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Abstract

This paper is a sequel to Yoshida et al. (1993), in which the potential theory for linear fuzzy relations on the positive
orthant R”, is considered in the class of fuzzy sets with a compact support under the contractive assumption. In this
paper, potential treatment for unbounded fuzzy sets is developed without the assumption of contraction and compact-
ness. The objective of this paper is to give the existence and the characterization of potentials for linear fuzzy relations
under some reasonable conditions.

Also, introducing a partial order in fuzzy sets, we prove Riesz decomposition theorem in the fuzzy potential theory. The
proofs are shown by using only the linear structure and the monotonicity of fuzzy relations. In the one-dimensional case,
the potential and its a-cuts are explicitly calculated. Numerical examples are given to comprehend further discussions.

Key words: Fuzzy potential; Superharmonic fuzzy set; Partial order; Linear structure; Fuzzy relation; Fuzzy relational
equation

1. Introduction

A potential theory for linear fuzzy relations on the positive orthant R% of an n-dimensional Euclidean
space is developed. Yoshida et al. [8] have introduced a linear structure for fuzzy relations and considered
the potential theory in the class of fuzzy sets with a compact support. In this paper, the unbounded case is
considered. We shall develop the relevant potential theory using only the linear structure and the monotonic-
ity of fuzzy relations. Also, we introduce a partial order in fuzzy sets and prove Riesz-type decomposition
theorem in the fuzzy potential theory. Moreover, we deal with the one-dimensional case, where numerical
examples are also given to illustrate our approach.

We adopt the notations in [8]. Let R" be an n-dimensional Euclidean space with a basis {e;, e, ..., e,}. Let
w; be an orthogonal projection from R" to the subspace {ie;| 1 € R'}. Then, for x e R", x = Y."_ | w;(x)e;. We
put a norm || - || and a metric d by | x| = (2=, (w:(x))*)*? and d(x, y) = | x — y| for x, y € R". Let R% =
{x e R"|w;(x) > 0 for all i = 1,2,...,n} be a positive orthant of R". (R",d) is a complete separable metric
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space. We denote a fuzzy set on R" by its membership function §:R% — [0, 1] (see Novak[6] and
Zadeh[9]). For any fuzzy set § on R% and a € [0, 1], the a-cut is defined by §,:= {x € R% |§(x) = o} (« > 0)
and §, == cl{x € R% | §(x) > 0}, where cl means the closure of a set. We call § a convex fuzzy set if its a-cut 3, is
a convex set for all o € [0, 1]. Let % (R%) be the collection of all the convex fuzzy sets § on R’ which are
upper semi-continuous.

For fuzzy sets §, 7 and a scalar 2,

C+P0=  sp {50 AT@)
and

o (SGe/A) i A >0, )

um”’{@ﬂn it 1=0, YR

where A A u:= min{4, u} for scalars 4, u, and I ,(-) is the classical characteristic function of 4 = R".

Let €(R".) be the collection of all the closed convex subsets of R, and put 4 + B:= {x + y|x€ 4 and
y€B} (4, Bc RY),AA:= {x|x € A} (A = R%, 4 > 0). Especially,put ¢:= ¢ + 4 = 4 + ¢ and ¢ = 1¢.Itis
known that §,, 7, € 4(R") and (§ + ), = §, + F,, (45), = 45, hold for fuzzy sets §, Fe #(R"), L€ RY and
o € [0, 1] (cf. Madan et al. [4]).

The following is easily shown.

Lemma 1.1. Let §, 7, pe #(R") and A, p€ RY. Then
() §+F=F+5.
(i) (A(u8)) = (n(43)),
(i) S+ +p=85+F+p)

Let §:R% x R% [0, 1] be a fuzzy relation on R”%. We assume that § satisfies the following assumption.

Assumption A. The fuzzy relation § satisfies the following conditions (A1)~(AS5):
(A1) § is continuous on R"% x R%\{(0, 0)},
(A2) G(-,y)e #(R%) for all ye RY,
(A3) supyer~ g(x,y) = 1for all y e R,
(Ad) 4(-,0)'= g, and §(0,) = I g,
(AS) G(-, Ay + puz) = AG (-, y) + ug(-,z) for all y, ze R and 4, pe RY.

Assumption (A5) of the linear structure is firstly introduced in [8]. When a fuzzy set §(-, e;)) € # (R} is
given for each e; (i = 1, 2, ..., n), we can construct a fuzzy relation § on R". which satisfies Assumption A, by
defining §(-,y):= Y.i-1 wi(»)§(",e), y € R (see [8, Theorem 2.1]).

For any p € #(R"), let

4(p)(x):= sup {4(x,y) A p(»)} (x€R%) (1.1)

yeR’,

Inductively define the sequence of fuzzy states {G“(p) }i% o by §°(F):= p and §*(F):= 4 (G ' (7)) (k= 1,2,...).
If a formal infinite sum

06)= Y 3() (12)
k=0

is well-defined, it is called a fuzzy potential or simply a potential given the fuzzy relation §.
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In the previous paper [8], we have studied a potential under contractive conditions. Here a potential
theory is developed in the unbounded case.
Define a map §, on €(R%) by

{x e R% |§(x,y) = o for some yeD}  for « >0, De%(R")(D # P),
4«(D):= {cl{x e R" |G(x,y) >0 for some ye D} for =0, De%(R")(D # ®),
¢ for ae[0,1], D = ¢.

Then, from Assumption (A5), it follows that
qul2y + pz) = 24,(y) + pdu(z) forall y, ze R, and A, e RY, (1.3)

where 7,(y) = g,({y}). Note that 4.(D) = {J,ep §.(¥) holds for all D e F(R%).

For any De®%(R"), from the continuity of § and (1.3), it follows that d.(D) e €¢(R") and
d.: €(R%)— % (R"). Inductively we define maps §*: FRY)—E(RY)(k=0,1,2,...)by §° is an identity map
and §5:= G (g¥ ) (k=1,2,...).

In Section 3 we shall need the following lemma regarding the map §~.

Lemma 1.2 (see Kurano et al. [2]). For any pe F(R"), it holds that

@B = 35@), k=0,1,2,...,0e[0,1].
We shall introduce a partial order on E(R%).

Definition 1.3. For 4, Be F(RY),

A>B
means that there exists C € ¢(R%) such that 4 = B + C.

We will introduce an order > on the class of convex fuzzy sets, # (R"). The following Lemma 1.5 shows

that > is a partial order on & (R").
Definition 1.4, For 5,7 e # (R%),

§>7
means that there exists § € % (R") such that § = 7 + p-
Lemma 1.5. Let §, 7, e #(R",).

() If §>F and ¥ >5, then § = 7.
(i) If §>=F and F >p, then § >=p.

The following lemma shows the monotonicity of the fuzzy relation § with respect to the order.
Lemma 1.6. For any §, F e F(R%), if § >F then

(i) 8,>F, for all x €0, 1],
(i) §(3)=4().

Proof. By Definition 1.4, there exists pe Z(R%) such that § = 7 + p, which implies §, = 7, + p, for all
x € [0,1]. Namely §,>7, for all o [0, 1]. (ii) is trivial from Definition 1.4, using the linearity of § (see [8,
Lemma 3.4]). O
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In Section 2 we present the fundamental lemmas in order to develop a fuzzy potential theory. In Section
3 we prove the existence theorem of a fuzzy potential and give its characterization by means of a fuzzy
relational equation. We also show a decomposition theorem of a superharmonic fuzzy set. In Section
4 a fuzzy potential is explicitly given in the one-dimensional case and some numerical examples are also given
to comprehend the further discussions in this problem.

2. Preliminary lemmas

In this section we prepare several fundamental facts, which are used in Section 3.

Definition 2.1. For {4,}>; = 4(R":) and 4 € ¥(R"), we denote
llm Ak= A lf Hn—k_,wAk =1i_1‘nk_,°0Ak=A,

k— o0
where
limy_ o A;:= {x€R% |lim;_ ,d(x, 4) = 0},
limy— o A= {x €R"% |lim, d(x, 4 = 0}
and d(x, D)= inf, p d(x,y), D € ¢(R%).

The following Lemmas 2.2 and 2.3 insist the monotone convergence regarding the partial order > on
€(RY).

Lemma 2.2 (Non-increasing case). Let {4} = €(R%). If Ax=Ars1 (k=1,2,...), then there exists
A € B(R") with lim., A, = A.

Proof. Let {A,};%, < ¥(R") satisfying 4;>>A4,.+, (k=1,2,...). Then there exists {C,};>, = ¥(R") such
that A, = C, + Ar+1 (k=1,2,...). Therefore

A =Ci+Cy ++Cr + A1 >2C1+Co+ -+ C, forallk=1,2,.... 2.1)
Clearly it holds that

o0

Z d(C) < oo, 2.2)

where 6(B) = inf,.gx|| for B e €(R"). Thus, there exists a sequence {z;}2 ; such that z;e C;(i = 1, 2, ...) and

lz:i| < o0. (2.3)

18

i=1

To prove this lemma, it is sufficient to show that lim,_, , 4, < lim lim,_, , 4. It is trivial when lim_, o, 4 = ¢.
If we assume that lim,_, , 4, # ¢ and x € lim,_, ., 4;, there exists a sub- sequence {x,} 521 such that x; € 4,
(=12,...)and x;, > x(j— c0). Then we have 4, = C; + C;1y + -+ + Ci, -1+ Ay, fork; < l< kiv1
and j = 1,2,.... Here we define a sequence {y;};2; by

= YhTl 24 xy,,, for kj<l<kji; and j=1,2,...
t X, for I=k; and j=1,2,....

J
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Then it is trivial that y,e 4, (| = 1, 2,...). Further, we have.
lyi— x| < Z lz:l + I xt,,, — x| for ki<l<kjyandj=1,2,....
i=1
Letting j, | - oo, we obtain y,— x from (2.3). Namely x € lim,_, ,, 4,. This completes the proof. [

Lemma 2.3 (Non-decreasing case). Let {A}iz1 < EGRY). If A,<A,. 1 (k=1,2,...), then there exists

Proof. From Definition 1.3, there exists {Di}i=1 = €(R%) such that A,,, = D+ Ay (k=1,2,...)
Therefore

Ak+1 =D1 +D2+"‘+Dk+A12D1+D2+"'+Dk for allk=1,2,.... (24)

It is enough to show that mk_.w Ay < lim ., , 4, holds. We may assume H,Hw Ay, # ¢. Let x e lim, _, , Ay.
There exists a sub-sequence {xkj},‘?'; 1 such that x; € Ay;> Xi; = x(j— o), and a real number ¢ > 0 such that
Ay, 0 U,(x) # ¢ for sufficiently large all j, where U, (x):= {zeR% |||z — x| < &} denotes the e-neighborhood
of x. For sufficiently large j, there exists a constant K satisfying d(4y,) < K. This shows, by (2.4), that there
exists a sequence {z;}2; such that z;eD; (i=1,2,...) and Yizqllzi| < oo. We bave 4, =D,_, + D_,+

o+ Dy, + Ay for kj<l<k; ;andj=1,2,.... Define a sequence {y,};2, by

i Zf;,ﬁj zi+x; for kj<l<kj,; and j=1,2,...
. Xi for I=k; and j=1,2,....

J

Therefore y,e 4, (I=1,2,...) and

”yl—X“ < Z “Z,H + I!xkj—xll for kj< | < kj+1 andj= 1,2,....

i=kj

Letting j, [ - oo, we obtain y,— x. So, x € lim, ., A,. Thus the lemma is proved. [
The following lemma is easily proved from the linear structure of g.

Lemma 2.4. It holds that
q.(A + B) = §,(A) + §.(B) for a€[0,1] and A, B €(R").

Theorem 2.5. Let {A,}%; c ¥(R")and Ac % (R%) such that { A}, is non-increasing (non-decreasing) with
respect to the order > on €(R") and lim,_, ., A, = A. Then it holds that
lim g,(4x) = 4.(4) for ae(0,1].

k— o0

Proof. Let {4,}, = ¥(R%) and 4 € ¥(R%) such that 4 >A4,,, (k=1,2,...) and lim; ., A, = A. From

Lemma 2.4 we have §,(4,)>=q, (Ax+ 1) (k=1,2,...)for « > 0. By Lemma 2.2, there exists limy -, , G, (Ay). On

the other hand, in the case of A=A+ (k=1,2,...), using Lemma 2.3, we also obtain the same facts.
First we show §,(4) < lim,_,, §, (4,) for « > 0. From the linearity of g, we have

n

A= 0)= U ¥ wi)da(e).

yeA yedi=1
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Therefore, for any x € §,(A), there exist ye A and z;€ §,(e;) (i = 1,2,...,n) such that

n

X = z wi(¥)z;.
i=1
Since lim,_,,, 4, = A, we can take a sequence {y,}i%o such that y,€ 4, (k=1,2,...) and limy_ ., y, = y.
Then, by putting x, = Y7_, wi(y)zi (k= 1,2,...),

n n

limx,=x and x, = ) wi(y)ze€ U Z wi(y)a(e) = Gu(A) (k=1,2,...).
k— o0 i=1 yeAdAri=1
Therefore x € lim, ., o, §,(A4,), which shows §,(A4) < lim,_, ,, §,(4y).
Next we show the reverse inclusion. Let x € lim, ., §,(4x). Then there exists a sequence {(xy, yi) }izo <
" X R" such that

limx,=x, y,ed;y and §(x, y)=a k=1,2,...). (2.5)
k— 0
To show x € §,(A), it is sufficient to prove that there exists a convergent subsequence of {y;};-,. Because in
this case there exists y € 4 satisfying §(x, y) = « from the continuity of § and this means x € g, (4). Here we

suppose that there do not exist any convergent subsequences of {y,}i%o. Then we have lim,_, | y;| = oo.
From Assumption (A5) and §(-,y" ) e #(R%) (y' € A),

o o Vi o Vi ~f Xk Y
X Vi) = G| X, —— = Xk» = , fork=1,2,....
7% 31 "(k uykn'yk”> '”‘”"(" ||yk||> q(nykn mu)

By taking a subsequence if necessary, we may assume that y,/|y.|| converges to some limit z(||z| = 1).
Therefore, from Assumption Al and A3, we obtain

Xk Yk
[l yi ||’ [yl

This contradicts (2.5). Thus we obtain §,(A4) > lim., , §, (Ax). Therefore the proof is completed. [

limye G (xg, yi) = limy Q< ) =§(0,2)=0.

To prove the main theorem in the next section, we need the following lemma.

Lemma 2.6. Let {A,|«€[0, 1]} = €(R%) such that A, > A, for 0 < o' < a < 1. Then,

G <lim Aa,> = lim §,(A,) for a >0.
a Ta o Ta
Proof. Let {4,|o € [0, 1]} = ¥(R%) such that 4, > A, 0<o <a<1) Put Bi=limy 1,4y = (<o A
for o« > 0. Then we have §, (4,) 2 §, (4,) 2 §.(4,) 0 < o < a < 1). So,
lim G, (4y) = () Gu(Ay) for a >0. (2.6)
o' Ta o' <aq
We first show
G«(B,) = lim §,(4,) for o >0. 2.7
o« Ta
Let x € §,(B,). Then there exists y € B, = ( )< 4, satisfying §(x,y) > o, which implies x € §,(4,-) for all
o < o. So we obtain x € lim, 1., (4y). Therefore we get (2.7).
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In order to show the reverse inclusion of (2.7), let x e lim, 1,4,(4,) = ﬂa,q 4u(A,). Then we can take
a sequence {o} (< (0, 17) satisfying that x e G (Ay,) for all k = L,2,... and o, 1 a(k— o0). Therefore
there exists a sequence {}& 1 such that

k€A, and g(x, v =a fork= 1,2,... (2.8)

Here in the same arguments as the latter part of the proof of Theorem 2.5, we may assume that e,

converges to some finite limit Y€ B,. By letting k — oo in (2.8), from the continuity of §, we obtain Y€ B, and
q(x,y) = a Namely x e 4.(B,). Therefore the proof is completed. [J

The following lemma is referred to the construction of a fuzzy set from a family of subsets {4,}.

Lemma 2.7 (cf. Novak, [6]). We suppose a family of subsets {4, a €0, 11} = €(R%) satisfies the following
conditions (i) and (ii):

(i) AacAa,for0<a’<oc<l,

(i) lim,, tady = A, for a e (0, 17.
Then,

§(x):= sup {a A I, (x)}, xeR"
aef0, 1]

satisfies § € # (R%.) and S, =A, for all g e [0, 17.

3. General potential theorems

In this section we show the existence of potentials in % (R%), which are defined formally in Section 1.
Further, we develop a fuzzy potential theory to show the decomposition theorem of a superharmonic fuzzy
set. First we define a convergence in & (R% ), which is weaker than the one given in [2, 5, 8].

Definition 3.1. For {8i}eo < Z(R%) and Fe #(R"),

k— oo

means that 3, , - Folk > o0) for all o [0, 17.
In order to show the existence of a potential, we consider the following reasonable assumption.
Assumption B. §, (¢;) = {ef fori=1,2,... n

Under Assumption B, it holds that Gi(A)=A for all A€ %(R%), which simplifies our discussion. It is
restrictive, however, we need not assume the contractivity of § (cf. [8]). The fuzzy relation g satisfying
Assumption A is illustrated in Examples 4.2 and 4.4 in Section 4,

Lemma 3.2, Suppose that Assumption B holds. For 4 hon-empty A € €(R"), the Jollowing ()—(iii) hold.
() IO 4, then Y2, 3(4) = ¢,
(i) If A satisfies A NE; #¢ for all |= L,2,....n, then lim, , G%(4) = R for 0<a< 1, where
Bii= {le;]0< A< w}fori=1,2, e, N
(ii)) If A satisfies A NE; #¢ for all i= 1,2,...,n, then Yir, GMA) N E, # ¢ for all 0<a <1 and
=12,...,n )




90 Y. Yoshida et al. | Fuzzy Sets and Systems 66 (1994) 83-95

Proof. (i) Since 4 €% (R%) and 0¢ 4, we have 6(4) >0, where §(B) = inf,.5 || x|| for Be % (R%). From
Assumption B, i §4(4)=Y!_ A— (I~ o).

(i) From Assumption B and the continuity of g, there exists the e-neighborhood of e;: {Je;| A e[1 — ¢,
1 + €]} = g,(e;)) N E; for some ¢ € (0, 1). Repeating this procedure, it holds that

{Aeil 1[0 — o), (1 + &)1} = Giles). 3.1)

Since ANE;#¢ and A is closed and convex, letting k— oo in (3.1) we obtain lim,._ . §%(4) =
limk—>oo UyeA Z W (y)q (el) - Rn

(i) From (3 1) Yo G A) > Y2 wi())dh(e) = wi(y) {Ae;| A€ [1/e, c0)} for ye AnE; Therefore
Y2, G&(A) N E; # ¢. The proof is completed. [

Let # *(R" ) be the set of all p € # (R ) such that 0 ¢ p, and p, N E; # ¢ for all « € (0, 1), where E; is defined
in the above. By the next theorem, we see that for any j e & *(R".) its potential Q(p) is well-defined.

Theorem 3.3. Suppose that Assumption B holds. For any p € #*(R".) the potential u:= Q(p) exists in F (R%)
and it satisfies the following fuzzy relational equation:

i=p+q@). (3.2)

Proof. Let j € #(R%) such that 0¢p,; and p,E; # ¢ for all a (0, 1) and i = 1, 2,...,n. We define Q,(p)
= Z;c=0 G*(@) for 1=0,1,2,.... Then we have 0, (p) > Q,(p) (I = 1,2, ...). Therefore from Lemma 1.6(i)
and 2.3, there exists

A, = lim Qy(p), for ae [0, 1]. (3.3)

1=
On the other hand, from the definition of Q,, we also have Q,(p) = p + §(Q,;—1 (p)) ( = 1, 2, ...). Applying
Lemma 1.6, we have
0Py = Pa+ §u(Qi—1(P).) forallwe[0,1]and[=1,2,....
Letting | - oo, from Theorem 2.5, we obtain
Ay, = Po + §.(4,) forall e (0, 1]. v (34

Put B,:=lim, 1, A, for o € (0, 1] and By := cl(| J,> o B,). In order to show the existence of the potential Q(p),
it is sufficient to prove that B, = A, for all « € [0, 1]. In fact, {4,|« € [0, 1]} satisfies Lemma 2.7(i) and (ii).
Putting Q(P)(x):= SUP,ero, 1] {tx Al (¥)}, xeR%, (3.3) implies that Q(p) = lim,.., Q,(f) e #(R") and
Q(p), = A, for all a e [0 1].

By replacing « for o’ in (3.4) and letting o 1 o, from § € # (R") and Theorem 2.5, we have

B, = Py + 4,(B,) for all xe (0, 1]. v (3.5)

This follows B >-q;(Ba) (x €(0, 17). Let a € (0, 1). Inductively we obtain §4(B,) > 4" '(B)) (I = 1,2,...). From
Lemma 2.2, there exists C, := lim,, , 4% (B,). Since B, is closed and convex from j € % (R",), applying Lemma
3.2(ii) and (iii), we have

C, = lim §,(B,) = R% for all a € (0, 1). (3.6)

1=

Further applying Lemma 2.4 and 1.2 to (3.5), inductively we obtain B, = Q,(f), + 45" (B, (x (0, 1),
'=1,2,...). Hence, letting [ - oo,

B,=A4,+R"% forall ae(0,1) (3.7

fc
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On the other hand, using (3.4) instead of (3.5), we obtain the same results for A, as for B,, that is,
4,=A4,+ R for all a e (0, 1). (3.8)

Therefore, together with (3.7), B,= A, for all 0. (0, 1). Further, from the definition of the O-cut, B, = A,
Moreover, regarding the 1-cut, since 0 # j, and Q1+ 1(P) = 0i(P), (2 € [0, 11,1=1,2,...), from (3.3),(3.8) and
Lemma 3.2(i), it holds that A; = ¢ and

Bi= () A= () (4 + RY)

a<1 a<l1

() m QB) + R%) = ) () (@) + RY)

a<ll-oo a<1ll=1

= () @) + R%) = lim @(3), + R2)
1=1

-0
= ¢.

Consequently we get B, = A, for all o € [0, 1]. Therefore the potential Q(p) exists.
Finally we show that Q(p) satisfies (3.2). Since Q). = A, for all a [0, 1], it follows from (3.4) that

Q) = P + G(Q(F)). for all ae (0, 1]. (3.9)
Taking the closure of the union for o e (0, 17 in (3.9), we obtain Qo = Po + G(Q(H))o. These results imply
Q) = p + G(Q(p)). Therefore i = Q(p) satisfies (3.2). [

Definition 34. For §e¢ & (R%), §is called superharmonic (harmonic respectively) if

524() (5= ().

The next theorem shows Riesz decomposition of a superharmonic fuzzy set in its potential and harmonic

parts.

Theorem 3.5, Suppose Assumption B holds. Let § ¢ # (R") be a superharmonic Juzzy set satisfying §, N E; # ¢
for all x€(0,1) and i = 1,2,....n. Then

(i) limy., , 3*(3), = R% for all a e [0, 1),

(ii) there exists a potential i and a harmonic k such that

S=d+h (3.10)
(i) Further, if § > p + 4(3) for some pe F *(RY), then § > Q(p).

Proof. (i) Let §e & (R%) be a superharmonic fuzzy set satisfying the hypothesis of the theorem. From

Lemma 3.2(ii), we have lim,_,, 7*(®o = limy-,  §*3), = lim, ., §5(8), = R% for all a e (0, 1). The result is

obtained immediately.
(i) Since §>§(3), there exists P € Z(R%) such that § = P + 4(3). Therefore

Sa = Da + 3,(5,) forall ae[0,1]. (3.11)
Using (3.11) inductively, from the linearity of § (cf. [8, Lemma 3.4]), we obtain

1
= Y 3P+ §*1(3), forallae [0,1Jand I=1,2,.... (3.12)
k=0
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We note that, by (i),
lim §*1(5), = R for all x e [0, 1).

1=
So, letting A, = limy_,, ¥}_, 7). (0 < o < 1) implies
§,= A, + R for all xe [0, 1). (3.13)

Here we must investigate the following two cases.

First if “0 € p,”, then 0 € p; < p, and 0 € §*(p), for all x €(0,1), k > 1. By (3.13), §, = R% for all a €(0,1).
From §e #(R%), we have §(x) = 1 for all x € R".. Therefore (3.10) holds, by taking & = Q(I;)) = I, and
h(x) = 1 for x e R"..

Next if “0¢ p,”, then o € (0, 1). Since §, is closed, there exists a real number Ay := A¢(a, i) = 0 such that

50 {le|0< A< 0} ={le|lg <A< 0} (3.14)

Note that A¢(a, i) is non-decreasing in « for each i. For any i = 1, 2,...,n, put o;:= sup{a| do(a, i) = 0}. We
must consider the following two sub-cases.

If“0 < o < o, we have Ao (2, i) = 0. So, from (3.14), 0 € §, and Ao («, j) = Ofor allj = 1,2, ...,n. Therefore o,
is independent of i. Further, since §, is closed and convex and §, N {1¢;|0< A< o0} = {le;|0< i< o0}
(j=1,2,...,n), we obtain that §, = R", and Ay(x;, i) = 0.

If “o; << 17, from the continuity of § and Assumption B, there exists an e-neighborhood
{Ae;|max{iy — & 0} < A< oc} < §,(5,), so that we get min{, ¢}e; € p, N E;. Therefore p, N E; # ¢. By
observing the proof of Theorem 3.3, lim, 1,4, = A4, for o > «;.

From these facts and Lemma 2.7, we can define, 7, ii € # (R") by

- {ﬁa %f ae (o, 1] 4 i,- {Aa %f oe (o, 1] (.15)
R% if ae[0, 0] R% if ae[0, 0]
Clearly i is a potential and ii = Q (). Also, by (3.13)
S, =1, + R% forall xe[0,1)
Taking e #(R%) by h(x) = 1 for all x € R",, we sce that |
§,=1d, + h, forall xe[0,1). (3.16)

By Assumption B, §,(8;) = §i, so that from (3.11) §; = j; + §;, which implies §; = ¢. Also, by Lemma 3.2(i)
and (3.15), &i; = A, = ¢. Therefore (3.16) hold for « = 1. Combining these facts, we proved (3.10).

(iii) For p e #*(R" ) satisfying §>p + §(5), there exists f € # (R".) such that § = p + { + §(5). From (ii) and
(3.15), we see that there exists 7, h € # (R",) satisfying § = O(F) + h and F>p + t>=p. Thus, applying Lemma
1.6(ii), we get §>Q(A>Q(p). O

4. One-dimensional case

In this section we consider a fuzzy potential of fuzzy number on R, := R. Using the results in Section
3 and [8], we could deal with the contractive and non-expansive examples simultaneously. Since any convex
set of R, is an interval, §e & (R ;) means that its a-cuts §, are closed intervals of R, for a € [0, 1]. For
pe #(R,), it clearly holds that §(p) € # (R ). Also a fuzzy number §(-, y) € F(R ;) (y € R,) satisfies that
SUPyer, 4(%, 1) =1,4(0,1) = 0 and §(-, y) = yg(-, 1) in the one-dimensional case. Applying Theorem 3.3 to
the one-dimensional case, we obtain the following,
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Theorem 4.1. Suppose that §(1,1) = 1. Then, Jor any p e F(R.) with 0 ¢ p,, the potential ii = O(p) exists. Its
o-cut i, is given by

[min p,/(1 —min g,(1)), c0) i min g,(1) < 1,
i,={(R if min g,(1) =1 and min p, = 0, 4.1)
¢ if min §,(1) =1 and min j, > 0.

Proof. The existence of Q(p) follows from Theorem 3.3. The a-cut representation of (3.2) becomes
[mind,, max ii,] = [min f,, maxp,] + [min @, x min G,(1), max i, x max g,(1)].

So (4.1) is immediately obtained. 0O

We will calculate several examples which is related to the existence of the potential. Let us denote a finite
sum by &= Y3 §(F) = Qu(p) (( = 0,1,2, ...).

Example 4.2. Let a fuzzy set §(-,1) be

. 1-2Ix—1], 12<x<3/2,
1) = 4.2
4(x.1) {O, otherwise. “2)
Then using the linear structure of §, § on R, is given by
~ g(x/y,1), x>0 and y >0,
,Y) = 4.3
7>y {1{0}(@, x>0 and y=0. (43)

This fuzzy relation satisfies Assumption A and B. The graph of §(x, y) is shown in Fig. 1. Here we take a fuzzy
set p defined by

plx) = {1 —15/2x = 1], 0<x<4/5

4.4
0, otherwise. “44)

22

Fig. 1. The fuzzy relation §(x, y) of (4.2), (4.3).
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Fig. 2 shows the pointwise convergence of the sequence {#;}i2, to the fuzzy potential & = Q(p) given by

#H(x) =5x/(4 + 5x), x=0.

Example 4.3. In this example we consider the case where §, is contractive for « > 1/2 (see [8]) and g, is not
contractive for o < 1/2. Let the fuzzy set §(-, 1) be

2x, 0<x<1/2,
dx,1)=(3/2—x, 1/2<x<3/2,
0, otherwise.

In a similar way, we can define the fuzzy relation §(x, y) by (4.3) and a fuzzy set j by (4.4). Note that the fuzzy
relation § does not satisfy Assumption B. Fig. 3 shows the convergence of the sequences {#;};>, to the fuzzy
potential i:

() = (10914 + 5 0< x<4/5,
B =18 + 50/ + 10x, 4/5< x.

a g = % iy
1 - -~
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Fig. 2. The potential i for Example 4.2.
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Fig. 3. The potential i for Example 4.3.

n

—

—_—————



Y. Yoshida et al. | Fuzzy Sets and Systems 66 (1994) 83-95 95
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Fig. 4. The potential # for Example 4.4.

Example 4.4. Finally we consider an example which is not contractive. If a fuzzy set g(-,1) is given by

x—=172, 1/2<x<3/2,
gx,)={4—-2x, 32<x<2,
0, otherwise.

Similarly determine the fuzzy relation §(x,y) by (4.3) and a fuzzy set j by (4.4). Then Fig. 4 shows the
convergence of the sequences {#}{2, to the fuzzy potential 4

#(x) = 5x/(4 + 10x), x > 0.
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