
Fuzzy Perceptive Values
for MDPs with Discounting

Masami Kuranoa, Masami Yasudab

Jun-ichi Nakagamib, Yuji Yoshidac

a Department of Mathematics, Faculty of Education
Chiba University, Chiba 263-8522 Japan
E-mail:kurano@math.e.chiba-u.ac.jp

b Department of Mathematics and Informatics, Faculty of Science
E-mail:yasuda@math.s.chiba-u.ac.jp, nakagami@math.s.chiba-u.ac.jp

Chiba University, Chiba 263-8522 Japan
c Faculty of Economics and Business Administration

The University of Kitakyushu, Kitakyushu 802-8577 Japan
E-mail:yoshida@kitakyu-u.ac.jp

Abstract

In this paper, we formulate the fuzzy perceptive model for discounted Markov
decision processes in which the perception for transition probabilities is described
by fuzzy sets. The optimal expected reward, called a fuzzy perceptive value, is
characterized and calculated by a new fuzzy relation. As a numerical example, a
machine maintenance problem is considered.
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1. Introduction and notation

Many contributions to Markov decision processes(MDPs) have been made (cf. [1], [2],
[4], [9], [10]), in which the transition probability of the state at each time is assumed
to be uniquely given. In a real application of MDPs, the transition probability will be
estimated through the measurement of various phenomena. In such a case, the real value
of the state transition probability may be partially observed by dimness of perception
or measurement imprecision. For example, in a famous automobile replacement problem
[4], the true value of the probability qij that the car in within age j after six months,
given that the car is within age i at that time, may not be observed exactly. Usually, it
is linguistically or roughly perceived, e.g., about 0.3, the probability considerably larger
than 0.3, etc. A possible approach to handle such a case is to use the fuzzy set ([3], [12]),
whose membership function can describe the perception value of the true probability.
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If the fuzzy perception of the transition probabilities for MDPs is given, how can we
estimate in advance the future expected reward, called a fuzzy perceptive value, under
the condition that we can know the true value of the transition probability immediately
before our decision making.

In our previous work [8], we have tried the perceptive analysis for an optimal stopping
problem. In this paper, we formulate the fuzzy perceptive model for MDPs and develop
the perceptive analysis in which the fuzzy perceptive value for MDPs is characterized and
calculated by a new fuzzy relation.

In remainder of this section, we will give some notation and fundamental results
on MDPs, by which the fuzzy perceptive model is formulated in the sequel. For non-
perception approaches to MDPs with fuzzy imprecision refer to [7]. Recently Zadeh [13]
wrote a summary paper of perception based probability theory.

Let R,Rn and Rm×n be the sets of real numbers, real n-dimensional column vectors and
real m×n matrices, respectively. The sets Rn and Rm×n are endowed with the norm ‖ · ‖,
where for x = (x(1), x(2), . . . , x(n))′ ∈ Rn, ‖x‖ =

∑n
j=1 |x(j)| and for y = (yij) ∈ Rm×n,

‖y‖ = max1≤i≤m

∑n
j=1 |yij|.

For any set X, let F(X) be the set of all fuzzy sets x̃ :→ [0, 1]. The α-cut of x̃ ∈ F(X)
is given by x̃α := {x ∈ X | x̃(x) ≥ α} (α ∈ (0, 1]) and x̃0 := cl{x ∈ X | x̃(x) > 0}, where

cl is a closure of a set. Let R̃ be the set of all fuzzy numbers, i.e., r̃ ∈ R̃ means that
r̃ ∈ F(R) is normal, upper semicontinuous and fuzzy convex and has a compact support.
Let C be the set of all bounded and closed intervals of R. Then, for r̃ ∈ F(R), it holds

that r̃ ∈ R̃ if and only if r̃ normal and r̃α ∈ C for α ∈ [0, 1]). So, for r̃ ∈ R̃, we write
r̃α = [r̃−α , r̃+

α ] (α ∈ [0, 1]).
The binary relation 4 on F(R) is defined as follows: For r̃, s̃ ∈ F(R), r̃ 4 s̃ if and

only if (i) for any x ∈ R, there exists y ∈ R such that x ≤ y and r̃(x) ≤ s̃(y); (ii) for
any y ∈ R, there exists x ∈ R such that x ≤ y and s̃(y) ≤ r̃(x): Obviously, the binary
relation 4 satisfies the axioms of a partial order relation on F(R) (cf. [6], [11]).

For r̃, s̃ ∈ R̃, m̃ax{r̃, s̃} and m̃in{r̃, s̃} are defined by

m̃ax{r̃, s̃}(y) := sup
x1,x2∈R
y=x1∨x2

{r̃(x1) ∧ s̃(x2)} (y ∈ R),

and
m̃in{r̃, s̃}(y) := sup

x1,x2∈R
y=x1∧x2

{r̃(x1) ∧ s̃(x2)} (y ∈ R),

where a∧ b = min{a, b} and a∨ b = max{a, b} for any a, b ∈ R. It is easy proved that for

r̃, s̃ ∈ R̃, m̃ax{r̃, s̃} ∈ R̃ and m̃in{r̃, s̃} ∈ R̃.

Also, for r̃, s̃ ∈ R̃, the following (i)–(iv) are equivalent (cf. [6]): (i) r̃ 4 s̃; (ii) r̃−α ≤ s̃−α
and r̃+

α ≤ s̃+
α (α ∈ [0, 1]); (iii) m̃ax{r̃, s̃} = s̃; (iv) m̃in{r̃, s̃} = r̃.

We denote by R+ and Rn
+ the subsets of entrywise non-negative elements in R and Rn

respectively. Let C+ be the set of all bounded and closed intervals of R+ and Cn
+ the set

of all n-dimensional column vectors whose elements are in C+.
We have the following.
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Lemma 1.1 ([5]) For any non-empty convex and compact set G ⊂ Rn
+ and D =

(D1, D2, . . . , Dn)′ ∈ Cn
+, it holds that

GD = {g′ · d | g ∈ G, d ∈ D} ∈ C+

where x′ denotes the transpose of a vector x ∈ Rn and for g = (g1, g2, . . . , gn)′ ∈ Rn
+ and

d = (d1, d2, . . . , dn)′ ∈ D, g′ · d =
∑n

j=1 gjdj.

Here, we define MDPs whose extension to the fuzzy perceptive model will be done in
Section 2. Consider finite state and action spaces, S and A, containing n < ∞ and k < ∞
elements with S = {1, 2, . . . , n} and A = {1, 2, . . . , k}.

Let P(S) ⊂ Rn and P(S|SA) ⊂ Rn×nk be the sets of all probabilities on S and
conditional probabilities on S given S × A, that is,

P(S) := {q = (q(1), q(2), . . . , q(n))′ | q(i) ≥ 0,
n∑

i=1

q(i) = 1, i ∈ S},

P(S|SA) := {Q = (qia(·) : i ∈ S, a ∈ A) |
qia(·) = (qia(1), qia(2), . . . , qia(n))′ ∈ P(S), i ∈ S, a ∈ A}.

For any Q = (qia(·)) ∈ P(S|SA), we define a controlled dynamic system M(Q), called
a Markov decision process(MDP), specified by {S, A, Q, r}, where r : S × A → R+ is an
immediate reward function.

When the system is in state i ∈ S and action a ∈ A is taken, then the system moves
to a new state j ∈ S selected according to qia(·) and the reward r(i, a) is obtained. The
process is repeated from the new state j ∈ S.

We wish to maximize the expected total discounted reward over the infinite horizon.
Denote by F the set of functions from S to A. A policy π is a sequence (f1, f2, . . .)

of functions with ft ∈ F (t ≥ 1). Let Π denote the class of policies. We denote by f∞

the policy (f1, f2, . . .) with ft = f for all t ≥ 1 and some f ∈ F . Such a policy is called
stationary.

We associate with each f ∈ F and Q ∈ P(S|SA) the column vector r(f) =
(r(1, f(1)), . . . , r(n, f(n)))′ and the n× n transition matrix Q(f), whose (i, j) element is
qi,f(i)(j) 1 ≤ i, j ≤ n. Then, the expected total discounted reward from π = (f1, f2, . . .) is
the column vector ψ(π|Q) = (ψ(1, π|Q), . . . , ψ(n, π|Q))′, which is defined, as a function
of Q ∈ P(S|SA), by

(1.1) ψ(π|Q) =
∞∑

t=0

βtQ(f1)Q(f2) · · ·Q(ft)r(ft+1),

where 0 < β < 1 is a discount factor.
For any Q ∈ P(S|SA), a policy π∗ satisfying that

ψ(i, π∗|Q) = sup
π∈Π

ψ(i, π|Q) := ψ(i|Q) for all i ∈ S

is said to be Q-optimal, and ψ(Q) := (ψ(1|Q), ψ(2|Q), · · · , ψ(n|Q))′ is called the Q-
optimal value vector.
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We can state the well-known results.

Theorem 1.1 (cf. [2],[9],[10]) For any Q = (qia(·) : i ∈ S, a ∈ A) ∈ P(S|SA), the
following holds:

(i) The Q-optimal value vector ψ(Q) := (ψ(1|Q), ψ(2|Q), · · · , ψ(n|Q))′ is a unique
solution to the optimality equations

(1.2) ψ(i|Q) = max
a∈A

{r(i, a) + β
∑
j∈S

qia(j)ψ(j|Q)} (i ∈ S);

(ii) There exits an optimal stationary policy f∞∗ such that f∗(i) ∈ A attains the mini-
mum in (1.2), i.e.,

(1.3) ψ(i|Q) = r(i, f∗(i)) + β
∑
j∈S

qif∗(i)(j)ψ(j|Q) (i ∈ S).

In Section 2, we define a fuzzy-perceptive model for MDPs, which is analyzed in
Section 3 with a numerical example. The proof of the theorem is given in Section 4.

2. Fuzzy-perceptive model

We define a fuzzy-perceptive model, in which fuzzy perception of the transition probabil-
ities in MDPs is accommodated. In a concrete form, we use the fuzzy set on P(S|SA)

whose membership function Q̃ describes the perception value of the transition probability.

Firstly, for each i ∈ S and a ∈ A, we give a fuzzy perception of qia(·) =

(qia(1), qia(2), . . . , qia(n))′, Q̃ia(·), which is a fuzzy set on P(S) and will be assumed to
satisfy the following conditions (i)–(ii):

(i) (Normality) There exists a q = qia(·) ∈ P(S) with Q̃ia(q) = 1;

(ii) (Convexity and compactness) The α-cut Q̃ia,α(·) = {q = qia(·) ∈ P(S) | Q̃ia(q) ≥ α}
is a convex and compact subset in P(S) (α ∈ [0, 1]).

Secondly, from a family of fuzzy-perceptions {Q̃ia(·) : i ∈ S, a ∈ A}, we define the

fuzzy set Q̃ on P(S|SA), called fuzzy perception of the transition probability in MDPs,
as follows:

(2.1) Q̃(Q) = min
i∈S,a∈A

Q̃ia(qia(·)), where Q = (qia(·) : i ∈ S, a ∈ A) ∈ P(S|SA).

The α-cut of the fuzzy perception Q̃ is described explicitly in the following:

(2.2) Q̃α = {Q = (qia(·) : i ∈ S, a ∈ A) ∈ P(S|SA) |

qia(·) ∈ Q̃ia,α for i ∈ S, a ∈ A}
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=
∏

i∈S,a∈A

Q̃ia,α (α ∈ [0, 1]).

Remark For each i ∈ S and a ∈ A, in place of giving the fuzzy perception Q̃ia on P(S),

it may be convenient to give the fuzzy set q̃ia(j) ∈ R̃ (j ∈ S) on [0, 1], which represents
the fuzzy perception of qia(j) (the probability that the state moves to j ∈ S when the
action a ∈ A is taken in state i ∈ S).

Then, Q̃ia(·) is defined by

(2.3) Q̃ia(q) = min
j∈S

q̃ia(j)(qia(j)), where q = (qia(1), qia(2), . . . , qia(n)) ∈ P(S).

For any fuzzy perception Q̃ on P(S|SA), our fuzzy-perceptive model is denoted by

M(Q̃), in which for any Q ∈ P(S|SA) the corresponding MDPs M(Q) is perceived with

perception level Q̃(Q).

The map δ on P(S|SA) with δ(Q) ∈ Π for all Q ∈ P(S|SA) is called a policy function.
The set of all policy functions will be denoted by ∆. For any δ ∈ ∆, the fuzzy perceptive
reward ψ̃ is a fuzzy set on R denoted by

(2.4) ψ̃(i, δ)(x) = sup
Q∈P(S|PS)

x=ψ(i,δ(Q)|Q)

Q̃(Q) (i ∈ S).

The policy function δ∗ ∈ ∆ is said to be optimal if ψ̃(i, δ) 4 ψ̃(i, δ∗) for all i ∈ S and
δ ∈ ∆, where the partial order 4 is defined in Section 1. If there exists an optimal
policy function δ∗, we put ψ̃ = (ψ̃(1), ψ̃(2), . . . , ψ̃(n)) will be called a fuzzy perceptive

value, where ψ̃(i) = ψ̃(i, δ∗) (i ∈ S).
Here, we can specify the fuzzy perceptive problem investigated in the next section: The

problem is to find the optimal policy function δ∗ and to characterize the fuzzy perceptive
value.

3. Perceptive analysis

In this section, we derive a new fuzzy optimality relation for solving our perceptive prob-
lem. The sufficient condition for the fuzzy perceptive reward ψ̃(i, δ) to be a fuzzy number
is given in the following lemma.

Lemma 3.1 For any δ ∈ ∆, if ψ(i, δ|Q) is continuous in Q ∈ P(S|SA), then ψ̃(i, δ) ∈ R̃.

Proof. ¿From normality of Q̃, there exists Q∗ ∈ P(S|SA) with Q̃(Q∗) = 1, such that

ψ̃(i, δ)(x∗) = 1 for x∗ = ψ(i, δ|Q∗). For any α ∈ [0, 1], we observed that

ψ̃(i, δ)α = {ψ(i, δ|Q) | Q ∈ Q̃α}.

Since Q̃α is convex and compact, the continuity of ψ(i, δ|·) means the convexty and

compactness of ψ̃(i, δ)α (α ∈ [0.1]). 2
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Theorem 1.1 in Section 1 guarantees that for each Q ∈ P(S|SA) there exists a Q-
optimal stationary policy f∞∗ (f∗ ∈ F ). Thus, for each Q ∈ P(S|SA), we denote by δ∗(Q)
the corresponding Q-optimal stationary policy, which is thought as a policy function.

Lemma 3.2 ψ̃(i, δ∗) ∈ R̃ for all i ∈ S.

Proof. Applying Lemma 3.1, it is sufficient to prove that ψ̃(i, δ∗|Q) is continuous in Q ∈
P(S|SA). For simplicity, for any Q ∈ P(S|SA), we put ψ(Q) = (ψ1(Q), ψ2(Q), . . . , ψn(Q))′

where ψi(Q) = ψ(i, δ∗|Q) (i ∈ S). Let Q = (qia(·)), Q = (qia(·)) ∈ P(S|SA). By Theorem
1.1, we have:

(3.1) ψi(Q) = max
a∈A

{r(i, a) + β
∑
j∈S

qia(j)ψj(Q)};

(3.2) ψi(Q) = max
a∈A

{r(i, a) + β
∑
j∈S

qia(j)ψj(Q)}.

Suppose that ai = δ∗(Q)(i) and ai = δ∗(Q)(i) (i ∈ S) give the minimum in (3.1) and
(3.2) respectively. Let a = (a1, a2, . . . , an)′ and a = (a1, a2, . . . , an)′. Then, it yields that

ψ(Q)− ψ(Q) ≤ (r(a) + βQ(a)ψ(Q))− (r(a) + βQ(a)ψ(Q))

= β(Q(a)ψ(Q)−Qψ(Q))

= β(Q(a)−Q(a))ψ(Q) + βQ(a)(ψ(Q)− ψ(Q)),

where r(a) = (r(1, a1), r(2, a2), . . . , r(n, an))′ and Q(a) = (qiai
(j)) and Q(a) = (qiai

(j)).
Thus, we get

(I − βQ(a))(ψ(Q)− ψ(Q)) ≤ β(Q(a)−Q(a))ψ(Q),

where I is an identity matrix. Since (I − βQ(a))−1 =
∑∞

k=0 βkQ(a)k ≥ 0, we have

(3.3) ψ(Q)− ψ(Q)) ≤ β(I − βQ(a))−1(Q(a)−Q(a))ψ(Q),

Similarly we get

(3.4) ψ(Q)− ψ(Q)) ≤ β(I − βQ(a))−1(Q(a)−Q(a))ψ(Q),

where Q(a) and Q(a) are defined similarly as the above. Observing that

0 ≤ ψi(Q), ψi(Q) ≤ 1

1− β
max

i∈S,a∈A
r(i, a) =: M

and ‖Q(a) − Q(a)‖ ≤ ‖Q − Q‖ and ‖Q(a) − Q(a)‖ ≤ ‖Q − Q‖, from (3.3) and (3.4), it
holds that

(3.5) ‖ψ(Q)− ψ(Q)‖ ≤ βM max{‖(I − βQ(a))−1‖, ‖(I − βQ(a))−1‖} · ‖Q−Q‖.

When Q → Q in P(S|SA), ‖(I − βQ(a))−1‖ and ‖(I − βQ(a))−1‖ are bounded and (3.5)
means that ‖ψ(Q)− ψ(Q)‖ → 0. 2
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Theorem 3.1 The policy function δ∗ is optimal.

Proof. Let δ ∈ ∆. Since δ∗(Q) is Q-optimal, for any Q ∈ P(S|SA) it holds that

(3.6) ψ(i, δ|Q) ≤ ψ(i, δ∗|Q) (i ∈ S).

For any x ∈ R, let α := ψ̃(i, δ)(x). Then, from the definition there exists Q ∈ Q̃α with

x = ψ(i, δ|Q). By (3,6), y := ψ(i, δ∗|Q) ≥ x, which implies ψ̃(i, δ∗)(y) ≥ α.

On the other hand, for y ∈ R, let α := ψ̃(i, δ∗)(y). Then, there exists Q ∈ Q̃α such that

y = ψ(i, δ∗|Q). ¿From (3.6), we have that y ≥ x := ψ(i, δ|Q). This implies ψ̃(i, δ|Q) ≤ α.

The above discussion yields that ψ̃(i, δ) 4 ψ̃(i, δ∗). 2

¿From Lemma 3.2, ψ̃(i) := ψ̃(i, δ∗) ∈ R̃ (i ∈ S), so that we denote by ψ̃α(i) :=

[ψ̃−α (i), ψ̃+
α (i)], the α-cut of ψ̃(i).

The fuzzy perceptive value ψ̃ = (ψ̃(1), . . . , ψ̃(n))′ is characterized by a new fuzzy
optimality relation in Theorem 3.2, whose proof is done in the next section.

Theorem 3.2 The fuzzy perceptive value ψ̃ = (ψ̃(1), ψ̃(2), . . . , ψ̃(n))′ is a unique solution
to the following fuzzy optimality relations:

(3.7) ψ̃(i) = m̃ax
a∈A

{1{r(i,a)} + βQ̃ia · ψ̃} (i ∈ S),

where Q̃ia · ψ̃(x) = sup Q̃ia(q) ∧ ψ̃(ψ) and the supremum is taken on the range {(q, ψ) |
x =

∑n
j=1 q(j)ψj, q = (q(1), q(2), . . . , q(n))′ ∈ P(S), ψ = (ψ(1), ψ(2), . . . , ψ(n)′ ∈ Rn)}.

The α-cut expression of (3.7) is as follows:

(3.8) ψ̃−α (i) = max
a∈A

{r(i, a) + β min
qia∈ eQia,α

qia · ψ̃−α } (i ∈ S);

(3.9) ψ̃+
α (i) = max

a∈A
{r(i, a) + β max

qia∈ eQia,α

qia · ψ̃+
α } (i ∈ S),

where ψ̃∓α = (ψ̃∓(1), ψ̃∓(2), . . . , ψ̃∓(n))′ and qia · ψ̃∓α =
∑

j∈S qia(j)ψ̃
∓
α (j).

We note that the α-cut of Q̃ia · ψ̃ in (3.7) is in C from Lemma 1.1, so that Q̃ia · ψ̃ ∈ R̃.
Thus, the right hand of (3.7) is well-defined.

As a simple example, we consider a fuzzy perceptive model of a machine maintenance
problem dealt with in ([9], p.1, p.17–18).

An example (a machine maintenance problem). A machine can be operated syn-
chronously, say, once an hour. At each period there are two states; one is operating(state
1), and the other is in failure(state 2). If the machine fails, it can be restored to perfect
functioning by repair. At each period, if the machine is running, we earn the return of
$ 3.00 per period; the fuzzy set of probability of being in state 1 at the next step is
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(0.6/0.7/0.8) and that of the probability of moving to state 2 is (0.2/0.3/0.4), where for
any 0 ≤ a < b < c ≤ 1, the fuzzy number (a/b/c) on [0, 1] is defined by

(a/b/c)(x) =

{
(x− a)/(b− a) ∨ 0 if 0 ≤ x ≤ b,
(x− c)/(b− c) ∨ 0 if b ≤ x ≤ 1.

If the machine is in failure, we have two actions to repair the failed machine; one is a
usual repair, denoted by 1, that yields the cost of $ 1.00(that is, a return of −$1.00)
with the fuzzy set (0.3/0.4/0.5) of the probability moving in state 1 and the fuzzy set
(0.5/0.6/0.7) of the probability being in state 2; another is a rapid repair, denoted by 2,
that requires the cost of $2.00(that is, a return of −$2.00) with the fuzzy set (0.6/0.7/0.8)
of the probability moving in state 1 and the fuzzy set (0.2/0.3/0.4) of the probability
being in state 2.

For the model considered, S = {1, 2} and there exists two stationary policies, F =
{f1, f2} with f1(2) = 1 and f2(2) = 2, where f1 denotes a policy of the usual repair and
f2 a policy of the rapid repair. The state transition diagrams of two policies are shown in
Figure 1.

(0.6/0.7/0.8) (0.2/0.3/0.4)

(0.5/0.6/0.7)

(0.3/0.4/0.5)

1 2

(a) Usual repair f1

(0.6/0.7/0.8) (0.2/0.3/0.4)

(0.2/0.3/0.4)

(0.6/0.7/0.8)

1 2

(b) Rapid repair f2

Figure.1 Transition diagrams.

Using (2.3), we obtain Q̃ia(·) (i ∈ S, a ∈ A), whose α-cut is given as follows(cf. [5]):

Q̃11,α = co{(.6 + .1α, .4− .1α), (.8− .1α, .2 + .1α)},
Q̃21,α = co{(.3 + .1α, .7− .1α), (.5− .1α, .5 + .1α)},
Q̃22,α = co{(.6 + .1α, .4− .1α), (.8− .1α, .2 + .1α)},

where coX is a convex hull of a set X.
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So, putting x1 = ψ̃−α (1), x2 = ψ̃−α (2), y1 = ψ̃+
α (1), y2 = ψ̃+

α (2), the α-cut optimality
equations (3.8) and (3.9) with β = 0.9 become:

x1 = 3 + .9 min{(.6 + .1α)x1 + (.4− .1α)x2, (.8− .1α)x1 + (.2 + .1α)x2}
x2 = max

[− 1 + .9 min{(.3 + .1α)x1 + (.7− .1α)x2, (.5− .1α)x1 + (.5 + .1α)x2},
−2 + .9 min{(.6 + .1α)x1 + (.4− .1α)x2, (.8− 0.1α)x1 + (.2 + .1α)x2}

]
,

y1 = 3 + .9 max{(.6 + .1α)y1 + (.4− .1α)y2, (.8− .1α)y1 + (.2 + .1α)y2}
y2 = max

[− 1 + .9 max{(.3 + .1α)y1 + (.7− .1α)y2, (.5− .1α)y1 + (.5 + .1α)y2},
−2 + .9 max{(.6 + .1α)y1 + (.4− .1α)y2, (.8− 0.1α)y1 + (.2 + .1α)y2}

]
,

After a simple calculation, we get

x1 = 12 + 4.5α, x2 = 7 + 4.5α, y1 = 21− 4.5α, y2 = 16− 4.5α.

Thus, we know the fuzzy perceptive value is

ψ̃(1) = (12/16.5/21), ψ̃(2) = (7/11.5/16).

4. Proof of Theorem 3.2

For any α ∈ [0, 1], we define maps Uα, U
α

: Rn
+ → Rn

+ by

(4.1) Uαu(i) = min
qia∈ eQia,α

max
a∈A

{r(i, a) + β
n∑

j=1

qia(j)u(j)} (i ∈ S),

(4.2) U
α
u(i) = max

qia∈ eQia,α

max
a∈A

{r(i, a) + β
n∑

j=1

qia(j)u(j)} (i ∈ S),

for any u = (u(1), u(2), . . . , u(n))′ ∈ Rn
+.

We have the following.

Lemma 4.1 The following (i) and (ii) hold.

(i) The maps Uα and U
α

are contractions with modulus β;

(ii) The extreme point vectors ψ̃−α := (ψ̃−α (1), . . . , ψ̃−α (n))′, ψ̃+
α := (ψ̃+

α (1), . . . , ψ̃+
α (n))′

with ψ̃α = [ψ̃−α , ψ̃+
α ] (i ∈ S) are uniquely given as fixed points of Uα and U

α
(α ∈

[0.1]) respectively.

Proof. The proof of (i) is easy and tedious, so we leave it to the reader.
For (ii), let ψ = (ψ(1), . . . , ψ(n))′ and ψ = (ψ(1), . . . , ψ(n))′ be fixed points of Uα and

U
α

(α ∈ [0.1]) respectively. Then, we have that

ψ(i) = max
a∈A

{r(i, a) +
n∑

j=1

qia(j)ψ(j)} (i ∈ S)

9



for some Q = (qia : i ∈ S, a ∈ A) with qia ∈ Q̃ia,α. ¿From Theorem 1.1 it follows that
ψ(i) = ψ(i, δ∗|Q). So, we get

(4.3) ψ(i) ≥ ψ̃−α (i) = min
Q∈ eQα

ψ(i, δ∗|Q) for all i ∈ S.

Suppose that ψ(i0) > ψ̃−α (i0) = ψ(i0, δ
∗|Q) for some i0 ∈ S and Q ∈ Q̃α. Then, the vector

ψ = (ψ1, . . . , ψn)′ with ψi = ψ(i, δ∗|Q) (i ∈ S) satisfies from Theorem 1.1 that

ψ(i) = max
a∈A

{r(i, a) + β

n∑
j=1

q
ia

(j)ψ(j)} ≥ Uαψ(i) (i ∈ S),

where Q = (q
ia

). Applying this iteratively, we have

ψi0 = ψ̃−α (i0) ≥ (Uα)`ψ(i0) → ψ(i0) (` → 0)

which contradicts that ψ(i0) > ψ̃−α (i0), so that from (4.3) it yields ψ = ψ̃−α .

Similarly as the above, we get ψ = ψ̃+
α . 2

Now, we define another maps V α, V
α

: Rn
+ → Rn

+ (α ∈ [0, 1]) by

(4.4) V αu(i) = max
a∈A

{r(i, a) + β min
qia∈ eQia,α

n∑
j=1

qia(j)u(j)} (i ∈ S),

(4.5) V
α
u(i) = max

a∈A
{r(i, a) + β max

qia∈ eQia,α

n∑
j=1

qia(j)u(j)} (i ∈ S),

where u = (u(1), u(2), . . . , u(n))′ ∈ Rn
+.

By the definition of U
α

and V
α
, it clearly holds that U

α
= V

α
.

Lemma 4.2 For any α ∈ [0, 1], the following (i) and (ii) hold:

(i) V α is a contraction with modulus β;

(ii) ψ̃−α is a fixed point of V α.

Proof. The proof of (i) is easy and omitted. For (ii), we denote by φ = (φ(1), . . . , φ(n))′

the unique fixed point of V α. Then, for each i ∈ S, we have:

φ(i) = max
a∈A

{r(i, a) + β

n∑
j=1

qia(j)φ(j)} (i ∈ S, a ∈ A),

for some Q = (qia) with qia ∈ Q̃ia.
Using Theorem 1.1, it follows that φ(i) = ψ(i, δ∗|Q), which implies

φ(i) ≥ ψ̃−α (i) = max
Q∈ eQ ψ(i, δ∗|Q) (i ∈ S).

10



Since V α ≤ Uα, it holds from Lemma 4.1 that V αψ̃−α ≤ Uαψ̃−α = ψ̃−α .
Applying the above inequality iteratively,

ψ̃−α ≥ (V α)`ψ̃−α → φ (` →∞),

which implies ψ−α ≥ φ, so that ψ−α = φ. 2

Proof of Theorem 3.2 For each α ∈ [0, 1], Lemma 4.2 shows that V αψ̃−α = ψ̃−α and

V
α
ψ̃+

α = ψ̃+
α , which is same as (3.8) and (3.9) respectively. ¿From this, (ii) follows.

For (i), for i ∈ S and a ∈ A, we have:

{1r(i,a) + βQ̃ia · ψ̃}α = r(i, a) + βQ̃ia,α · ψ̃α.

So, (3.8) and (3.9) are clearly the α-cut representation of (3.7) 2

11
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