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Abstract: In this paper, using a fuzzy relation we define a
dynamic fuzzy system with a compact state space. By
introducing a contraction property, we study the limit of a
sequence of fuzzy states and obtain a theorem for the
existence and uniqueness of the solution of a fuzzy relational
equation. As an application, we deal with a dynamic fuzzy
system with a terminal fuzzy gain and give some
characterizations for the fuzzy expected gain. A numerical
example is given to comprehend our idea in this paper.
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Introduction

Limit theorems for a sequence of fuzzy
numbers are mathematically interesting and
applicable to analyse multistage decision proc-
esses in a fuzzy environment. In fact, Bellman
and Zadeh [1] considered a sequence of fuzzy
numbers in a finite state space and solved the
fuzzy relational equation, written in the matrix
form, where a maximizing decision for fuzzy
multistage decision processes with a defined
terminal time was obtained.

In this paper, using a fuzzy relation, we
formulate a dynamic fuzzy system with a
compact state space. We introduce a contraction
property for the transition of fuzzy states. By
using this property, we consider a limit theorem
for a sequence of fuzzy states defined by the
dynamic fuzzy system and derive the existence
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and umqueness of the solution for the fuzzy
relational equation which represents the stability
of this system.

Also, as an application of the results, we deal
with a terminal fuzzy gain and obtain, as limit, a
characterization for the fuzzy expected gain.

In Section 1, we specify the dynamic fuzzy
system and define two related problems, which
are analysed in Section 2. In Section 3, a
numerical example is given.

1. The dynamic fuzzy system

In this section, we shall formulate a dynamic
fuzzy system and define the problems considered
in the sequel.

Let X be a compact metric space. We denote
by €(X) the collection of all the closed subsets
of X. Let p be the Hausdorff metric on €(X).
Then 1t 1s well-known |2, 4] that (€(X), p) is a
compact metric space. '

Throughout this paper, we define a fuzzy set
on X by its membership function p: X — [0, 1].
For the theory of fuzzy sets, we refer to Zadeh
[10] and Novik [6].

Let #(X) be the set of all the fuzzy sets p on
X which are upper semi-continuous and satisfy
SupxeXﬁ(x) = 1.

A discrete-time dynamic fuzzy system consists
of four objects (X, g, T, p,) and satisfies the
tollowing conditions (i)—(iv):

(i) In general, the system is fuzzy, so that the
state of the system is called a fuzzy state and
denoted as an element of %(X). This repre-
sentation includes also the case when the state of
the system i1s denoted by a point x in X; the
corresponding fuzzy state is I;,(:) e F(X),
where for any ordinary subset G of X, I;(-) is
the classical characteristic function.

(i) The law of motion of the system can be
characterized by a time invariant fuzzy relation
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g, which is supposed to be a continuous fuzzy
relation §:X X X—[0,1]. Then, when the
system is in a state x € X, we move to a fuzzy
state g(x, -) € #(X) after unit time elapses.

(iii) The binary operation on the grades
of membership in [0,1] could be a triang-

ular norm T:[0, 1] X [0, 1]— [0, 1] (see [3, 8]).
Throughout this paper for simplicity we assume
that T(x, y) =x Ay, where x Ay =min{x, y}.
(iv) The initial fuzzy state poe F(X) Is
arbitrary.
From the dynamic fuzzy system, we can define
the sequence of fuzzy states {f,}n-o by

yeX, n=0.
(1.1)

The transition from p, to p,,.; in (1.1) is called
a fuzzy transition in the dynamic system.

Prne(y)= ggg{ﬁn(x) AG(x, y)},

Problem 1. Determine sufficient conditions

under which the sequence {p,},-o converges (in
the sense of Section 2) or there exists an

invariant fuzzy state with respect to the fuzzy
transition (1.1).

 Before stating the other problem, we intro-
duce several definitions referring to [6,9, 10].
For any fuzzy state § € #(X) and o (0< < 1),
the a-cut is defined as follows:

§,={x|§x)=a} (a#0),
an_d
So:=cl{x | §(x) >0}

where cl means the closure of a set.

* For any fuzzy state p € #(X), we denote by p;
the fuzzy measure on By induced by p, which 1is
defined by '

(D)= sup p3) (D € %)

where By is the set of all the Borel subsets of X.
 Then, for any 7, p € #(X), the fuzzy expecta-
tion of 7 with respect to the fuzzy measure p; is
defined by the following fuzzy integral [7, 9]:

| 7ap:= sup (A ()

= sup{F(x) A p(x)}.

xeX

Now, we consider a dynamic fuzzy system with
terminal fuzzy gain 7e %(X). The fuzzy
expected gain at time # 1s defined by

Y, = ][de'n (n=0)
where {p,}n—o is defined by (1.1). Let
y* :=limsup y. '

n—>o0

Now, we can define the second problem.

Problem 2. Give a characterization for the limit
fuzzy expected gain ¢~.

2. Analysis
2.1. On Problem 1

Let us define the convergence of a sequence of
fuzzy states.

Definition (see [5]). For §,, § € F#(X),
lim §, = § (21

n—ro0

mearns

SUP P ($n,a) §a) >0 (n— )

ae[0,1]

provided that §, ., §, are a-cuts (0= a <1) for
the fuzzy states §,, § respectively and p 1s the
given Hausdorff metric.

In order to discuss the convergence of the
sequence {p,}n-o, let us define the mapping

qa:%(X)—» €(X) (0<sa=<1)by

{y|d(x, y)= a for some x € D}
for o 70, D € €(X), D #9,

cl{y | G(x, y) >0 for some x € D}
for a =0, D € €(X), D #9,

X forO=sa<1, D=0.

do(D):=

(2.2)

Lemma 1. The sequence {p,,},-o defined by (1.1)
satisfies the following:
For any « € [0, 1],

pn @ qa'(pn— a’) q(n)(Po, cr) | . (23)
where 3% = G,(G¢~ ), n=1.
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Proof. Because of the upper-semicontinuity of
p. and §, sup in (1.1) could be replaced with
max. First we will show that §,, , = §o(Pn-1.)-

The case of & >0: Fix any y € p, ,. Then the
definition of a-cut implies p,(y)=a. So,
because of (1.1), there exists x € X such that
Prn_1(x) A G(x, y) = a. Since this means p,_; , >
x and §(x, y) = «, together with the definition of
G. in (2.2), we obtain y € §,(P,—1,). This means
that p, ., <§u.(Pn-1,.). The reverse inclusion
Pro D GolPr-1,s) is verified similarly.

The case of & =0: From the above result, it is
immediate that

U ﬁn,a = U qw(ﬁn—l,a)c U qa(ﬁn—l,o)'
a>0 a>0 a>0

Taking closures, p, o < Go(Pr—1,0) is obtained. To
prove the reverse inclusion, let y € Go(P,—1,0). It
is clear that there is a sequence y,—y such that

(%) = (¥ | 4(x, ) >0 for some x € 1.0}

by the definition of §,. The continuity of § and
the definition of p,_;, imply that for each y,
there exists x, € X which satisfies §(x;, y;)>0
and p,_,(x;) >0. Together with (1.1), we have
Pn(yx) >0, that is, y, € p, o (k=0). Since p,, is
closed, we obtain y € p, o tending as k—> . Thus
Go(Pr-1,0) © Pn,o-

Therefore we have shown that p, .=
Go(Pn-1.e), 0<a =<1, and finally it is trivial that
ﬁn,a=.qg1)(ﬁ0,a)' ]

From now on we shall assume the following
contraction property concerning the fuzzy
relation 4.

Assumption (Contraction property). There ex-
ists a real number B (0< B <1) satisfying the
following condition:

p(3.(A), §4.(B)) < Bp(A, B)
forall A, Be 4(X) and all « (0<a<1).

Here we need the following lemmas in order
to prove the existence of a limit of the sequence
{Pn}n-o and its independence of the initial fuzzy
state.

Lemma 2. Suppose a family of subsets {D, | 0<
a <1} ¢ 6(X) satisfies the following conditions:
(i) D, <D, for &' < a.

(ii) limy 1 o Dy = Do, i.e.,

lim p(D,, D) =0.
a'ta

Then it holds that

lim Go(Da) = 4D @4

Proof. From (i) and the definition of the map
Gu, it is clear that G,(D,) 2 Go(D,) for o' < a.
Let {a,} be any sequence satisfying «, T &, and
let {y,}=X and yeX be any convergent
sequence and its limit point satisfying y, €
Go,(Ds). Owing to y,€dq(D,) and the
definition of G, , there exist x, satisfying
G(x,, y»)=®, and x,eD,. Hence from the
compactness of X, we may take a convergent
subsequence {x,} of {x,} and its limit point
x € X. Consequently, because of the continuity
of §, we obtain g(x,y)=a Moreover (ii)
implies x € D,,. Therefore we obtain y € §,(D,).
This means lim, 1, §o(Dy) € Go(D,). Thus we
completed the proof of this lemma. [

Lemma 3 ([6]). (i) For any p € #(X), the set of
a-cuts p, € 6(X) (0< a<1) satisfies the follow-
ing property:

(a) ﬁa Cﬁa’ fOY a's @,

(b) lim,,, T aPo =DPas

(C) p'(X) = Supae[o,ll{a A Iﬁa(x)}’ xeX.

(ii) Further if A, € €(X) (0< a<1) satisfies

the above conditions (a), (b), then

Gx):= sup]{a/\lAa(x)}, xeX,
ael0,1

satisfies
GeF(X) and G,=A,, 0sa<l.
(iii) Let p,5e F(X). If p,=35, for all
O0<a=<l, then p =3
The following theorem holds for Problem 1.
Theorem 1. (i) There exists a unique fuzzy state
p € F(X) satisfying
P(y)=max{p(x) A g(x,y)} forallyeX. (2.5)
(ii) The sequence {p,} defined by (1.1)

converges to a unique solution p € F(X) of (2.5)
independently of the initial fuzzy state p.
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Namely,
lim p,, = p. | N (2.6)

Proof. Since the metric space (€(X), p) 1s
compact, from the contraction property and

Banach’s fixed point theorem it follows that

there exists a family of closed subsets {4, | 0<
a<1}c 4(X) of X such that

and lim,_,. qg")(D) =A, holds for any De
6(X). For o’ < ¢, it holds from the definition ot

g, that G, (D) > 4,(D). Further by induction we
have that G®(D) o g% (D) for n =1. Therefore
by letting n— o, we obtain

Ay DA, (2.7)

O=sa=<l,

Also for o' < &, we can obtain that

P(As Ax) = p(GEN(AL), G (As))
< p(39(Aq), 4(AL))
+ p(§P(Ar), G&(Ad))
<p(GP(A), §2(A)
+ﬁn (Aa", Acx) |
by using the induction on {ja.' When o' 1 a,
because of (2.7), we may assume that p(A,, A,)
‘is bounded. So, without loss of generality, we

put p(A, A,)=<1. Therefore the following
relation is immediate:

0(Aa, Ay) < p(GP(AL), §3(AL))
+p" (n=1). (2.8)

By Lemma 2, we have lim, 4 o G (As) = Gu{A)-
Again repeating these arguments,

lim q(z)(Aa) = lim qa'(qa’(Aa'))
@' 1 o @' T«

= duldulAd) = GP(Ad),

Similarly, by induction on r,

lim G9(Aq) = G9(Aq).

o' T

This means that (see [2])

lim p(757(As), o (As)) =0. - (2.9)
o' T o

Together with (2.8), it holds that
lim p(A,, A)<p" (n=1).

o' T a

By letting n tend to infinity, we obtain
lim, oAy =A, Using a family of closed
subsets {4, |0=< a =<1}, we define p(x) by

p(x):= sup {& AL (x)}.

O=sa=<=l1

Then from Lemma 3(ii), it holds that p € FJF(X ).
Because A, is the fixed point of g, .

lim §, o = lim §%(Po, o)

=A, (O0O<a<]l).
Together with Lemma 3(iii), this implies

lim p, =p.
n—>co

~ Next we will show that p is a solution of (2.5).
Since p, = A, by Lemma 3(ii), we note that

GoPa) =P O=a<l. (2.10)

In the case of 0 < a <1, it is proved that

{y e X |max{p(x) A g(x,y)} = afl qa(pa)

xeX

Hence, by (2.10), we have

{y e X | max{p(x) A G(x,y)} = a} =Po.  (2.11)

xeX

For the case of a =0,

oy € X | max(5(x) A 43 1)} >0} = (P
can be proved in a similar way to the proof of
Lemma 1. Further together with (2.10), we
conclude that p satisfies the relation (1.1) by
using Lemma 3(iii).

Finally we shall prove the umqueness of
solution of (1.1). Let us denote by p’ e F(X)
another solution of (1.1). For 0=a =<1, 1t 1s
shown similarly that p,, = G,(ps). Thatis, p,is a
fixed point of §,:%(X)— €(X). Further the
uniqueness of the fixed point implies p, = p,. SO
by Lemma 3(iii), =p. These arguments
complete the proof. [ - -

2.2. On Problem 2

When the terminal fuzzy gain 7e F(X) 1s
given as in Problem 2, we will consider its
expected gain ;.
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Lemma 4.
Yi= sup {&|pnaNFy, #0} = ](r‘dp‘n. (2.12)
O=sas<l -

Proof. By the definition of the fuzzy integral, it
is immediate that

Vi = sup{pa(x) A F(x)}
holds. For simplicity, let

a:= Osupl{o/ | Bro N Fo 7 B}

Since p,(x) AF(x) is upper-semicontinuous,
there exists x € X such that ¥ =p,(x) A F(x).
Therefore p,(x) = vy, and F(x)= ;. So p, N
Fy3x where «=1,, which implies y; <a.
Conversely for any £ >0, by putting o =a — ¢,
there exists x € p,, , N ¥, since p,, , N7, #P. This
state x € X satisfies that p,(x) = « and 7(x) = a.
Hence

Po(x) AF(x) = a.

We can conclude that 9 =a=a—¢c So we
obtain ¥, = a by letting e—>0. O

Theorem 2. Assume that r € ¥(X) is continuous.
Then

P* supl{a|ﬁaﬂfa¢ﬁ}=)(i’dﬁ (2.13)

osas

provided that p, is the a-cut of the unique fuzzy
state p € F(X) which satisfies (2.5).

Proof. Let
a:= sup {&|p, N7, #0}.

O=sa=<1

By noting
Yn = sup {&|p, N7, #0)
O=a=<1

from Lemma 4, the definition of y* implies the
existence of a sequence {w,} satisfying a, — y*
and p, o, N7, #@. It is sufficient to discuss the
two cases &, | ¥* and a, 1 y*.

Case a, | ¥*: Since

¢¢ﬁn,a,,nfa,,cp-n,w* nfw* for all n,

the compactness of X implies that there is a
sequence {t,:t, €p, 4 NF,+}, which tends to

some limit ¢ It is clear that fe7,. from the
closedness of 7,.. Also the proof of Theorem 1
shows p,, ,+— p,+. Therefore tep,. N7, and
Y*<a.

Case «, 1 ¥*: For any o < ¢ *, we have

ﬁn,w* Cﬁn,a,, Cﬁn,af
for sufficiently large n. Hence, letting n— o,

Py-climinfp, , lim SUP P o, C Pa-

n—>co n—ow

By using Lemma 3(i) and letting a 1 y*, it is
immediate that

lim infﬁn,a,, =lim sup ﬁn,dn =P~w*'

n—o’ n—owo

So

lim ﬁn,a,, N fa," =ﬁw* N fw*.

n—so

(2.14)

Since p, o, N7, #0 for each n and X is compact,
there exists a convergent sequence {¢,:t,€
Dn,a, NFg,}. Let its limit point be ¢ Then by
(2.14), t € py« N Fy». This means that y* <a.

To show the reverse inequality, let a:=a — ¢
for any ¢>0. We have p, N7, #@ from the
notation of a. Hence there exists tep, NF,.
Since p, .—> Pa, there exists {t,:t, €p, .} such
that ¢,—¢ Because of the continuity of
7, #(t,)—>F(t)=wa, so that t,€F, . for any
€'>0 and sufficiently - large n. Then t,e
Pna—eNFy_e. Using Lemma 4, we have
« — &' <y for sufficiently large n. Therefore
o —¢'<limsup ¢, = y*,

s
i.e., a—¢e—¢&' < y* Letting ¢ &' |0, we have
shown the reverse inequality a<y*. These
conclude that a = y*. O

Now we shall show two corollaries. Let
O0<a<1and

D, :={x | 7, N G,(x) # 6},
where g, (x) :=§,({x}).

Corollary 1. If ,(D,) = D,, then y* = a.

Proof. We have p,=1img%(D,)<=D, and
Po = G4 (Ps). Therefore

Fa nﬁaf =Faf nq—a(ﬁaf) Dfa nqa(x)
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Fig. 1. The fuzzy relation g(x, y).

for some x € D,. The definition of D, implies
o N Go(x)#8@, so that 7, Np, #0. By applying
Theorem 2, it 1s shown that y*=a. C

Corollary 2. If there exists x € 7, which satisfies
X €G,(x), then Y* = o holds.

Proof. By the assumption, §{’(x)>x for all
n=1. Since lim,_.gd%"(x)= P, 1t must be
x € p,. Therefore 7, Np, #0. It is clear from
Theorem 2 that y*=a. [O

3. Numerical example

Let X=[0,1] be a space of states, and
consider a fuzzy relation

'cj(x, y) =1- |y o (%x %)‘1 X, Y EX? (31)

l..
T RN
/ﬁ’ \t‘\
O 8'1" ,‘:," \\:‘\
/,f \\\\\ ~
0 61’,‘:'” RN P
) ,” \~\ pn
94 v e
P1
0.4+1
0.2t
Po
} -+ + —+
0.2 0.4 0.6 0.8 1
X

Fig. 2. The sequence of p, and the solution p.

and an initial fuzzy state
Pox)=1-2]x—3|, xeX (3.2)

The fuzzy relation g(x, y) is shown in Figure 1.

Under the above situation, we can easily
check that the contraction coefficient 8 of (3.1) is

5 and calculate that the sequence of fuzzy states
defined by (1.1) is

Pu)=1-a, k-3, xeX, N CK)

2 2
where a,=2 and a,=4a,_,/(Ba,_, +2). Then,
the limit solution p of (3.3) is
_, Vs
p(x)=1—’§'\x---2-\, x €X, _ (3.4)

which is also the unique solution of Theorem 1.
Figure 2 shows the sequence of fuzzy states
p.(x), n=0, which are monotonically conver-
gent to the unique solution p(x).
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The result of the calculation of the numerical example of Section 3 is incorrect. The

2 7 ~
sequence {a,}2, 1s given by ap = 2 and a, = o - j_ < Therefore the hmlt, solution p is
Apn—1
. 1 1 '

and Figure 2 1s

£L

Fig. 2 : The sequence of p, and the solution p.
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