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Abstract : A dynamic fuzzy system defined on a compact state space is considered under a,
monotone property of the fuzzy relation. We study the limit of a sequence of fuzzy states and
obtain a convergence theorem. The limit is characterized as the solution of a fuzzy relational
equation. A numerical example is given to comprehend our idea in this paper.
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1. Introduction and notations

Kurano et al. [3] studied the limiting behavior of fuzzy states of dynamic fuzzy systems under
a contractive condition for the fuzzy relation, and proved that the limiting fuzzy state is a unique
solution of a fuzzy relational equation. The contractive case is a typical one of dynamic fuzzy
systems. Another type of dynamic fuzzy systems is a monotone case, which was introduced by
Yoshida [7] to study the recurrence behavior of dynamic fuzzy systems. In the monotone case,
however, the limiting theorem has been not established yet. Here, we treat the monotone case
and prove the limiting theorem under an additional condition concerning the directionality of
fuzzy transition. Also, to comprehend our idea a numerical example is given.

Let E/ be a compact subset of some Banach space X with a norm || - ||. We put a metric d
by d(z,y) = ||x —y|| for 2,y € X. We denote by 2 the collection of all closed subsets of F, and
denote by C(FE) the collection of all closed convex subsets of E. Let p be the Hausdorff metric
on 2. Then it is well-known ([4]) that (2¥, p) is a compact metric space. Let F(E) be the set
of all fuzzy sets §: £ — [0, 1] which are upper semi-continuous and satisfy sup,cg 5(x) = 1. Let
qg: F x E—|[0,1] be a continuous fuzzy relation such that §(z,-) € F(F) for x € F.

In this paper, we consider a sequence of fuzzy states {px } 7> defined by the following dynamic
fuzzy system (1.1) (see [3]) :
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where po € F(F) and a A b = min{a, b} for real numbers a and b.

For 5 € F(F), the a-cut §, is defined by
So ={xeF|3x)>at (ae(0,1]) and S§y:=cl{xr e E|s(x) > 0}, I

where cl denotes the closure of a set. We need the following convergence concept for a sequence
of closed sets. ‘



Definition 1. For {Dy}2, C C(F) and D € C(E), limg_,oc D = D means that

where

limg oo Dx := {2 € E | limg_00d(x, Dy) = 0}
and d(z, D) :=infyep d(z,y), D € C(D).
The iterates §%,k > 1, of the fuzzy relation g are defined by setting §! = G, and iteratively,

¢+ (z,9) = sup (@ ) A a' ()} (k=1
z€E

We define a map §o : C(E) — 2% (a € [0,1]) by

{y | §(z,y) > afor somex € D}  for a#0, D€ C(E),D #0,
Go(D) :=< cl{y | G(z,y) > 0for somex € D} fora=0, DeC(E),D #0, (1.2)
E for0<a<1, D=0.

Especially, we put go{x) := Go({x}) for x € E. For a € (0,1] and z € E, we also define a
sequence {(jg(.’,v)}k=1’2,.‘.. by

gL(z) == dalz); and @) = da(@i(z) fork=1,2,---.

First we consider a case when po = Iy}, where Ip is the indicator function for a set D. The
a-cuts of the sequence {Px}32, defined in (1.1) are characterized in the following lemma, which
is proved in [3].

Lemma 1.1 ([3, Lemma 1]). Let {fx}3>, be given in (1.1) with po = I(,}. Then, for any o €
[0, 1],

() Prtto = Ga(Pre) = G5 (20);

(ii) §*(zo, Yo = @E(wo) (k>1).
Here, several preliminary lemmas are given in order to use in the sequel.

Lemma 1.2 ([3, Lemma 2]). Suppose a family of subsets {D, | a € [0, 1]} C C(F) satisfies the
following conditions :
(i) Dy C Dy for o <,
(i) limyta Do = Da, i.e., limgriq p(Dgr, Do) = 0.
Then it holds that
li,m qNa/(Da/) = QQ(DQ). (1‘3)
a'Ta

Lemma 1.3 ([3, 6]). We suppose that a family of subsets {Dq | o € [0,1]}(C C(FE)) satisfies
the following conditions (i) and (ii) :



(i) Do C Dy for0<o <a<l,
(ii) limgriq Dor = Do for a € (0, 1].

Then 3(z) = sup,eo i@ A Ip,(2)}, @ € E , satisfies § € F(E) and 3o = D, for all o ¢
[0, 1].

Lemma 1.4 ([4]). For a family of subsets { Dy}, C C(E) the following (i) and (ii) hold:
(i) If Dpyy DDy forallk=1,2,---, then limg_ Dy = ﬂzil Dy eC(F) .

(i) If Dgyy C Dy forallk=1,2,---, then limg_oo Di = cl(US2; Di) € C(E).

Proof. It is trivial from the compactness of (C(E),p). O

In Section 2, we give some basic assumptions and the related results, by which the conver-
gence theorem for the sequence of fuzzy states {fx}3>, defined by (1.1) is established in Section
3. In Section 4, a numerical example is given to comprehend out idea in this paper.

2. Basic assumptions and related results
The continuity and unimodality of a fuzzy relation are defined as follows.

Definition 2. For a € [0, 1], we call the map G,(-) : E — 2F is continuous if

P(Ga(y), Ga(x)) = 0 (y—x) foralzeck.
Note that §a(y) — da(®) (y — @) is equivalent to Timy_zGa(y) = lim, ,,Ga(y) ( See [4]).

Definition 3 ([7]). We call a fuzzy relation § unimodal if §,() is a closed convex subset of E
for all & € (0,1] and z € E, i.e.,, §o(x) € C(E) for all x € E.

We also need some elementary notations in a finite dimensional Euclidean space: z + y
denotes the sum of x,y € E and vz denotes the product of a scalar v and z € E. We put
A+B:={zx+y|xe A ye B} for A, B e C(E). Here we define a half line on E by

z,y) ={yly—2)|vy>0} forz,yeckE.

The following monotone property of a fuzzy relation was first introduced by Yoshida [7] to
analyze the recurrence of the fuzzy transition in the dynamic system.

Definition 4 ([7]). We call a fuzzy relation ¢ monotone if
Go(y) C Ga(®) +U(x,y) forall a €(0,1], z,y € E.
From now on, we suppose the following assumptions.

Assumption A. The following (A1) — (A3) hold:



(A1) The map Go(-) : E— C(E) is continuous for o € [0, 1];

(A2) § is unimodal;

(A3) ¢ is monotone.

The continuity of §&(-) (k > 1) is proved under Assumption A.

Proposition 2.1. Let k=1,2,---. The map §&(-): E— 2F is continuous for o € [0, 1].

Proof. Let a € [0,1]. Let {2,}32, C F and z € E be a convergent sequence and its limit
point. Then, by induction on k, it is sufficient to prove

B(2) = Tim 32 (en). (2.1)

Let z € limp_00qa(2). Then there exists a subsequence {z,,} and {z,} such that Zn; €
@2(2n;) (i =0,1,---) and z,, — # (i — co). By the definition, there exists a sequence {yn: 1320
such that yn, € Go(%n;) and 2n; € Ga(Yn;) (1 = 0,1,---). Since lim;_,c0 Go(Tn;) = Golx) from
Assumption A1, there exists a convergent subsequence {yng }320 of {yn,}20 and its limit point
y € E. It is seen that
y= Jl.l_,rgo yng. € ]li)rgo qa(xng) = fa(®),
and
2= lim 2y € im Ga(yn;) = a(y) C Ga(@).

j—oo 3
Therefore we obtain limp,—e0d2 (#n) C G2 (x).
Conversely let z € G2 (). Then there exists a point y such that y € g () and z € §,(y). Since
Jo(x) = liMp 00 Go(2n), there exists a convergent sequence {y,}3 o such that y, € §o®s) (n =
0,1,---) and ¥y, — y (n — o). From Assumption Al, we have

VS qoz(y) = 7}5& ’ja(yn)'

Therefore there exists a convergent sequence {z,}5%, such that z, € Go(yn) (n = 0,1,---) and
Zn — 2z (n — o0). Then 2z, € Ga(yn) C G2(®n) (n = 0,1,---). Thus we obtain §2(z) C
lim,, G2 (%n). Therefore (2.1) holds and we get this proposition. O

We need the following lemma for Proposition 2.2 below.
Lemma 2.1. Let oo € [0,1] and x1, 22,91 € E. Define
C(A) = Ga(Ax1 + (1 = N)x2) for A e€[0,1],

and
b= {y1 +v(@2—21) | v > 0}

Then the map
A(€0,1]) — C(N) Nl (e C(E)) (2.2)



is continuous.
Proof. From Assumptions Al and A2, the map

C(-):[0,1] — C(E) (2.3)
is continuous. So Lemma is easily proved. O

Proposition 2.2. Letk =1,2,---. A fuzzy relation ¢& is unimodal, i.e., §&(x) € C(E) for all
re k.

Proof. Since § is unimodal, §,(x) is closed convex for all x € E. Since
@@= | @), ze€E keN,
yEGE(z)

it is sufficient to check that

U do(z) is convex for any closed convex K. (2.4)
zeK

Let K be closed and convex in E, and y1,y2 € Uzek Ga(x). Then there exists 1,22 € K such
that

Y1 € Ga(21), Y2 € Gulz2).
Put
Y= (1 +1y2)/2.

Then, to prove Uycx Go(2) is convex, it is sufficient to show that there exists A € [0, 1] such that
Y € oAz + (1 — N)22).
Since § is monotone, we have
Y1 € Go(21) C Ga(Ax1 + (1 — Nz2) + (22, 21) for all X €[0,1], (2.5)

Y2 € Go(22) C Ga(Ax1 + (1 — N)a2) + l(2x1,22) for all A € [0,1]. (2.6)
Define
Iy = {y1 +v(x2 — 1) | ¥ > 0},
Iy := {y2 + v(®1 — x2) | ¥ > 0}

From (2.5), there exists 21 € do(Az1 + (1 — A)z2) and 1 > 0 such that y; = 21 + v1(z1 — z2).
Therefore
z21=y1+m(z2 —21) € 15.

Namely
Ga(Az1 + (1 = Na2) Ny #0 for all A € [0,1].



Define

71(A) ==min{y > 0| y1 + (@2 — 1) € Ga(Mz1 + (1 — N)22)} for A € [0,1].
Similarly define
72(A) =min{y > 0| g2 + (21 — @2) € fa(Az1 + (1 = N)z2)} for A € [0,1].

From Lemma 2.1, the map 71(*) : [0, 1] —-[0, c0) is continuous. Similarly the map ~2(-) : [0,1] —
[0, 00) is also continuous. Since 71(0) > 1(1) = 0 and 0 = 7,(0) < 72(1), there exists a A* €
[0, 1] such that y1(A*) = 72(A\*). Then

Yy =y +y2)/2={y1 + 1) (@2 —21) + 92 + (V) (@1 — 22)}/2
€ (V21 + (1 — A\)zp).

Thus we get that |,cx Go(2) is convex. The proof is completed. O
Proposition 2.3. Let k=1,2,--.. The fuzzy relation §* is monotone.

Proof. Let « € (0, 1]. By induction, we show
@) Ca@) +iley)  forayeh, k=12 (27)

It holds clearly for k = 1 from the definition. We assume (2.7) for some k = 1,2, - - -. Let T,y €
E and w € §&*1(y). Then we have

i y) = w@c U k).
2€G% (v) 2E€GE () +(z,y)

Therefore there exist 2’ € §%(x) and v > 0 such that w € §o (2’ +7(y — z)). Since § is monotone,
we have

Ga(? +9(y—2)) C Ga(2") +1(2, 2" + 4y — @) C Gul?) + Wz, y).
Namely 2’ € §&(z) and w € Go(2) +1(2,y). Therefore we get w € &+ (x) +I(z, y). Thus we get
(2.7) for k + 1. By induction on k, we obtain this result. O

3. A limit theorem

In this section, under Assumption A, we give the convergence theorem for a sequence of fuzzy
sets {Pk 5o, defined in (1.1).

Theorem 3.1. Let o € (0,1]. For a sequence of the a-cuts {g% ()}, it holds:

(i) There exists a limit
An(x) = klim §(x) forzekE.
—00

(ii) It holds that
Go(Aa(z)) = Aa(x) forx < E. (3.1)



Proof. (i) Let z € E. First, we consider a case of z € §,(x). Then

@) c U &) =at@ fok=12-.

y€da ()
By Lemma 1.4, we obtain
hm qa(ac =cl G ( . (3.2)
k=12,
So, we obtain (i) in this case.
Next, we consider a case of ¢ go(2). Then from Proposition 2.3, we have
~k+1 U QQ(y) C U { ($) +l w y)} = qlg‘(w) + U l(w>y) for k = 1727 e
YEGa(z) Y€da(2) Y€fa(z)

We put Cy := Uyega () (2, y). Then we can easily check that C is a closed convex cone since
da(z) is closed convex and continuous in z. Since C is a convex cone, inductively we obtain

q™(x) C §(x) +Cy for k < m. (3.3)
On the other hand, from Proposition 2.3, we have

daz) Cas(y) + l(yk, )
- Uy’etia(x) qa(?/) + l(ya .’B)
= Q§+l(m) + l(’y,.’)’}) for k = ]-’ 2> e, Y e 60:(7})
Since I(y, z) is a convex cone, inductively we also obtain

G (x) c 7 x) +(y,x) for k <m, y € dolx). (3.4)

To obtain (i), it is sufficient to prove limg_oog% () C limg_, oG (2). Let y € limg_0od%(z). Then
there exists a sequence {yx, }32, such that yi, € q"zj () (j=1,2,---) and yg, — y (j — o0). Let
Jj=12,---and k; <m < k;y1. From (3.3), we have

Yiyps € G0 (@) C (@) + Cy.
So there exists ' € §o(x) such that
Ykspa € o (®) + Uz, y).
So, there exist u; € §2*(x) and A; > 0 such that
Yk = U1+ My —2x). (3.5)
On the other hand, from (3.4), we have
ks € @ (&) C @) + 1Y, 2).
Therefore, there exist ug € §o*(x) and A2 > 0 such that

Yk, = uz + Aoz —y). (3.6)



We define wp, := Ayk, + (1 — A)y,,,, where
0 if \y =0,
A=41 if Ay = 0, (3.7)
A1/(A1+ A2) otherwise.

From (3.5), (3.6) and (3.7), we obtain
Wm = AYk; + (1 = Nk, = Auz + (1 = Nur € G () (3.8)
since ¢ (z) is convex from Proposition 2.2. Here we define a sequence {zm}5°_; by

i ,:{ W forkj <m <kjppand j=1,2,---,

e Yk, form==k;and j=1,2,---.
Then it is trivial that zp,, € §0*(z) (m = 1,2,---). From (3.8), we obtain z, — z (j,m — o0).
Namely z € lim;,_,.d%(2). Thus we get (i).

(i) Let @ € [0,1] and = € E. First, we show Ga(An(x)) C An(x). If 2z € §o(Au(x)) =
UyeAa(z) Go(y), then there exists y € An(z) such that 2z € Ga(y). From (i), there exists a
sequence {yx}%>; such that yx € §8(x) (k = 1,2,--) and yx — y (k — o). From Assumption
Al, Go(yk) — Ga(y) (k — o0). Therefore there exists a sequence {2x}32; such that zx € Ga(yk)
(k=1,2,---) and zx — z (k — 00). Then

a€daly) © |J @y cist@), k=12
yEGE(x)
From (i), we get z € Ay(x). Therefore, we obtain §o(An(z)) C Aa(x).
Conversely if z € Aq(z), then there exists a sequence {2z}, such that

€@ @) = |J du(w) (k=1,2,---) and zgy — 2 (k— o0).
weGh (x)
There exists a sequence {wy}$2; such that wg € §&(x) and 2k41 € do(wi) (k =1,2,--). Since
E is compact, there exist a convergent subsequence {wg;}32; of {wi}z2; and its limit point w €
E. From (i) and Assumption A1, we obtain w € limg_,G%(x) = An(z) and z € §o(w). Thus
we get (ii). Therefore the proof is completed. O

Now, we introduce a notion of the convergence of fuzzy sets, which is weaker than that in [3]
and [5]. The following convergence is well-defined since the fuzzy set are determined uniquely
from the property of the a-cuts of a fuzzy set (c.f. Lemma 1.3).

Definition 5 (Convergence of fuzzy sets). For {5;}52, C F(F) and 7 € F(E), limg_c0 8k =
7 means that

p(8k,a, Ta) — 0 (K — oc0) except for at most countable a € [0, 1].

In the rest of this section, we show that the sequence {px}re,, which is defined by (1.1),
converges in the sense of this definition. We put the surface of a unit ball by U := {x € X |
llz|| = 1}. For D,D' € C(E) (D' > D) and u € U, we call D’ u-directional to D if there exist a
real number A > 0, y € D and z € D’ such that



(i) d(z>y) = p(DlvD)>
(ii) z —y = u.

Then, we have p(D', D) = . For a subset V C U, we will introduce a binary relation Dy as
follows :

D' Dy D < there exists u € V such that D’ is wu-directional to D.

In order to prove the convergence theorem we need the following assumption.
Assumption B. There exists a finite subset V := {ui,uz,---,w} C U such that for any
D,D' €C(E) (D' > D), if D/ Dy D, then §ou (D) Dv Gu(D) for all o/, (0 < o/ < < 1).

The following lemma is trivial by induction.

Lemma 3.1. Suppose that Assumption B holds. Let D, D' € C(E) (D' > D). Then, for V in
Assumption B, D' Dy D implies §%/(D') Dy g&(D) for all o/, (0 < o/ <a < 1) and k > 1.

For An(x) in Theorem 3.1, let

A (@)= ) Aw(®) (a€(0,1]), and AF(x):= Ao(x).

o' <o

Then, we define a distance A(a) := p(AZ(x), Ao(z)) and the set of discontinuous levels A :=
{a €[0,1] | Ma) > 0}.

Lemma 3.2. Under Assumptions A and B, the set A is at most countable.

Proof. First we prove
At (x) Dy An(z) for a € (0,1]. (3.9)

Let o/, 0 (0 < o < a < 1). From the continuity of p(-,-) and Theorem 3.1, we have
Jim p(@ (x), 5(x)) = p(Aw (@), Aal)). (3.10)

On the other hand, since ¢* (z) Dy §5(z) from Lemma 3.1, there exist 2% € ¢&(z), zf €

gk (x), M >0, u* € V such that
(a) p(% (2),q%(x)) = d(zk,,2%) and
(b) zk, — zk = \euk.

Since E is compact and V is finite, by taking a subsequence if we need, we may assume that
there exist o € Ay (2),2q € Ao(x), A > 0 and u € V such that

mﬁl — Ty, x’;—mca, M — A, up=u ask— oo
From (3.10), (a) and (b), we have p(Ay (), Aa(2)) = d(w, o) and 2o — 2o = Au. This yields

AY(z) Dv Aalz) ford,a (0<d <a<l)

9



Therefore we obtain (3.9).
Next we put
A(n)y:={aeA| MNa)>1/n} forn=1,2,---.

Then, we have p(AT (x), Ax(z)) > 1/n for all & € A(n). From (3.9), the direction whose distance
is greater than 1/n, are contained in V. However, from Assumption B, V contains only finite
vectors. Therefore, we obtain that A(n) is a finite set since F is compact. Thus, A = Uy, A(n)
is at most countable and the proof is completed. O

Here, we can prove the main theorem, which asserts the convergence of {Px}ie, under
Assumptions A and B.

Theorem 3.2. Under Assumptions A and B, the sequence {px}5>,, which is defined by (1.1),
converges to p € F(F) and p satisfies

ﬁ(y) = sup {ﬁ(l’) A q(xay)}> RS E, (3’11)
r€E
where Po = I(;} for some x € E.

Proof. From Lemma 3.2, there exists a subset F(C [0,1]) which is at most countable and
satisfies
A (x) = Ap(z) forall o € F°, (3.12)

where F¢ := [0,1] \ F. Since {AX(z),a € [0,1]} satisfies the conditions (i) and (ii) of Lemma
1.3, we can construct a fuzzy set p € F(E) by

p(x) == sup {aA IA+(x)(90)}, x € E. (3.13)
a€lo,1] °‘

From (3.12) and Theorem 3.1, we have
Pra = Go(x) — Po ask— oo forall a € FC
From the definition of the convergence of fuzzy sets, we obtain
P — D ask — oo

Then, from (3.12) and Theorem 3.1, we also have

Pa = Go(Pa) for all a € F°.
By the denseness of F* in [0,1] and Lemma 1.2, we obtain

o = Ga(Pa) for all a € ]0,1].

This implies (3.11) and the proof is completed. O

As a remark,, the uniqueness of a solution (3.11) has been shown in the contractive case of the
previous paper [3]. However the uniqueness in the monotone case does not holds generally.
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4. Numerical example

We consider a one-dimensional numerical example to illustrate our results in the preceding
section. Let X = (—o0,00) and E = [-2,2]. We give a fuzzy relation, which is monotone (see
[7, Example 6.1]), by

g, y) =1 ~ly-2°)vo, xye[-272 (4.1)

Then, Assumptions A and B hold by taking U = {-1,1}. Fbr x = 3/4, we have

[z5,27] if 43/64 <a< 1,
[x5,3/4] if a= 43/64,
Ao (3/4) =< [25,2] if 1-2/(3v3) <a< 43/64, (4.2)
[~1/v3,2] if a= 1-2/(3V3),
[—2,2] if 0 <a< 1-(2/3V3),

where, for a satisfying the conditions of (4.2), 25 and x} denote the second least of three real
solutions of the equation 2° —z —1+a=0and 2 —2+1—-a =0 respectively, and so

[xy,xt] if 43/64 <a< 1,
AX(B/4) =S [23,2] if 1-2/(3V3) <a< 43/64, (4.3)
[-2,2] if 0 <a< 1-2/(3V3).

Therefore, A,(3/4) is discontinuous at o = 43/64, (—3 + /37)/8.
Take an initial fuzzy state by po = I(3/4). From (4.2) and (3.13), the sequence {fr},
converges to the limiting fuzzy state 5 :

1-2/(3V3) if -2 <y< —1/V3,
5(y) = —P34+y+1 if -1/V/3 <y< 0,
PWI=0 sy it 0 <y< (=3+37)/8,

43/64 if (=3+V37)/8 <y< 2

Fig. 1 shows the convergence.

Fig. 1 : The convergence of the sequence of fuzzy states {P}3° .
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