
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Fuzzy Sets and Systems 157 (2006) 2674– 2682
www.elsevier.com/locate/fss

A fuzzy approach to Markov decision processes with uncertain
transition probabilities

M. Kuranoa,∗, M. Yasudab, J. Nakagamib, Y. Yoshidac

aFaculty of Education, Chiba University, Chiba 263-8522, Japan
bFaculty of Science, Chiba University, Chiba 263-8522, Japan

cFaculty of Economics & Business Administration, University of Kitakyushu, Kitakyushu 802-8577, Japan

Available online 8 June 2006

Abstract

In this paper, Markov decision models with uncertain transition matrices, which allow a matrix to fluctuate at each step in time, is
described by the use of fuzzy sets. We find a Pareto optimal policy maximizing the infinite horizon fuzzy expected discounted reward
(FEDR) over all stationary policies under some partial order. The Pareto optimal policies are characterized by maximal solutions of
an optimal inclusion including efficient set-functions. As a numerical example, a machine maintenance problem is considered.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In a real application of Markov decision processes [1,5,7,13,16] (MDP, in short), we often encounter the case where
the required data is not known precisely and perfectly. In fact, in many instances, the required data in MDPs must be
estimated through the measurement of various phenomena, so that it naturally includes imprecision or ambiguity of the
observing system. Also, it requires to be more “robust” in the sense that it is reasonably efficient in approximations.

In order to deal with these uncertain data and flexible requirements, Kruce et al. [8] have used a fuzzy set representation
for homogeneous Markov chains with uncertain transition matrices, in which ergodic theorems are obtained in fuzzy
environment. In this paper, we shall develop a fuzzy treatment for uncertain MDPs which allow for fluctuating transition
matrices at each step in time. The MDPs with uncertain transition matrices are described by the use of fuzzy sets, in
which we find a Pareto optimal policy maximizing the infinite horizon fuzzy expected discounted reward (FEDR) over
all stationary policies under some partial order relation.

Associated with each stationary policy the corresponding contractive operator is given on fuzzy numbers, whose
fixed point represents the infinite horizon FEDR. Moreover, the Pareto optimal policies are characterized by maximal
solutions of an optimal inclusion including efficient set-functions. As a numerical example, the machine maintenance
problem is considered.
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Recently, applying Hartfiel’s[4,3] interval method for Markov chains, Kurano et al. [9] have introduced a deci-
sion model, called a controlled Markov set-chain, which is robust for rough approximation of transition matrices in
MDPs. Our fuzzy decision model examined in this paper includes a controlled Markov set-chain as a special case.
So, the results obtained here can be thought of as a fuzzy extension of those in [9]. For the optimization of fuzzy dy-
namic system, refer to [11,18]. The non-discounted reward problem for a controlled Markov set-chain was developed
in [6,10].

This paper is organized as follows: in Section 2, we shall give some notation on fuzzy sets and interval arithmetics
and obtain the preliminary lemmas. In Section 3, we describe a nonhomogeneous MDPs by the use of fuzzy sets and
specify the optimization problem. In Section 4, the infinite horizon FEDR from a stationary policy is given as a fixed
point of a corresponding operator, which is used to obtain the optimality equation and characterize a Pareto optimal
policy in Section 5.

2. Notation and preliminary lemmas

Let R, Rn and Rn×n be set of real numbers, real n-dimensional column vectors and real n×n matrices, respectively.
Also denote by R+, Rn+ and Rn×n+ , the subsets of entrywise non-negative elements in R, Rn and Rn×n, respectively.
We provide each space of R, Rn and Rn×n with the componentwise relation � and <, respectively. For any set X, we
will denote a fuzzy set ã on X by its membership function ã : X → [0, 1]. Denote by F(X) the set of all fuzzy sets on
X. For the theory of fuzzy sets, refer to Zadeh [19] and Novák [15]. The �-cut (� ∈ [0, 1]) of the fuzzy set ã ∈ F(X)

is defined as

ã� := {x ∈ X | ã(x)��} (� > 0) and ã0 := cl{x ∈ X | ã(x) > 0},
where “cl” denote the closure of the set. For any interval Y in R, ã ∈ F(Y ) is called a fuzzy number on Y if ã has the
following properties (i)–(iv):

(i) ã is normal, i.e., there exists an x0 ∈ Y with ã(x0) = 1;
(ii) ã is convex, i.e., ã(�x + (1 − �)y)� ã(x) ∧ ã(y) for all x, y ∈ Y and � ∈ [0, 1], where a ∧ b = min{a, b};
(iii) ã is upper semi-continuous;
(iv) ã0 is a compact subset of Y.

Denote by Fc(Y ) the set of all fuzzy numbers on Y. Let C(Y ) be the set of all closed and bounded intervals in Y. We
note that ã ∈ Fc(Y ) means ã� ∈ C(Y ) for all � ∈ [0, 1]. Let Fc(Y )n be the set of all n-dimensional column vectors
whose elements are in Fc(Y ), i.e.,

Fc(Y )n := {̃u = (̃u1, ũ2, . . . , ũn)
′ | ũi ∈ Fc(Y ) (1� i�n)},

where d ′ denotes the transpose of a vector d.
Let S := {1, 2, . . . , n} and P(S) the set of all probability distributions on S, that is,

P(S) :=
⎧⎨
⎩p = (p1, p2, . . . , pn) | pj �0 (1�j �n),

n∑
j=1

pj = 1

⎫⎬
⎭ .

From any p̃ = (p̃1, p̃2, . . . , p̃n)
′ ∈ Fc([0, 1])n, we will construct the fuzzy set [p̃] = [p̃1, p̃2, . . . , p̃n] on P(S) by the

following membership function:

[p̃](p) = min
1� j �n

{p̃j (pj )} for any p = (p1, p2, . . . , pn) ∈ P(S). (2.1)

The above definition will be extended to the case of stochastic matrices. Let P(S/S) be the set of all stochastic matrices
on S, that is,

P(S/S) := {Q = (qij ) | qij �0,

n∑
j=1

qij = 1 (1� i�n)}.
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For any q̃i = (̃qi1, q̃i2, . . . , q̃in) ∈ Fc([0, 1])n (1� i�n), we define the fuzzy set Q̃ = [̃q1, q̃2, . . . , q̃n]′ on P(S/S)

by the following membership function:

Q̃(Q) := min
1� i �n

{[̃qi](qi)}, (2.2)

where Q = (q1, q2, . . . , qn)
′ ∈ P(S/S), qi = (qi1, qi2, . . . , qin) ∈ P(S) and [̃qi] is the fuzzy set on P(S) defined

by (2.1).
In order to describe the structural properties on the fuzzy sets defined in (2.1) and (2.2), we need the concept of

intervals of matrices. For the detail, refer to [3,9,14]. For any nonnegative vector q = (q
1
, q

2
, . . . , q

n
) and q =

(q1, q2, . . . , qn) ∈ Rn+ with q �q, we define the set of probability distributions 〈q, q〉 ⊂ P(S) by

〈q, q〉 := {p = (p1, p2, . . . , pn) ∈ P(S) | q �p�q}. (2.3)

Similarly, for Q = (q
ij
), Q = (qij ) ∈ Rn×n+ with Q�Q, we define the set of stochastic matrices 〈Q, Q〉 ⊂ P(S/S)

by

〈Q, Q〉 := {Q ∈ P(S/S) | Q�Q�Q}. (2.4)

Lemma 2.1 (Hartfiel [3]). For any Q, Q ∈ Rn×n+ with Q�Q and 〈Q, Q〉 	= ∅, 〈Q, Q〉 is a polyhedral convex set in
the vector space Rn×n.

For any ã ∈ Fc([0, 1]), noting ã� ∈ C([0, 1]) (0���1), it will be denoted by ã� = [min ã�, max ã�]. The structural
property of the fuzzy sets defined in (2.1) and (2.2) is given, whose proof is done by using Lemma 2.1.

Lemma 2.2. For any q̃i ∈ Fc([0, 1])n (1� i�n), let Q̃ = [̃q1, q̃2, . . . , q̃n]′ be a fuzzy set on P(S/S) defined by (2.1).
Then, the �-cut of Q̃ (0���1) is a polyhedral convex subset of P(S/S) and given by

Q̃� = 〈Q�, Q�〉 where Q� = (
min(̃qij )�

)
and Q� = (

max(̃qij )�
)
. (2.5)

Proof. Since q̃ij ∈ Fc([0, 1]), the �-cut (̃qij )� belongs to C([0, 1]). By (2.1) and (2.2), we observe that

Q̃� = {Q = (qij ) ∈ P(S/S) | qij ∈ (̃qij )� (1� i, j �n)},
which implies that (2.5) holds. Thus, by Lemma 2.1, Q̃� has the required property. �

If u = ([a1, b1], [a2, b2], . . . , [an, bn])′ ∈ C(R+)n, u will be denoted by u = [a, b], where a = (a1, a2, . . . , an)
′,

b = (b1, b2, . . . , bn)
′ and [a, b] = {x ∈ Rn+ | a�x�b}. For any u ∈ C(R+)n and Q, Q ∈ Rn×n+ with Q�Q and

〈Q, Q〉 	= ∅, we define their product by

〈Q, Q〉u = {Qu | Q ∈ 〈Q, Q〉, u ∈ u}. (2.6)

Lemma 2.3 (Lemma 1.4 in [9]).

〈Q, Q〉u ∈ C(R+)n for all u ∈ C(R+)n.

The following arithmetical notation is used in the sequel. Let Q̃ = [̃q1, q̃2, . . . , q̃n]′ be a fuzzy set on P(S/S) with
q̃i ∈ F([0, 1])n (1� i�n). Then, for ũ = (̃u1, ũ2, . . . , ũn)

′ ∈ Fc(R+)n, Q̃ũ ∈ F(Rn+) is defined as follows:

(Q̃ũ)(x) = max
x=Qu

Q∈P(S/S),u∈Rn+

{Q̃(Q) ∧ ũ(u)}, for x ∈ Rn+, (2.7)

where

ũ(u) = min
1� i �n

{̃ui(ui)} with u = (u1, u2, . . . , un) ∈ Rn+. (2.8)
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Lemma 2.4. For any ũ = (̃u1, ũ2, . . . , ũn)
′ ∈ Fc(R+)n, we have

(i) (Q̃ũ)� = Q̃�ũ� for � ∈ [0, 1];
(ii) Q̃ũ ∈ Fc(R+)n.

Proof. By (2.7) we get (Q̃ũ)� = {Qu | q ∈ Q̃�, u ∈ ũ�}. From (2.8) it holds ũ� ∈ C(R+)n, so that (i) follows by the
definition (2.6). Also, (ii) follows obviously from Lemma 2.2 and 2.3. �

The addition and the scalar multiplication on Fc(R+) are defined as follows: For ã, b̃ ∈ Fc(R+) and � ∈ R+, define

(̃a + b̃)(x) := sup
x1,x2∈R+
x1+x2=x

{̃a(x1) ∧ b̃(x2)},

�̃a(x) :=
{

ã(x/�) if � > 0,

I{0}(x) if � = 0,
(x ∈ R+),

provided that IA is the indicator of a set A. It is easily shown that, for � ∈ [0, 1],
(̃a + b̃)� = ã� + b̃� and (�̃a)� = �̃a�,

where the operation on sets is defined ordinary as A + B := {x + y | x ∈ A, y ∈ B} and �A = {�x | x ∈ A}
for A, B ⊂ R+. The above operations are extended to those on Fc(R+)n as follows: for ũ = (̃u1, ũ2, . . . , ũn)

′,
ṽ = (̃v1, ṽ2, . . . , ṽn)

′ ∈ Fc(R+)n,

ũ + ṽ = (̃u1 + ṽ1, ũ2 + ṽ2, . . . , ũn + ṽn)
′ and �̃u = (�ũ1, �ũ2, . . . , �ũn)

′.

For a = (a1, a2, . . . , an)
′ ∈ Rn+, I{a} = (I{a1}, I{a2}, . . . , I{an}) ∈ Fc(R+)n and I{a} + ũ is described simply by a + ũ.

The Hausdorff metric on C(R+) is denoted by �, i.e.,

�([a, b], [c, d]) := |a − c| ∨ |b − d| for [a, b], [c, d] ∈ C(R+),

where x ∨ y = max{x, y} for x, y ∈ R. This metric can be extended to Fc(R+)n by

�(̃u, ṽ) = max
1� i �n

sup
�∈[0,1]

�((̃ui)�, (̃vi)�)

for ũ = (̃u1, ũ2, . . . , ũn)
′, ṽ = (̃v1, ṽ2, . . . , ṽn)

′ ∈ Fc(R+)n. Then, it is known (c.f. [12]) that the metric space
(Fc(R+)n, �) is complete.

3. The fuzzy description of MDPs

In order to deal with the vague data and flexible requirements for nonhomogenuous MDPs we shall use a fuzzy set
representation. Let S and A be finite sets denoted by S = {1, 2, . . . , n} and A = {1, 2, . . . , k}. Our sequential decision
model consists of four objects

(S, A, {̃qij (a) ∈ Fc([0, 1]), i, j ∈ S, a ∈ A}, r),
where r = r(i, a) is a function on S × A with r �0. We interpret S as the set of states of some system and A as the set
of actions available at each state. We denote by F the set of all functions from S to A. For any f ∈ F , we define the
fuzzy set Q̃(f ) on P(S/S) as follows:

Q̃(f ) := [̃q1(f ), q̃2(f ), . . . , q̃n(f )]′, where (3.1)

q̃i (f ) := [̃qi1(f (i)), q̃i2(f (i)), . . . , q̃in(f (i))] (1� i�n). (3.2)

Note that the basic notations of (3.1) and (3.2) are defined in (2.1) and (2.2).
A policy � is a sequence (f1, f2, . . .) of functions with ft ∈ F (t �1). Let � be the class of policies. We denote by

f ∞ the policy (h1, h2, . . .) with ht = f for all t �1 and some f ∈ F . Such a policy is called stationary and denoted
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simply by f ∈ F . The set of all stationary policies will be denoted by �F . For any f ∈ F , let r(f ) be an n-dimensional
column vector whose i-th element is r(i, f (i)). Applying Zadeh’s extension principle (cf. [15]), the fuzzy expected
total discounted reward up to time T from a policy � is a element of F(R+)n and defined as follows:

�̃T (�) := (�̃T (1, �), �̃T (2, �), . . . , �̃T (n, �))′ (3.3)

and

�̃T (i, �)(x) := max{ min
1� t �T

Q̃(ft )(Qt )} (3.4)

for all x ∈ R+, 1� i�n, where the maximum is taken over

{Q1, Q2, . . . , QT | x = (r(f1) + �Q1r(f2) + · · ·
+�T Q1Q2 · · · QT r(fT +1))i ,

Qt ∈ P(S/S) (1� t �T )} (3.5)

and � is a discounted factor with 0 < � < 1.

Lemma 3.1. For any policy � ∈ �, we have
i �̃T (�) ∈ Fc(R+)n for all T �1;
(ii) {�̃T (�)} is a Cauchy sequence.

Proof. We show that, for example, (i) holds for T = 2. By (3.3)–(3.5),

(�̃T (1, �)�, �̃T (2, �)�, . . . , �̃T (n, �)�)
′

= {r(f1) + �Q1r(f2) + �2Q1Q2r(f3) | Qi ∈ Q̃(fi)�, 1� i�2}
= r(f1) + �Q̃(f1)�(r(f2) + �Q̃(f2)�r(f2)).

Therefore, from Lemmas 2.2 and 2.3 it follows that

(�̃T (1, �)�, �̃T (2, �)�, . . . , �̃T (n, �)�)
′ ∈ C(R+)n,

which implies (i) for T = 2. By the same method as the case of T = 2, we can prove (i) for any T. Also, (ii) follows
easily from the properties of the Hausdorff metric and the existence of the discount factor � (0 < � < 1). �

By Lemma 3.1, we can define the infinite horizon FEDR from a policy � by

�̃(�) := lim
T →∞ �̃T (�).

Here, we will give a partial order � on C(R+) by the definition: For [a, b], [c, d] ∈ C(R+),

[a, b] � [c, d] if a�c and b�d,

[a, b] ≺ [c, d] if [a, b] � [c, d] and [a, b] 	= [c, d].
This partial order � on C(R+) is extended to that of Fc(R+), called a fuzzy max order, as follows: For ũ, ṽ ∈ Fc(R+),

ũ � ṽ if ũ� � ṽ� for all � ∈ [0, 1],
ũ ≺ ṽ if ũ � ṽ and ũ 	= ṽ.

Also, as a further extension, the partial order on Fc(R+)n is given by the definition: For ũ = (̃u1, ũ2, . . . , ũn)
′,

ṽ = (̃v1, ṽ2, . . . , ṽn)
′ ∈ Fc(R+)n,

ũ � ṽ if ũi � ṽi for all i = 1, 2, . . . , n,

ũ ≺ ṽ if ũ � ṽ and ũ 	= ṽ.

Our problem is to maximize the �̃(�) over all � ∈ � with respect to the partial order �.
The following lemma is used in the sequel whose proof is easily done.

Lemma 3.2. Let a sequence {̃un} ⊂ Fc(R+)n be such that ũ1 � ũ2 � · · ·, and limk→∞ ũk = ũ for some ũ ∈ Fc(R+)n.
Then, it holds that ũ1 � ũ.
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4. Stationary policies and operators

In this section, the infinite horizon FEDR from a stationary policy is given as a unique fixed point of a corresponding
operator. Associated with each function f ∈ F is a corresponding operator U(f ) : Fc(R+)n → Fc(R+)n defined as
follows: For ũ ∈ Fc(R+)n,

Uf ũ = r(f ) + �Q̃(f )̃u, (4.1)

where the arithmetics in (4.1) are defined in (2.7). Note that from Lemma 1.4 Uf is well-defined.
For any policy � = (f1, f2, . . .), let �−l = (fl+1, fl+2, . . .) for each l�1. The sequence {�̃T (�)}∞T =1 is recursively

described.

Lemma 4.1. For any policy � = (f1, f2, . . .), we have

�̃T (�) = Uf1Uf2 · · · Ufl
�̃T −l (�

−l ) for each l�1. (4.2)

Proof. From (3.3)–(3.5) and Lemma 1.4(i), we get �̃2(i, �)� = (r(f1) + �Q̃(f1)r(f2))� = r(f1) + �Q̃(f1)�r(f2)

for each � ∈ [0, 1]. Since �̃1(�
−1) = r(f2), (4.2) holds for T = 2 and l = 1. By induction on T and l, we can easily

proved (4.2). �

Lemma 4.2. Let f ∈ F . Then we have
(i) Uf is a contraction with modulus �, i.e., for ũ, ṽ ∈ Fc(R+)n,

�(Uf ũ, Uf ṽ)���(̃u, ṽ),

(ii) Uf is monotone, i.e., ũ � ṽ implies Uf ũ � Uf ṽ.

Proof. For any ũ, ṽ ∈ Fc(R+)n, from the property of the Hausdorff metric, it holds �(Uf ũ, Uf ṽ)���(Q̃(f )̃u, Q̃(f )̃v).
Using Lemma 2.4 (i), we get

�((Q̃(f )̃u)�, (Q̃(f )̃v)�) = �(Q̃(f )�ũ�, Q̃(f )�̃v�)��(̃u�, ṽ�).

So, we have �(Uf ũ, Uf ṽ)���(̃u, ṽ), which implies (i). Also, (ii) follows obviously. �

By Lemma 3.1, �̃T (f ) = Uf �̃T −1(f ) for all T �2. As T → ∞ in the above, �̃(f ) is a fixed point of Uf . Thus,
the following characterization of �̃(f ) are immediate and so its proof is omitted.

Theorem 4.1. For any f ∈ F , �̃(f ) is a unique solution of the following fuzzy inclusion:

ũ = Uf ũ, ũ ∈ Fc(R+)n. (4.3)

Applying Lemma 2.4 (i), (4.3) can be rewritten by the following �-cut interval equation

ũ� = r(f ) + �Q̃(f )�ũ�, 0���1, (4.4)

where ũ� = ((̃u1)�, (̃u2)�, . . . , (̃un)�)
′ ∈ C(R+)n and Q̃(f )� = 〈Q�, Q�〉 with Q� �Q�. By a contraction of Uf , the

following holds.

Corollary 4.1. For any f ∈ F and ũ ∈ Fc(R+)n, �̃(f ) = liml→∞ Ul
f ũ.

As a simple example, we consider a fuzzy treatment for a machine maintenance problem ([13], p.1, p.17–18).

Example 1. A machine can be operated synchronously, say, once an hour. At each period there are two states; one is
operating (state 1), and the other is in failure (state 2). If the machine fails, it can be restored to perfect functioning by
repair. At each period, if the machine is running, we earn the return of $ 3.00 per period; the fuzzy set of probability of
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(0.6/0.7/0.8) (0.2/0.3/0.4)

(0.5/0.6/0.7)

(0.3/0.4/0.5)

1

(a) Usual repair f1

(0.6/0.7/0.8) (0.2/0.3/0.4)

(0.3/0.4/0.5)

(0.5/0.6/0.7)

1

(b) Rapid repair f2

2

2

Fig. 1. Transition diagrams: (a) usual paper f1; (b) rapid repair f2.

being in state 1 at the next step is (0.6/0.7/0.8) and that of the probability of moving to state 2 is (0.2/0.3/0.4), where
for any 0�a < b < c�1, the fuzzy number (a/b/c) on [0, 1] is defined by

(a/b/c)(x) =
{

(x − a)/(b − a) ∨ 0 if 0�x�b,

(x − c)/(b − c) ∨ 0 if b�x�1.

If the machine is in failure, we have two actions to repair the failed machine; one is a usual repair, denoted by 1, that
yields the cost of $ 1.00(that is, a return of −$1.00) with the fuzzy set (0.3/0.4/0.5) of the probability moving in state 1
and the fuzzy set (0.5/0.6/0.7) of the probability being in state 2; another is a rapid repair, denoted by 2, that requires
the cost of $2.00 (that is, a return of −$2.00) with the fuzzy set (0.5/0.6/0.7) of the probability moving in state 1 and
the fuzzy set (0.3/0.4/0.5) of the probability being in state 2.

For the model considered, S = {1, 2} and there exists two stationary policies, F = {f1, f2} with f1(2) = 1 and
f2(2) = 2, where f1 denotes a policy of the usual repair and f2 a policy of the rapid repair. The state transition diagrams
of two policies are shown in Fig. 1.

We easily observe that

r(f1) =
(

3
−1

)
and Q̃(f1) =

(
(0.6/0.7/0.8) (0.2/0.3/0.4)

(0.3/0.4/0.5) (0.5/0.6/0.7)

)
.

Now, applying Theorem 4.1, we can obtain the infinite horizon FEDR as a unique solution of (4.4). We observe that

Q̃(f1)� =
〈(

0.6 + 0.1� 0.2 + 0.1�
0.3 + 0.1� 0.5 + 0.1�

)
,

(
0.8 − 0.1� 0.4 − 0.1�
0.5 − 0.1� 0.7 − 0.1�

)〉
.

So, putting �̃(f1)� = [(x�
1 , y�

1 )′, (x�
2 , y�

2 )′], the �-cut interval equations (4.4) with � = 0.9 become:

x�
1 = 3 + 0.9{(0.6x�

1 + 0.4x�
2 + 0.1�(x�

1 − x�
2 ))

∧ (0.8x�
1 + 0.2x�

2 + 0.1�(−x�
1 + x�

2 ))},
y�

1 = 3 + 0.9{(0.6y�
1 + 0.4y�

2 + 0.1�(y�
1 − y�

2 ))

∨ (0.8y�
1 + 0.2y�

2 + 0.1�(−y�
1 + y�

2 ))},
x�

2 = −1 + 0.9{(0.5x�
1 + 0.5x�

2 + 0.1�(x�
2 − x�

1 ))

∧ (0.3x�
1 + 0.7x�

2 + 0.1�(−x�
1 + x�

2 ))},
y�

2 = −1 + 0.9{(0.5y�
1 + 0.5y�

2 + 0.1�(y�
2 − y�

1 ))

∨ (0.3y�
1 + 0.7y�

2 + 0.1�(−y�
1 + y�

2 ))}.
After a simple calculation, we find

�̃(f1)� =
([

750 + 360�

73
,

1470 − 360�

73

]
,

[
1350 + 360�

73
,

1070 − 360�

73

])′
,
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which leads to

�̃(f1) =
((

750

73
/

1110

73
/

1470

73

)
,

(
350

73
/

710

73
/

1070

73

))′
.

5. Pareto optimality

Here, we confine our attention to the class of stationary policies, which simplifies our discussion in the sequel.
A policy f ∗ ∈ �F is called Pareto optimal if there does not exist f ∈ �F such that �̃(f ∗) ≺ �̃(f ). In this section,
we derive the optimal inclusion, by which Pareto optimal policies are characterized.

The following important result is crucial to the development in the characterization of Pareto optimality.

Lemma 5.1. For any f, g ∈ F , suppose that

�̃(f )

{�
≺

}
Ug�̃(f ). (5.1)

Then, it holds that

�̃(f )
{�

≺
}

�̃(g). (5.2)

Proof. Suppose that �̃(f )
{

�
≺

}
Ug�̃(f ). Then, we have from Lemma 4.2(ii) that

�̃(f )

{�
≺

}
Ug�̃(f ) � Ul

g�̃(f ) (l�2),

So, taking the limit in the above as l → ∞, (5.2) follows from Lemma 3.2. �

Let D be an arbitrary subset of Fc(R+)n. A point ũ ∈ D is called an efficient element of D with respect to � on
Fc(R+)n if and only if it holds that there does not exist ṽ ∈ D such that ũ ≺ ṽ. We denote by eff(D) the set of all
elements of D efficient with respect to � on Fc(R+)n. For any ũ ∈ Fc(R+)n, let U(̃u) := eff({Uf ũ | f ∈ F }). Note
that U(̃u) ⊂ Fc(R+)n.

Here, we consider the following fuzzy inclusion including efficient set-functions U(·) on Fc(R+)n:

ũ ∈ U(̃u), ũ ∈ Fc(R+)n. (5.3)

The inclusion of (5.3) is called an optimality equation, by which Pareto optimal policies are characterized. A solution
of (5.3), ũ, is called maximal if there does not exist any solution ũ′ of (5.3) such that ũ ≺ ũ′. Pareto optimal policies
are characterized by maximal solutions of the optimality equation (5.3).

Theorem 5.1. A policy f is Pareto optimal if and only if a fixed point of the corresponding Uf , �̃(f ), is a maximal
solution to the optimal inclusion (5.3).

Proof. The proof of “only if ”part is easily obtained from Lemma 5.1. In order to prove “if ”part, suppose that �̃(f )

is a maximal solution of (5.3) but f is not Pareto optimal. Then, there exists f (1) ∈ F such that �̃(f ) ≺ �̃(f (1)).

Now, suppose that �̃(f (1)) 	∈ eff(�̃(f (1))). This assumption assures that there exists f (2) ∈ F satisfying �̃(f (1)) ≺
Uf (2)�̃(f (1)), which implies from (5.1) that �̃(f (1)) ≺ �̃(f (2)). By repeating this method successively, we come to the

conclusion that there exists l such that f (l) ∈ F such that �̃(f ) ≺ �̃(f (l)) and �̃(f (l)) satisfies (5.3), which contradicts
that �̃(f ) is maximal, as required. �

Remark. For vector-valued discounted MDPs, Furukawa [2] and White [17] had derived the optimality equation
including efficient set-function on Rn, by that Pareto optimal policies are characterized. The form of the optimal
inclusion (5.3) is corresponding to a fuzzy version of MDPs.
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Example 2. For the machine maintenance problem of Example 1 given in Section 4, Pareto optimal policy is calculated
by Theorem 5.1. From Example 1, we find that

Uf2 �̃(f1) =
((

750

73
/

1110

73
/

1470

73

)
,

(
349

73
/

709

73
/

1069

73

))′
,

Recall that

Uf1�̃(f1) = �̃(f1) =
((

750

73
/

1110

73
/

1470

73

)
,

(
350

73
/

710

73
/

1070

73

))′
,

which satisfies Uf2 �̃(f1) ≺ �̃(f1). Thus, �̃(f1) ∈ eff({Uf �̃(f1) | f ∈ F), so that f1 is Pareto optimal from Theorem
5.1. In fact, we can find, by solving (4.4) for f2, that

�̃(f2) =
((

930

91
/

1380

91
/

1830

91

)
,

(
430

91
/

880

91
/

1330

91

))′
, and �̃(f2) ≺ �̃(f1).
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