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Abstract. We formulate a fuzzy perceptive model for Markov decision
processes with discounted payoff in which the perception for transition
probabilities is described by fuzzy sets. Our aim is to evaluate the optimal
expected reward, which is called a fuzzy perceptive value, based on the
perceptive analysis. It is characterized and calculated by a certain fuzzy
relation. A machine maintenance problem is discussed as a numerical
example.
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1. Introduction and notation

Many contributions to Markov decision processes(MDPs) have been made (cf.
[1], [2], [4], [9], [10]), in which the transition probability of the state at each time
is assumed to be uniquely given. In a real application of MDPs, the transition
probability will be estimated through the measurement of various phenomena.
In such a case, the real value of the state transition probability may be partially
observed by dimness of perception or measurement imprecision.

For example, in a famous automobile replacement problem [4], the true value
of the probability qij that the car in within age j after six months, given that
the car is within age i at that time, may not be observed exactly. Usually, it is
linguistically or roughly perceived, e.g., about 0.3, the probability considerably
larger than 0.3, etc. A possible approach to handle such a case is to use fuzzy
sets ([3], [13]), whose membership function can describe the perception value of
the true probability. If the fuzzy perception of the transition probabilities for
MDPs is given, how can we estimate in advance the future expected reward,
called a fuzzy perceptive value, under the condition that we can know the true
value of the transition probability immediately before our decision making.

In our previous work [8], we have tried the perceptive analysis for an optimal
stopping problem. In this paper, we formulate the fuzzy perceptive model for
MDPs and develop the perceptive analysis in which the fuzzy perceptive value
for MDPs is characterized and calculated by a new fuzzy relation.



In the remainder of this section, we will give some notation and fundamental
results on MDPs, by which the fuzzy perceptive model is formulated in the
sequel. For non-perception approaches to MDPs with fuzzy imprecision refer to
[7]. Recently Zadeh [14] wrote a summary paper of perception based probability
theory.

Let R,Rn and Rm×n be the sets of real numbers, real n-dimensional vectors
and real m× n matrices, respectively. The sets Rn and Rm×n are endowed with
the norm ‖ · ‖, where for x = (x(1), x(2), . . . , x(n)) ∈ Rn, ‖x‖ =

∑n
j=1 |x(j)| and

for y = (yij) ∈ Rm×n, ‖y‖ = max1≤i≤m

∑n
j=1 |yij |.

For any set X, let F(X) be the set of all fuzzy sets x̃ :→ [0, 1]. The α-
cut of x̃ ∈ F(X) is given by x̃α := {x ∈ X | x̃(x) ≥ α} (α ∈ (0, 1]) and
x̃0 := cl{x ∈ X | x̃(x) > 0}, where cl is a closure of a set. Let R̃ be the
set of all fuzzy numbers, i.e., r̃ ∈ R̃ means that r̃ ∈ F(R) is normal, upper
semicontinuous and fuzzy convex and has a compact support. Let C be the set
of all bounded and closed intervals of R. Then, for r̃ ∈ F(R), it holds that r̃ ∈ R̃
if and only if r̃ normal and r̃α ∈ C for α ∈ [0, 1]). So, for r̃ ∈ R̃, we write
r̃α = [r̃−α , r̃+

α ] (α ∈ [0, 1]).
The binary relation 4 on F(R) is defined as follows: For r̃, s̃ ∈ F(R), r̃ 4 s̃ if

and only if (i) for any x ∈ R, there exists y ∈ R such that x ≤ y and r̃(x) ≤ s̃(y);
(ii) for any y ∈ R, there exists x ∈ R such that x ≤ y and s̃(y) ≤ r̃(x): Obviously,
the binary relation 4 satisfies the axioms of a partial order relation on F(R) (cf.
[6], [12]).

For r̃, s̃ ∈ R̃, m̃ax{r̃, s̃} and m̃in{r̃, s̃} are defined by

m̃ax{r̃, s̃}(y) := sup
x1,x2∈R
y=x1∨x2

{r̃(x1) ∧ s̃(x2)} (y ∈ R),

and
m̃in{r̃, s̃}(y) := sup

x1,x2∈R
y=x1∧x2

{r̃(x1) ∧ s̃(x2)} (y ∈ R),

where a∧ b = min{a, b} and a∨ b = max{a, b} for any a, b ∈ R. It is easy proved
that for r̃, s̃ ∈ R̃, m̃ax{r̃, s̃} ∈ R̃ and m̃in{r̃, s̃} ∈ R̃.

Also, for r̃, s̃ ∈ R̃, the following (i)–(iv) are equivalent (cf. [6]): (i) r̃ 4 s̃;
(ii) r̃−α ≤ s̃−α and r̃+

α ≤ s̃+
α (α ∈ [0, 1]); (iii) m̃ax{r̃, s̃} = s̃; (iv) m̃in{r̃, s̃} = r̃.

We denote by R+ and Rn
+ the subsets of entrywise non-negative elements in R

and Rn respectively. Let C+ be the set of all bounded and closed intervals of R+

and Cn
+ the set of all n-dimensional vectors whose elements are in C+. We have

the following.

Lemma 1.1 ([5]) For any non-empty convex and compact set G ⊂ Rn
+ and

D = (D1, D2, . . . , Dn) ∈ Cn
+, it holds that

GD = {g′ · d | g ∈ G, d ∈ D} ∈ C+

where x′ denotes the transpose of a vector x ∈ Rn and for g = (g1, g2, . . . , gn) ∈
Rn

+ and d = (d1, d2, . . . , dn) ∈ D, g′ · d =
∑n

j=1 gjdj .



Here, we define MDPs whose extension to the fuzzy perceptive model will be
done in Section 2. Consider finite state and action spaces, S and A, containing
n < ∞ and k < ∞ elements with

S = {1, 2, . . . , n} and A = {1, 2, . . . , k}.
Let P(S) ⊂ Rn and P(S|SA) ⊂ Rn×nk be the sets of all probabilities on S and
conditional probabilities on S given S ×A, that is,

P(S) := {q = q(·) = (q(i); i ∈ S) | q(i) ≥ 0, i ∈ S,
∑

i∈S q(i) = 1},
P(S|SA) := {Q = (qia(·) : i ∈ S, a ∈ A) |

qia(·) = (qia(j), j ∈ S) ∈ P(S), i ∈ S, a ∈ A}.
For any Q = (qia(·)) ∈ P(S|SA), we define a controlled dynamic system

M(Q), called a Markov decision process(MDP), specifyed by {S,A, Q, r}, where
r : S × A → R+ is an immediate reward function. When the system is in state
i ∈ S and action a ∈ A is taken, then the system moves to a new state j ∈ S
selected according to qia(·) and the reward r(i, a) is obtained. The process is
repeated from the new state j ∈ S.

We wish to maximize the expected total discounted reward over the infinite
horizon. Denote by F the set of functions from S to A. A policy π is a sequence
(f1, f2, . . .) of functions with ft ∈ F (t ≥ 1). Let Π denote the class of policies.
We denote by f∞ the policy (f1, f2, . . .) with ft = f for all t ≥ 1 and some
f ∈ F . Such a policy is called stationary. We associate with each f ∈ F and
Q ∈ P(S|SA) the vector r(f) = (r(j, f(j)), j ∈ S) and the n × n transition
matrix Q(f), whose (i, j) element is qi,f(i)(j), i, j ∈ S. Then, the expected total
discounted reward from π = (f1, f2, . . .) is the vector ψ(π|Q) = (ψ(i, π|Q), i ∈
S), which is defined, as a function of Q ∈ P(S|SA), by

(1.1) ψ(π|Q) =
∞∑

t=0

βtQ(f1)Q(f2) · · ·Q(ft)r(ft+1),

where 0 < β < 1 is a discount factor. For any Q ∈ P(S|SA), a policy π∗

satisfying that

ψ(i, π∗|Q) = sup
π∈Π

ψ(i, π|Q) := ψ(i|Q) for all i ∈ S

is said to be Q-optimal, and ψ(Q) := (ψ(i|Q), i ∈ S) is called the Q-optimal
value vector. We can state the well-known results.

Theorem 1.1 (cf. [2],[9],[10]) For any Q = (qia(·) : i ∈ S, a ∈ A) ∈ P(S|SA),
the following holds:

(i) The Q-optimal value vector ψ(Q) := (ψ(i|Q), i ∈ S) is a unique solution to
the optimality equations

(1.2) ψ(i|Q) = max
a∈A

{r(i, a) + β
∑

j∈S

qia(j)ψ(j|Q)} (i ∈ S);



(ii) There exits an optimal stationary policy f∞∗ such that f∗(i) ∈ A attains the
minimum in (1.2), i.e.,

(1.3) ψ(i|Q) = r(i, f∗(i)) + β
∑

j∈S

qif∗(i)(j)ψ(j|Q) (i ∈ S).

In Section 2, we define a fuzzy-perceptive model for MDPs and it is analyzed
in Section 3 with a numerical example. The proof of the theorem is given in
Section 4.

2. Fuzzy-perceptive model

We define a fuzzy-perceptive model, in which fuzzy perception of the transition
probabilities in MDPs is accommodated. In a concrete form, we use the fuzzy
set on P(S|SA) whose membership function Q̃ describes the perception value of
the transition probability.

Firstly, for each i ∈ S and a ∈ A, we give a fuzzy perception of qia(·) =
(qia(j), j ∈ S), Q̃ia(·), which is a fuzzy set on P(S) and will be assumed to
satisfy the following conditions (i)–(ii):

(i) (Normality) There exists a q = (qia(·)) ∈ P(S) with Q̃ia(q) = 1;
(ii) (Convexity and compactness) The α-cut Q̃ia,α(·) = {q = qia(·) ∈ P(S) |

Q̃ia(q) ≥ α} is a convex and compact subset in P(S) for α ∈ [0, 1].

Secondly, from a family of fuzzy-perceptions {Q̃ia(·) : i ∈ S, a ∈ A}, we define
the fuzzy set Q̃ on P(S|SA), called fuzzy perception of the transition probability
in MDPs, as follows:

(2.1) Q̃(Q) = min
i∈S,a∈A

Q̃ia(qia(·)),

where Q = (qia(·) : i ∈ S, a ∈ A) ∈ P(S|SA). The α-cut of the fuzzy perception
Q̃ is described explicitly in the following:

(2.2)
Q̃α = {Q = (qia(·) i∈S,a∈A) ∈ P(S|SA) |

qia(·) ∈ Q̃ia,α for i ∈ S, a ∈ A}
=

∏
i∈S,a∈A Q̃ia,α

for α ∈ [0, 1].

Remark For each i ∈ S and a ∈ A, in place of giving the fuzzy perception Q̃ia

on P(S), it may be convenient to give the fuzzy set q̃ia(j) ∈ R̃ (j ∈ S) on [0, 1],
which represents the fuzzy perception of qia(j) (the probability that the state
moves to j ∈ S when the action a ∈ A is taken in state i ∈ S). Then, Q̃ia(·) is
defined by

(2.3) Q̃ia(q) = min
j∈S

q̃ia(j)(qia(j)),



where q = (qia(1), qia(2), . . . , qia(n)) ∈ P(S) . For any fuzzy perception Q̃ on
P(S|SA), our fuzzy-perceptive model is denoted by M(Q̃), in which for any
Q ∈ P(S|SA) the corresponding MDPs M(Q) is perceived with perception level
Q̃(Q).

The map δ on P(S|SA) with δ(Q) ∈ Π for all Q ∈ P(S|SA) is called a policy
function. The set of all policy functions will be denoted by ∆. For any δ ∈ ∆,
the fuzzy perceptive reward ψ̃ is a fuzzy set on R denoted by

(2.4) ψ̃(i, δ)(x) = sup
Q∈P(S|PS)

x=ψ(i,δ(Q)|Q)

Q̃(Q) (i ∈ S).

The policy function δ∗ ∈ ∆ is said to be optimal if ψ̃(i, δ) 4 ψ̃(i, δ∗) for all i ∈ S
and δ ∈ ∆, where the partial order 4 is defined in Section 1. If there exists
an optimal policy function δ∗, we put ψ̃ = (ψ̃(i), i ∈ S) will be called a fuzzy
perceptive value, where ψ̃(i) = ψ̃(i, δ∗) for i ∈ S.

Now we can specify the fuzzy perceptive problem investigated in the next
section. The problem is to find the optimal policy function δ∗ and to characterize
the fuzzy perceptive value.

3. Perceptive analysis

In this section, we derive a new fuzzy optimality relation for solving our percep-
tive problem. The sufficient condition for the fuzzy perceptive reward ψ̃(i, δ) to
be a fuzzy number is given in the following lemma.

Lemma 3.1 For any δ ∈ ∆, if ψ(i, δ|Q) is continuous in Q ∈ P(S|SA), then

ψ̃(i, δ) ∈ R̃.

Proof. From normality of Q̃, there exists Q∗ ∈ P(S|SA) with Q̃(Q∗) = 1, such
that ψ̃(i, δ)(x∗) = 1 for x∗ = ψ(i, δ|Q∗). For any α ∈ [0, 1], we observed that

ψ̃(i, δ)α = {ψ(i, δ|Q) | Q ∈ Q̃α}.

Since Q̃α is convex and compact, the continuity of ψ(i, δ|·) means the convexity
and compactness of ψ̃(i, δ)α (α ∈ [0.1]). ut

Theorem 1.1 guarantees that for each Q ∈ P(S|SA) there exists a Q-optimal
stationary policy f∞∗ (f∗ ∈ F ). Thus, for each Q ∈ P(S|SA), we denote by δ∗(Q)
the corresponding Q-optimal stationary policy, which is thought as a policy
function.

Lemma 3.2 ([11]) ψ̃(i, δ∗) ∈ R̃ for all i ∈ S.

Proof. Applying Lemma 3.1, it is sufficient to prove that ψ̃(i, δ∗|Q) is contin-
uous in Q ∈ P(S|SA). For simplicity, for any Q ∈ P(S|SA), we put ψ(Q) =



(ψ1(Q), ψ2(Q), . . . , ψn(Q)) where ψi(Q) = ψ(i, δ∗|Q) (i ∈ S). Let Q = (qia(·)),
Q = (qia(·)) ∈ P(S|SA). By Theorem 1.1, we have

(3.1) ψi(Q) = max
a∈A

{r(i, a) + β
∑

j∈S

qia(j)ψj(Q)},

(3.2) ψi(Q) = max
a∈A

{r(i, a) + β
∑

j∈S

qia(j)ψj(Q)}.

Suppose that ai = δ∗(Q)(i) and ai = δ∗(Q)(i), i ∈ S give the minimum in (3.1)
and (3.2) respectively and let a = (ai, i ∈ S) and a = (ai, i ∈ S). Then, it yields
that

ψ(Q)− ψ(Q) ≤ (r(a) + βQ(a)ψ(Q))− (r(a) + βQ(a)ψ(Q))
= β(Q(a)ψ(Q)−Qψ(Q))
= β(Q(a)−Q(a))ψ(Q) + βQ(a)(ψ(Q)− ψ(Q)),

where r(a) = (r(i, ai), i ∈ S) and Q(a) = (qiai
(j)) and Q(a) = (qiai

(j)). Thus,
we get

(I − βQ(a))(ψ(Q)− ψ(Q)) ≤ β(Q(a)−Q(a))ψ(Q),

where I is an identity matrix. Since (I − βQ(a))−1 =
∑∞

k=0 βkQ(a)k ≥ 0, we
have

(3.3) ψ(Q)− ψ(Q)) ≤ β(I − βQ(a))−1(Q(a)−Q(a))ψ(Q),

Similarly we get

(3.4) ψ(Q)− ψ(Q)) ≤ β(I − βQ(a))−1(Q(a)−Q(a))ψ(Q),

where Q(a) and Q(a) are defined similarly as the above. Observing that

0 ≤ ψi(Q), ψi(Q) ≤ 1
1− β

max
i∈S,a∈A

r(i, a) =: M

and ‖Q(a)−Q(a)‖ ≤ ‖Q−Q‖, ‖Q(a)−Q(a)‖ ≤ ‖Q−Q‖,

(3.5)
‖ψ(Q)− ψ(Q)‖

≤ βM‖Q−Q‖max{‖(I − βQ(a))−1‖, ‖(I − βQ(a))−1‖}.

When Q → Q in P(S|SA), ‖(I − βQ(a))−1‖ and ‖(I − βQ(a))−1‖ are bounded
and (3.5) means that ‖ψ(Q)− ψ(Q)‖ → 0. ut

Theorem 3.1 The policy function δ∗ is optimal.
Proof. Let δ ∈ ∆. Since δ∗(Q) is Q-optimal, for any Q ∈ P(S|SA) it holds that

(3.6) ψ(i, δ|Q) ≤ ψ(i, δ∗|Q) (i ∈ S).

For any x ∈ R, let α := ψ̃(i, δ)(x). Then, from the definition there exists Q ∈ Q̃α

with x = ψ(i, δ|Q). By (3,6), y := ψ(i, δ∗|Q) ≥ x, which implies ψ̃(i, δ∗)(y) ≥ α.



On the other hand, for y ∈ R, let α := ψ̃(i, δ∗)(y). Then, there exists Q ∈ Q̃α

such that y = ψ(i, δ∗|Q). From (3.6), we have that y ≥ x := ψ(i, δ|Q). This
implies ψ̃(i, δ|Q) ≤ α. The above discussion yields that ψ̃(i, δ) 4 ψ̃(i, δ∗). ut

From Lemma 3.2, ψ̃(i) := ψ̃(i, δ∗) ∈ R̃ (i ∈ S), so that we denote by ψ̃α(i) :=
[ψ̃−α (i), ψ̃+

α (i)], the α-cut of ψ̃(i). The fuzzy perceptive value ψ̃ = (ψ̃(1), . . . , ψ̃(n))
is characterized by a new fuzzy optimality relation in Theorem 3.2, whose proof
is done in the next section.

Theorem 3.2 The fuzzy perceptive value ψ̃ = (ψ̃(1), ψ̃(2), . . . , ψ̃(n)) is a
unique solution to the following fuzzy optimality relations:

(3.7) ψ̃(i) = m̃ax
a∈A

{1{r(i,a)} + βQ̃ia · ψ̃} (i ∈ S),

where Q̃ia · ψ̃(x) = sup Q̃ia(q) ∧ ψ̃(ψ) and the supremum is taken on the range
{(q, ψ) | x =

∑n
j=1 q(j)ψj , q ∈ P(S), ψ ∈ Rn)}.

The α-cut expression of (3.7) is as follows:

(3.8) ψ̃−α (i) = max
a∈A

{r(i, a) + β min
qia∈ eQia,α

qia · ψ̃−α } (i ∈ S);

(3.9) ψ̃+
α (i) = max

a∈A
{r(i, a) + β max

qia∈ eQia,α

qia · ψ̃+
α } (i ∈ S),

where ψ̃∓α = (ψ̃∓(1), ψ̃∓(2), . . . , ψ̃∓(n)) and qia · ψ̃∓α =
∑

j∈S qia(j)ψ̃∓α (j).

We note that the α-cut of Q̃ia · ψ̃ in (3.7) is in C from Lemma 1.1, so that
Q̃ia · ψ̃ ∈ R̃. Thus, the right hand of (3.7) is well-defined. As a simple example,
we consider a fuzzy perceptive model of a machine maintenance problem dealt
with in ([9], p.1, p.17–18).

Example: A machine can be operated synchronously, say, once an hour. At
each period there are two states; one is operating(state 1), and the other is in
failure(state 2). If the machine fails, it can be restored to perfect functioning by
repair. At each period, if the machine is running, we earn the return of $ 3.00
per period; the fuzzy set of probability of being in state 1 at the next step is
(0.6/0.7/0.8) and that of the probability of moving to state 2 is (0.2/0.3/0.4),
where for any 0 ≤ a < b < c ≤ 1, the fuzzy number (a/b/c) on [0, 1] is defined
by

(a/b/c)(x) =
{

(x− a)/(b− a) ∨ 0 if 0 ≤ x ≤ b,
(x− c)/(b− c) ∨ 0 if b ≤ x ≤ 1.

If the machine is in failure, we have two actions to repair the failed machine; one
is a usual repair, denoted by 1, that yields the cost of $ 1.00(that is, a return
of −$1.00) with the fuzzy set (0.3/0.4/0.5) of the probability moving in state 1
and the fuzzy set (0.5/0.6/0.7) of the probability being in state 2; another is a



rapid repair, denoted by 2, that requires the cost of $2.00(that is, a return of
−$2.00) with the fuzzy set (0.6/0.7/0.8) of the probability moving in state 1 and
the fuzzy set (0.2/0.3/0.4) of the probability being in state 2.

For the model considered, S = {1, 2} and there exists two stationary policies,
F = {f1, f2} with f1(2) = 1 and f2(2) = 2, where f1 denotes a policy of the
usual repair and f2 a policy of the rapid repair. The state transition diagrams
of two policies are shown in Figure 1.

Figure.1 Transition diagrams.

(a) Usual repair f1

(0.6/0.7/0.8)
(0.2/0.3/0.4)

(0.5/0.6/0.7)

(0.3/0.4/0.5)

1 2

(b) Rapid repair f2

(0.6/0.7/0.8)
(0.2/0.3/0.4)

(0.2/0.3/0.4)

(0.6/0.7/0.8)

1 2

Using (2.3), we obtain Q̃ia(·) (i ∈ S, a ∈ A), whose α-cut is given as follows(cf.
[5]):

Q̃11,α = co{(.6 + .1α, .4− .1α), (.8− .1α, .2 + .1α)},
Q̃21,α = co{(.3 + .1α, .7− .1α), (.5− .1α, .5 + .1α)},
Q̃22,α = co{(.6 + .1α, .4− .1α), (.8− .1α, .2 + .1α)},

where coX is a convex hull of a set X. So, putting x1 = ψ̃−α (1), x2 = ψ̃−α (2),
y1 = ψ̃+

α (1), y2 = ψ̃+
α (2), the α-cut optimality equations (3.8) and (3.9) with

β = 0.9 become:

x1 = 3 + .9min{(.6 + .1α)x1 + (.4− .1α)x2, (.8− .1α)x1 + (.2 + .1α)x2}
x2 = max

[− 1 + .9min{(.3 + .1α)x1 + (.7− .1α)x2, (.5− .1α)x1 + (.5 + .1α)x2},
−2 + .9min{(.6 + .1α)x1 + (.4− .1α)x2, (.8− 0.1α)x1 + (.2 + .1α)x2}

]
,

y1 = 3 + .9max{(.6 + .1α)y1 + (.4− .1α)y2, (.8− .1α)y1 + (.2 + .1α)y2}
y2 = max

[− 1 + .9max{(.3 + .1α)y1 + (.7− .1α)y2, (.5− .1α)y1 + (.5 + .1α)y2},
−2 + .9max{(.6 + .1α)y1 + (.4− .1α)y2, (.8− 0.1α)y1 + (.2 + .1α)y2}

]
,



After a simple calculation, we get

x1 = 12 + 4.5α, x2 = 7 + 4.5α, y1 = 21− 4.5α, y2 = 16− 4.5α.

Thus, we know the fuzzy perceptive value is

ψ̃(1) = (12/16.5/21), ψ̃(2) = (7/11.5/16).

4. Proof of Theorem 3.2

For any α ∈ [0, 1], we define maps Uα, U
α

: Rn
+ → Rn

+ by

(4.1) Uαu(i) = min
qia∈ eQia,α

max
a∈A

{r(i, a) + β

n∑

j=1

qia(j)u(j)},

(4.2) U
α
u(i) = max

qia∈ eQia,α

max
a∈A

{r(i, a) + β

n∑

j=1

qia(j)u(j)},

for i ∈ S and any u = (u(i), i ∈ S) ∈ Rn
+.

In order to prove the theorem, we will prepare two lemmas.

Lemma 4.1 The following (i) and (ii) hold.

(i) The maps Uα and U
α

are contractions with modulus β;

(ii) The extreme point vectors ψ̃±α := (ψ̃±α (i), i ∈ S) with ψ̃α = [ψ̃−α , ψ̃+
α ] are

uniquely given as fixed points of Uα and U
α

(α ∈ [0.1]) respectively.

Proof. The proof of (i) is easy and tedious, so it is omitted. For (ii), let ψ =
(ψ(1), . . . , ψ(n)) and ψ = (ψ(1), . . . , ψ(n)) be fixed points of Uα and U

α
(α ∈

[0.1]) respectively. Then, we have that

ψ(i) = max
a∈A

{r(i, a) +
∑

j∈S

qia(j)ψ(j)}

for some Q = (qia : i ∈ S, a ∈ A) with qia ∈ Q̃ia,α. From Theorem 1.1 it follows
that ψ(i) = ψ(i, δ∗|Q). So, we get, for all i ∈ S,

(4.3) ψ(i) ≥ ψ̃−α (i) = min
Q∈ eQα

ψ(i, δ∗|Q)

Suppose that ψ(i0) > ψ̃−α (i0) = ψ(i0, δ∗|Q) for some i0 ∈ S and Q ∈ Q̃α. Then,
the vector ψ = (ψ1, . . . , ψn) with ψi = ψ(i, δ∗|Q) (i ∈ S) satisfies from Theorem
1.1 that

ψ(i) = max
a∈A

{r(i, a) + β
∑

j∈S

q
ia

(j)ψ(j)} ≥ Uαψ(i)

where Q = (q
ia

). Applying this iteratively, we have

ψi0 = ψ̃−α (i0) ≥ (Uα)`ψ(i0) → ψ(i0) (` → 0)



which contradicts that ψ(i0) > ψ̃−α (i0), so that from (4.3) it yields ψ = ψ̃−α .
Similarly as the above, we can get ψ = ψ̃+

α . These prove the lemma. ut

Now, we define another maps V α, V
α

: Rn
+ → Rn

+ (α ∈ [0, 1]) by

(4.4) V αu(i) = max
a∈A

{r(i, a) + β min
qia∈ eQia,α

∑

j∈S

qia(j)u(j)},

(4.5) V
α
u(i) = max

a∈A
{r(i, a) + β max

qia∈ eQia,α

∑

j∈S

qia(j)u(j)},

where u = (u(i), i ∈ S) ∈ Rn
+. By the definition of U

α
and V

α
, it clearly holds

that U
α

= V
α
.

Lemma 4.2 For any α ∈ [0, 1], the following (i) and (ii) hold:

(i) V α is a contraction with modulus β;

(ii) ψ̃−α is a fixed point of V α.

Proof. The proof of (i) is easy and omitted. For (ii), we denote by φ =
(φ(i), i ∈ S) the unique fixed point of V α. Then, for each i ∈ S, we have:
φ(i) = maxa∈A{r(i, a) + β

∑
j∈S qia(j)φ(j)} for some Q = (qia) with qia ∈ Q̃ia.

Using Theorem 1.1, it follows that φ(i) = ψ(i, δ∗|Q), which implies φ(i) ≥
ψ̃−α (i) = maxQ∈ eQ ψ(i, δ∗|Q) for all i ∈ S. Since V α ≤ Uα, it holds from Lemma

4.1 that V αψ̃−α ≤ Uαψ̃−α = ψ̃−α . Applying the above inequality iteratively,

ψ̃−α ≥ (V α)`ψ̃−α → φ (` →∞),

which implies ψ−α ≥ φ, so that ψ−α = φ. ut

Proof of Theorem 3.2 For each α ∈ [0, 1], Lemma 4.2 shows that V αψ̃−α = ψ̃−α
and V

α
ψ̃+

α = ψ̃+
α , which is same as (3.8) and (3.9) respectively. From this, the

assertion of (ii) holds. For (i), for i ∈ S and a ∈ A, we have:

{1r(i,a) + βQ̃iaψ̃}α = r(i, a) + βQ̃ia,αψ̃α.

So, (3.8) and (3.9) of Theorem 3.2 are clearly the α-cut representation of (3.7).
This is what we want to prove. ut
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