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Abstract

In this note, we give four versions of Egoroff’s theorem in non-additive measure theory by using condition (E),
the pseudo-condition (E) of set function and the duality relations between the conditions. These conditions offered
are not only sufficient but also necessary for the four kinds of Egoroff’s theorems.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Egoroff’s theorem is one of the most important theorem in classical measure theory. It is stated that
almost everywhere convergence implies almost uniform convergence on a finite measure space[1]. The
researches on the theorem in non-additive measure theory were made by Wang and Klir [12], Li [2,3], Li
and Yasuda [5–7], and Murofushi et al. [10]. These results faithfully contribute to non-additive measure
theory. In [3] Li introduced the concept ofcondition(E) of set function and proved an essential result: a
necessary and sufficient condition that Egoroff’s theorem remains valid for monotone set function is that
the monotone set function fulfils condition (E). In [10] Murofushi et al. defined the concept ofEgoroff
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conditionand proved that it is a necessary and sufficient condition for Egoroff’s theorem with respect to
non-additive measures. Hence, the two concepts are equivalent to each other.

In this paper, Egoroff’s theorems in the sense of pseudo-convergence in non-additive measure theory
are discussed. We will introduce the concept ofpseudo-condition(E) of a set function. Three pseudo-
versions of Egoroff’s theorem on finite monotone non-additive measure spaces by using the condition (E)
and the pseudo-condition (E) of set function and the duality relations between the conditions are given.
These conditions employed are not only sufficient but also necessary for the different kinds of Egoroff’s
theorem. In our discussion the set functions considered are only monotone without the assumption of
continuity from above and below; therefore, the previous results we obtained in[2] are generalized and
Egoroff’s theorem on finite non-additive measure space is formulated and developed in full generality.

2. Preliminaries

Let X be a non-empty set, andF a �-algebra of subsets ofX. Unless stated otherwise, all the subsets
mentioned are supposed to belong toF .

Definition 2.1. A monotone non-additive measure on a measurable space(X, F) is an extended real-
valued set function� : F → [0, +∞] satisfying the following conditions:

(1) �(∅) = 0;
(2) �(A)��(B) wheneverA ⊂ B andA, B ∈ F (monotonicity).

When � is a monotone non-additive measure, the triple(X, F, �) is called a monotone measure
space[11].

A monotone non-additive measure� is calledfinite, if �(X) < ∞, order-continuous[11], if lim n→∞
�(An) = 0 wheneverAn ↘ ∅, strongly order-continuous[4], if lim n→∞ �(An) = 0 wheneverAn ↘ A

and�(A) = 0, continuous at X, if lim n→∞ �(An) = �(X) wheneverAn ↗ X, strongly continuous at X,
if lim n→∞ �(An) = �(H) wheneverAn ↗ H and�(H) = �(X).

When� is finite, we define the conjugate� of � by

�(A) = �(X) − �(X \ A), A ∈ F .

Obviously, the conjugate� of a monotone non-additive measure� is also a monotone non-additive
measure, and it holds that

=
�= �.

From the duality principle of non-additive measure[8,9], we know that (1) the order-continuity is dual
to the continuity atX; (2) the strong order-continuity is dual to the strong continuity atX.

Let F be the class of all finite real-valued measurable functions on(X, F, �), and letf, fn ∈ F
(n = 1, 2, . . .). We say that{fn} converges almost everywhere to f on X, and denote it byfn

a.e.−→ f ,
if there is subsetE ⊂ X such that�(E) = 0 andfn → f on X \ E; {fn} converges pseudo-almost
everywhere to f on X, and denote it byfn

p.a.e.−→ f , if there is a subsetF ⊂ X such that�(X \ F) = �(X)

andfn → f onX \ F ; {fn} converges almost uniformly to f on X, and denote it byfn
a.u.−→ f , if for any

� > 0 there is a subsetE� ∈ F such that�(X \ E�) < � andfn converges tof uniformly onE�; {fn}
converges to f pseudo-almost uniformly on X, and denote it byfn

p.a.u.−→ f , if there exists{Fk} ⊂ F with
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limk→+∞ �(X \ Fk) = �(X) such thatfn converges tof onX \ Fk uniformly for any fixedk = 1, 2, . . .

(cf. [12]).
From the definitions above, we know that the convergence a.e. (or a.u.) onXand the convergence p.a.e.

(or p.a.u.) onX are dual to each other. We state them in the following.

Proposition 2.2. Let� be a finite monotone non-additive measure. Then

(1) fn
a.e.−→ f [�] iff fn

p.a.e.−→ f [�];
(2) fn

a.u.−→ f [�] iff fn
p.a.u.−→ f [�].

3. Condition (E) of set function

In [3] we introduced the concept of condition (E) of set function and showed a version of Egoroff’s
theorem in non-additive measure theory. Now we propose a new structural—pseudo-condition (E); it
plays an important role in establishing pseudo-versions of Egoroff’s theorem on non-additive measure
spaces.

Definition 3.1. A set function� : F → [0, +∞] is said to fulfilcondition(E) (resp.pseudo-condition
(E)), if for every double sequence{E(m)

n } ⊂ F(m, n ∈ N) satisfying the conditions: for any fixed
m = 1, 2, . . . ,

E(m)
n ↘ E(m) (n → ∞) and �

(+∞⋃
m=1

E(m)

)
= 0

there exist increasing sequences{ni}i∈N and{mi}i∈N of natural numbers, such that

lim
k→+∞ �

(+∞⋃
i=k

E(mi)
ni

)
= 0

(
resp. lim

k→+∞ �

(+∞⋃
i=k

E(mi)
ni

)
= 0

)
.

It is easy to prove the following results (the first conclusion has been shown in[6,10]).

Proposition 3.2. Let� be a finite monotone non-additive measure. Then

(1) if � fulfils condition(E), it is strongly order continuous.
(2) If � fulfils condition(E), � is strongly continuous at X.
(3) If � fulfils pseudo-condition(E), it is continuous at X and� � �, i.e., for anyN ∈ F , �(N) = 0

implies�(N) = 0.
(4) If � fulfils pseudo-condition(E), � is order continuous and� � �, i.e., for anyN ∈ F , �(N) = 0

implies�(N) = 0.

Condition(E) and pseudo-condition(E) are independent of each other.
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Example 3.3. Let X = [0, 1], F the class of all Lebesgue measurable sets on[0, 1], and� Lebesgue’s
measure. Put

�1(E) =
{

1
2�(E) if �(E) < 1,

1 if �(E) = 1.

Then�1 is a monotone non-additive measure. It is easy to verify that�1 fulfils the condition (E). Since�1
is not continuous atX, by Proposition3.2, we know that�1 does not fulfil pseudo-condition (E). In fact,
if we takeEn = [0, 1 − 1

n
] ∪ {1}, n = 1, 2, . . . , thenEn ↗ X. But �1(En) = 1

2(1 − 1
n
) (n = 1, 2, . . .);

therefore�1(En) −→ 1
2 �= �1(X).

Example 3.4. Let (X, F, �) be the same Lebesgue measure space as Example3.3, and�2 the monotone
non-additive measure onF defined as

�2(E) =
{

0 if �(E) = 0,

1 if �(E) > 0.

Then�2 is not strongly order continuous; therefore it follows from Proposition3.2 that�2 does not fulfil
condition (E). But it is easy to verify that�2 fulfils the pseudo-condition (E).

Note 3.5. In Examples3.3 and 3.4 above, both�1 and�2 are null-additive.

4. Egoroff-type theorem

Now we present the main results—four versions of Egoroff’s theorem in finite monotone non-additive
measure spaces. The first conclusion in Theorem 4.1 below has been shown in [3].

Theorem 4.1(Egoroff ’s theorem). Let� be a finite monotone non-additive measure. Then,

(1) � fulfils condition(E) iff for anyf ∈ F and{fn}n ⊂ F,

fn
a.e.−→ f �⇒ fn

a.u.−→ f.

(2) � fulfils condition(E) iff for anyf ∈ F and{fn}n ⊂ F,

fn
p.a.e.−→ f �⇒ fn

p.a.u.−→ f.

(3) � fulfils pseudo-condition(E) iff for anyf ∈ F and{fn}n ⊂ F,

fn
a.e.−→ f �⇒ fn

p.a.u.−→ f.

(4) � fulfils pseudo-condition(E) iff for anyf ∈ F and{fn}n ⊂ F,

fn
p.a.e.−→ f �⇒ fn

a.u.−→ f.

Proof. In [3] we have proved (1). From (1) and Proposition 2.2, we can obtain (2). From (3) and Propo-
sition 2.2, we can obtain (4). Now we only prove (3).
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Necessity: Suppose� fulfils pseudo-condition(E) andfn
a.e.−→ f . LetD be the set of these pointsx in

X at which{fn(x)} does not converge tof (x). If we denote

E(m)
n =

+∞⋃
j=n

{
x ∈ X : |fj (x) − f (x)|� 1

m

}

andE(m) = ⋂+∞
n=1 E

(m)
n for everyn, m = 1, 2, . . . , then we have

D =
+∞⋃
m=1

+∞⋂
n=1

E(m)
n .

Sincefn
a.e.−→ f , �(D) = 0. Thus we obtain a double sequence{E(m)

n } ⊂ F(m, n ∈ N) satisfying the
conditions: for any fixedm = 1, 2, . . . ,

E(m)
n ↘ E(m)(n → ∞) and �

(+∞⋃
m=1

E(m)

)
= 0.

Applying the condition (E) of� to the double sequence{E(m)
n } ⊂ F(m, n ∈ N), there exist increasing

sequences{ni}i∈N and{mi}i∈N of natural numbers, such that

lim
k→+∞ �

(+∞⋃
i=k

E(mi)
ni

)
= 0,

that is,

lim
k→+∞ �

(
X \

+∞⋃
i=k

E(mi)
ni

)
= �(X).

Put Fk = ⋃+∞
i=k E

(mi)
ni

(k = 1, 2, . . .); then limk→+∞ �(X \ Fk) = �(X). Now, we prove thatfn

converges tof onX \ Fk uniformly for any fixedk = 1, 2, . . . .

Since

X \ Fk = X \
+∞⋃
i=k

E(mi)
ni

=
+∞⋂
i=k

+∞⋂
j=ni

{
x ∈ X : |fj (x) − f (x)| <

1

mi

}
,

for anyi�k,

X \ Fk ⊂
+∞⋂
j=ni

{
x ∈ X : |fj (x) − f (x)| <

1

mi

}
.
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For any given� > 0, we takei0 (�k) such that 1
mio

< �. Thus, asj > nio , for anyx ∈ X \ Fk,

|fj (x) − f (x)| <
1

mio

< �.

This shows that{fn} converges tof onX \ Fk uniformly.

Sufficiency: Suppose that for anyf ∈ Fand{fn}n ⊂ F,fn
a.e.−→ f impliesfn

p.a.u.−→ f . Let{E(m)
n |m, n ∈

N} ⊂ F be any given double sequence of sets and satisfy the conditions: for any fixedm = 1, 2, . . . ,

E(m)
n ↘ E(m) (n → ∞) and �

(+∞⋃
m=1

E(m)

)
= 0.

We put

Ê(m)
n =

m⋃
i=1

E(i)
n = E(1)

n ∪ E(2)
n ∪ · · · ∪ E(m)

n (m, n ∈ N)

and

Ê(m) =
+∞⋂
n=1

Ê(m)
n (m = 1, 2, . . .).

Then we obtain a double sequence{Ê(m)
n } ⊂ F(m, n ∈ N) satisfying the properties: for any fixedn ∈ N ,

Ê
(m)
n ⊂ Ê

(m+1)
n , and for any fixedm ∈ N , Ê(m)

n ↘ Ê(m) asn → ∞, and from
⋃+∞

m=1 Ê(m) = ⋃+∞
m=1 E(m),

it follows that�(
⋃+∞

m=1 Ê(m)) = 0.
Now we construct a sequence{fn}n ⊂ F: for everyn ∈ N we define

fn(x) =




1

m + 1
, x ∈ Ê

(m+1)
n − Ê

(m)
n m = 1, 2, . . . ,

1, x ∈ Ê
(1)
n ,

0, x ∈ X −
+∞⋃
m=1

Ê(m)
n .

It is similar to the proof of Theorem in[3], we can obtainfn
a.e.−→ 0 onX. Therefore, from the hypothesis,

we havefn
p.a.u.−→ 0 onX. Thus, there exists a sequence{Fj }j∈N such that limj→+∞ �(X \ Fj ) = �(X)

andfn converges to 0 onX \ Fj uniformly for any fixedj = 1, 2, . . . . Without loss of generality, we

can assumeF1 ⊃ F2 ⊃ · · · (otherwise, we can take
⋂j

i=1 Fi instead ofFj ). Thus for everyj ∈ N , there
existsnj ∈ N such that for anyx ∈ X \ Fj , we have|fi(x)| < 1

j
wheneveri�nj . Therefore, for every

j ∈ N , we have

X \ Fj ⊂
+∞⋂
i=nj

{
x | |fi(x)| <

1

j

}
= X \ Ê

(j)
nj

.
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Noting thatX \ F1 ⊂ X \ F2 ⊂ · · · , for everyk�1,

X \ Fk =
+∞⋂
j=k

(X \ Fj ) ⊂
+∞⋂
j=k

(X \ Ê
(j)
nj

) = X \
+∞⋃
j=k

Ê
(j)
nj

and hence

�(X \ Fk) = �


+∞⋂

j=k

(X \ Fj )


 ��


X \

+∞⋃
j=k

Ê
(j)
nj


 .

It follows from limk→+∞ �(X \ Fk) = �(X) that

lim
k→+∞ �


X \

+∞⋃
j=k

Ê
(j)
nj


 = �(X).

Noting that form, n ∈ N, Em
n ⊂ Êm

n ; thus we have chosen a subsequence{E(j)
nj

}j∈N of the double

sequence{E(m)
n } such that

lim
k→+∞ �


X \

+∞⋃
j=k

E
(j)
nj


 = �(X),

i.e.,

lim
k→+∞ �

(+∞⋃
i=k

E(mi)
ni

)
= 0.

This shows that� fulfils condition(E). �

In the following we present necessary conditions of Egoroff’s theorem. The first conclusion below has
been proved in[10], the rest can be obtained by combining Theorem 4.1 and Proposition 3.2.

Corollary 4.2. Let� be a finite monotone non-additive measure. Then,

(1) if for anyf ∈ F and{fn}n ⊂ F, fn
a.e.−→ f impliesfn

a.u.−→ f , � is strongly order continuous.

(2) If for anyf ∈ F and{fn}n ⊂ F, fn
p.a.e.−→ f impliesfn

p.a.u.−→ f , � is strongly continuous at X.

(3) If for anyf ∈ F and{fn}n ⊂ F, fn
a.e.−→ f impliesfn

p.a.u.−→ f , � is continuous at X and� � �.

(4) If for anyf ∈ F and{fn}n ⊂ F, fn
p.a.e.−→ f impliesfn

a.u.−→ f , � is order-continuous and� � �.

Remark 4.3. In [6] we proved Egoroff’s theorem on monotone non-additive measure space under the
conditions of strong order continuity and property (S) (Note: Murofushi et al. [10] also obtained the
same result). Therefore, it follows from Theorem 4.1 (or [10, Proposition 2]) that strong order continuity
and property (S) of monotone non-additive measure imply condition (E). By Example 5 in [10] and the
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equivalence between the condition (E) and the Egoroff condition, we know that strong order continuity
and property (S) are really stronger than condition (E). Therefore, Theorem4.1(1) improves the previous
result we obtained in [6].
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