . . , n}.
A random variable σ : Ω → Nn := {1, 2, . . . , n} is said to be a stopping
time corresponding to X = (X1, X2, . . . , Xn) ∈ X n if {σ = k} ∈
B(Xk) (k = 1, 2, . . . , n) where Xk = (X1, X2, . . . , Xk) and B(Xk) is
the σ-field on Ω generated by the random vector Xk. The set of such
stopping times will be denoted by Σ{X}.

The map δ on X n with δ(X) ∈ Σ{X} for all X ∈ X n is called a
stopping time function. A stopping time function δ is monotone if for
any X = (X1, X2, . . . , Xn),Y = (Y1, Y2, . . . , Yn) ∈ X n with X ≤ Y ,
i.e., Xt ≤ Yt (t = 1, 2, . . . , n) P -a.s., it holds that EXδ ≤ EY δ, where
Xδ := Xδ(X) and Y δ := Yδ(Y ).

For any X = (X1, X2, . . . , Xn),Y = (Y1, Y2, . . . , Yn) ∈ X n and
β ∈ [0, 1], let

Z := βX + (1− β)Y
= (βX1 + (1− β)Y1, . . . , βXn + (1− β)Yn) ∈ X n.
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Then δ is called convex if EZδ ≤ βEXδ +(1−β)EY δ for all β ∈ [0, 1],
where Z = (Z1, Z2, . . . , Zn) and Zδ := Zδ(Z). The set of all monotone
and convex stopping time functions will be denoted by ∆.

Let X̃ = (X̃1, X̃2, . . . , X̃n) be a sequence of fuzzy perception func-
tions. For any δ ∈ ∆, the δ-stopped fuzzy perception reward X̃δ is
defined by

(2.1)
X̃δ(ω)(x)
:= sup

Xδ(ω)=x
X=(X1,...,Xn)∈X n

{X̃1(ω)(X1(ω)) ∧ . . . ∧ X̃n(ω)(Xn(ω))}.

Note that X̃δ(ω)(x) may be a fuzzy set on R but not necessarily a
fuzzy perception function.

Similarly as (1.2), we define the expected value of X̃δ(ω)(x) by

(2.2) EX̃δ(x) := sup
E(X)=x
X∈X

inf
ω∈Ω

{X̃δ(ω)(X(ω))}.

For each α ∈ [0, 1], we use notations that X̃
−
α := (X̃−

1,α, . . . , X̃−
n,α) ∈

X n and X̃
+

α := (X̃+
1,α, . . . , X̃+

n,α) ∈ X n in component wise, where the
α-cut of X̃k is described by X̃k,α = [X̃−

k,α, X̃+
k,α] respectively.

Theorem 2.1 For any δ ∈ ∆, it holds that

(i) EX̃δ ∈ R̃ and

(ii) (EX̃δ)α = [E((X̃
−
α )δ), E((X̃

+

α )δ)] for α ∈ [0, 1].

For the proof of Theorem 2.1, we need several preliminary lemmas.
Here, we put, for each α ∈ [0, 1],

(2.3) Zα(β) := βX̃
+

α + (1− β)X̃
−
α (β ∈ [0, 1]).

Lemma 2.1 For any δ ∈ ∆, E(Zα(β)δ) is continuous with respect to
β ∈ [0, 1].

Proof. For any β, β′ with 0 ≤ β < β′ < 1,

Zα(β′) =
β′ − β

1− β
X̃

+

α + (1− β′ − β

1− β
)Zα(β).

So, from the monotonicity and convexity of δ ∈ ∆, we have for 0 ≤
β < β′ < 1,

E(Zα(β)δ) ≤ E(Zα(β′)δ)

≤ β′ − β

1− β
E((X̃

+

α )δ) + (1− β′ − β

1− β
)E(Zα(β)δ),
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which implies that lim
β′↓β

E(Zα(β′)δ) = E(Zα(β)δ).

Similarly, we have for 0 ≤ β′′ < β < 1,

E(Zα(β)δ) ≤ β − β′′

1− β′′
E((X̃

+

α )δ) + (1− β − β′′

1− β′′
)E(Zα(β′′)δ).

Thus, it holds that

0 ≤ E(Zα(β)δ)− E(Zα(β′′)δ) ≤ β − β′′

1− β′′
(E((X̃

+

α )δ)− E(Zα(β′′)δ))

≤ β − β′′

1− β′′
(
E((X̃

+

α )δ)− E((X̃
−
α )δ)

)
.

Thus we get lim
β′′↑β

E(Zα(β′′)δ) = E(Zα(β)δ). 2

The following lemma follows easily from (2.1) and (2.2).

Lemma 2.2 For any δ ∈ ∆ and α ∈ [0, 1], it holds that

(EX̃δ)α = {EXδ | X = (X1, X2, . . . , Xn) ∈ X n,

Xt(ω) ∈ [X̃−
t,α(ω), X̃+

t,α(ω)] for t = 1, 2, . . . , n}.

The proof of Theorem 2.1. Since (ii) means (i), it suffices to show
that (ii) holds. By Lemma 2.2 and monotonicity of δ, the inclusion ⊂
of (ii) is immediate. Also, the inclusion ⊃ follows from the observation
that Zα(1) = X̃

+

α , Zα(0) = X̃
−
α and Lemma 2.1. 2

By Theorem 2.1, we observe that EX̃δ ∈ R̃ for all δ ∈ ∆. Here
we can specify the perceptive fuzzy stopping problem investigated in
the next section: The problem is to maximize EX̃δ for all δ ∈ ∆ with
respect to the fuzzy max order 4 on R̃.

3. Optimal fuzzy perception values and recursive equations

In this section, for any given sequence of fuzzy perception functions
X̃ = (X̃1, X̃2, . . . , X̃n), we find the optimal stopping time function δ∗

and to characterize the optimal fuzzy perception value EX̃δ∗ .
For each sequence of random variables X = (X1, X2, . . . , Xn) ∈ X n,

we denote by δ∗(X) the optimal stopping time for X (Chow, Robbins
and Siegmund, 1971), which is thought as a stopping time function.

Lemma 3.1 δ∗ ∈ ∆.
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Proof. For X = (X1, X2, . . . , Xn) ∈ X n, involving X, we define the
sequence {γn

k = γn
k (X)}n

k=1 by

(3.1)
γn

n(X) = Xn,

γn
k (X) = max{Xk, E[γn

k+1 | B(Xk)]} (k = n− 1, . . . , 1),

where Xk = (X1, X2, . . . , Xk). Then, by the usual theory of opti-
mal stopping problems (Chow, Robbins and Siegmund, 1971), we have
E(Xδ∗) = Eγn

1 (X).
Let X = (X1, X2, . . . , Xn),Y = (Y1, Y2, . . . , Yn) ∈ X n with Xt ≤

Yt (t = 1, 2, . . . , n) P -a.s.. Then, by induction on k, we can easily prove
that γn

k (X) ≤ γn
k (Y ) for k = n, n− 1, . . . , 1. Thus, we get

E(Xδ∗) = E(γn
1 (X)) ≤ E(γn

1 (Y )) = E(Y δ∗),

which shows the monotonicity of δ∗. For Z = βX + (1 − β)Y (β ∈
[0, 1]), we have

E[Zδ∗(Z)] = βE[Xδ∗(Z)] + (1− β)E[Yδ∗(Z)]
≤ βE[Xδ∗(X)] + (1− β)E[Yδ∗(Y )],

where Z = (Z1, Z2, . . . , Zn). This shows the convexity of δ∗. 2

By Lemma 3.1, we observe that δ∗ is an optimal stopping time
function. For simplicity, we assume the sequence of perception functions
X̃ = (X̃1, X̃2, . . . , X̃n) is independent with each X̃t (t = 1, 2, . . . , n).
Then, in the following theorem it will be shown that the optimal fuzzy
perception value EX̃δ∗ is given by the backward recursive equation:

(3.2)
γ̃n

n = EX̃n,

γ̃n
k = Em̃ax{X̃k, γ̃

n
k+1} (k = n− 1, . . . , 2, 1).

Since the α-cut of γ̃n
k in (3.2) can be denoted by

γ̃n
k,α = [γ̃n,−

k,α , γ̃n,+
k,α ] (k = 1, 2, . . . , n),

then, the α-cut expression of (3.2) is as follows: For α ∈ [0, 1],

(3.3)
γ̃n,±

n,α = EX̃±
n,α

γ̃n,±
k,α = Emax{X̃±

k,αγ̃n,±
(k+1),α} (k = n− 1, . . . , 2, 1).

Theorem 3.1 It holds that EX̃δ∗ = γ̃n
1 .
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Proof. By (3.2) and (3.3), we have that, for α ∈ [0, 1],

γ̃n
k,α = [E max{X̃−

k,α, γn,−
(k+1),α}, E max{X̃+

k,α, γn,+
(k+1),α}]

= [E max{X̃−
k,α, γ̃n

(k+1)(X̃
−
α )}, E max{X̃+

k,α, γ̃n
(k+1)(X̃

+

α )}],

where γn
(k+1)(X̃

−
α ) and γn

(k+1)(X̃
+

α ) are defined in (3.1). Applying The-

orem 2.1, we get (EX̃δ∗)α = (γ̃n
1 )α. Thus, EX̃δ∗ = γ̃n

1 , as required. 2

As a numerical example, we will compute the optimal fuzzy per-
ception value for the perception stopping problem described by simple
triangular fuzzy numbers. The triangular fuzzy number (a,m, b) with
a > 0 and b > 0 is given by

(a,m, b)(x) =
{

max{(x−m + a)/a, 0} if x ≤ m
max{(x−m− b)/b, 0} if x > m.

Obviously, the α-cut of (a,m, b) is

(a,m, b)α = [m− a(1− α),m + b(1− α)] α ∈ [0, 1].

Let X̃ = (X̃1, X̃2, . . . , X̃n) be independent and identically distributed
sequence of fuzzy perception functions with X̃t = (Yt, Xt, Zt) (t =
1, 2, . . . , n). (See Fig.1). We assume that Xt ∼ U [0, 1] and Yt, Zt ∼
U [0, 1/2] (t = 1, 2, . . . , n), where X ∼ U [a, b] (a < b) means that the
distribution of X is a uniform distribution on [a, b].

1

0
Xt − Yt Xt Xt + Zt

Figure 1. The fuzzy perception X̃t = (Yt, Xt, Zt)

The optimal fuzzy perception value EX̃δ∗ = γ̃n
1 is computed recur-

sively by (3.3), which is given as follows.

γ̃n,−
n,α = (1 + α)/2, γ̃n,+

n,α = (3− α)/2

γ̃n,−
k,α = E max{Xk − (1− α)Yk, γ̃

n,−
(k+1),α}

γ̃n,+
k,α = E max{Xk + (1− α)Zk, γ̃

n,+
(k+1),α}

(α ∈ [0, 1], k = n− 1, n− 2, . . . , 1).
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The graph of γ̃n
1 (n = 1, 5, 20) evaluated by Maple 7 is shown in Fig.

2, and we observe that γ̃20
1 is concave on its left-side slope and convex

on its right-side slope.

0
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0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4
x

Figure 2. The graph of γ̃n
1 (n = 1, 5, 20)
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