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1. Introduction

This paper deals with a multi-objective fuzzy stopping model for ‘fuzzy stochastic systems’
introduced by sequences of fuzzy random variables. The ‘fuzzy random variable’, which is
a fuzzy-number-valued extension of classical random variables, was first studied by Puri
and Ralescu [7] and has been discussed bymany authors. It is one of the successful hybrid
notions of randomness and fuzziness. On the other hand, stopping problems for a sequence
of real-valued random variables were studied by many authors, and their applications are
well-known in various fields (Chow et al. [2], Shiryayev [9]). The optimal fuzzy stopping
for fuzzy random variables is discussed by Yoshida etal. [15], and also optimal stopping
models for fuzzy systems without randomness are studied by Yoshida [12, 13, 14]. This
paper analyze a multi-objective stopping model for fuzzy stochastic systems, by extending
the results of the classical stochastic systems (Aubin [1], Ohtsubo [6]).

In this paper, we also discuss the optimization by ‘fuzzy’ stopping times. Fuzzy
stopping times are introduced for dynamic fuzzy systems by Kurano et al. [5] and they
are discussed by Yoshida et al. [11], and this paper applies the notion of fuzzy stopping
times in a stochastic and fuzzy environment. In this paper, we evaluate the randomness
and fuzziness regarding the stopped fuzzy stochastic systems by probablistic expectations
and scalarization functions respectively. And we give Pareto optimal stopping times for
the multi-objective model, by introducing the notion of Ad-optimal stopping times.

In Section 2, the notations and definitions of fuzzy random variables are given. In
Section 3, fuzzy stopping times are introduced. We formulate a multi-objective optimal
stopping problem for fuzzy stochastic systems by fuzzy stopping times and we give Pareto
optimal fuzzy stopping times for the problem under the assumption of regularity for
stopping rules. Finally, in Section 4, a numerical example is given to illustrate our idea.



2. Fuzzy random variables

Some mathematical notations of fuzzy random variables are given in this section. Let
(2, M, P) be a non-atomic probability space, where Mis a o-field and P is a probability
measure. Let R be the set of all real numbers, let B denote the Borel o-field of R and
let Z denote the set of all bounded closed sub-intervals of R. A fuzzy number is denoted
by its membership function a : R +~ [0, 1] which is normal, upper-semicontinuous, fuzzy
convex and has a compact support. Refer to Zadeh [16] for the theory of fuzzy sets. R
denotes the set of all fuzzy numbers. The a-cut of a fuzzy number a(€ R) is given by

ao:={r e Rla(z)>a} (ae€(0,1]) and a:=cl{z € R|a(z) >0},
where cl denotes the closure of an interval. In this paper, we write the closed intervals by
la]. = [[a];, [a]}] for a € [0, 1].
A map X : Q — R is called a fuzzy random variable if
{(w,2) €A xR | X(w)(z) > a} € M x B forall o €0,1]. (2.1)
The condition (2.1) is also written as
{(w,2) EAxR |z € [X(W)]a} EM x B forall a €0,1], (2.2)

where [X(w)]. = [X(w)]5, [X(@)]F] := {z € R| X(w)(z) > a} is the a-cut of the fuzzy

number X (w) for w € Q. We can find some equivalent conditions ([8]), however, in this
paper, we adopt a simple equivalent condition in the followinglemma.

Lemma 2.1 (Wang and Zhang [10, Theorems 2.1 and 2.2]). For a map X :Q— R, the
following (i) and (ii) are equivalent:

(1) X is a fuzzy random variable.
(ii) The maps w — [X(w)]; and w — [X(w)]} are measurable for all a € [0, 1].

Now we introduce expectations of fuzzy random variables for the description of stop-
ping models for fuzzy stochastic systems. A fuzzy random variable X is called integrably

bounded if w — [X(w)]; and w — [X(w)]} are integrable for all a € [0,1]. Let X be an

integrably bounded fuzzy random variable. We put closed intervals

[E(X)]a = M[f((w)]; dP(w),/Q[f((w)]idP(w)} , ac[01]. (2.3)

Since the map a [E(X)], is left-continuous by the monotone convergence theorem,
the expectation E(X) of the fuzzy random variable X is defined by a fuzzy number ([4,
Lemma 3]):

E()N()(x) = sup min{a, 1[E(X)]Q($)} for r € R, (2.4)

a€[0,1]

where 1p is the classical indicator function of a set D.
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3. A multi-objective fuzzy stopping problem

Let k be a positive integer. In this section, we formulate a multi-objective optimal‘fuzzy’
stopping problemfor k fuzzy stochastic systems and we give Pareto optimal solutions for
the problem. Let {1,2,---,k} denote the set of k objects which are described by fuzzy
stochastic systems with the time space N := {0,1,2,---}. For an object 1 = 1,2,---k,
let {X:1% be a sequence of fuzzy random variables such that such that

(e suplK2 1) <o0 and £ (min (K1) > o0

1<i<k 130 1<i<k

forn =0,1,2,---, where the interval [[X: (@), [X: (w)]F] is the 0-cut of the fuzzy number
X (w). For n =10,1,2,---, M,, denotes the smallest o-field on () generated by all random
variables [ X! (w)]; and [X!(w)]} (1 = 1,2,---,k;m = 0,1,2,--- ,n;a € [0,1]), and M,

o o

denotes the smallest o-field containing | J7_, M,,. Then we call ({)N(ﬁ;}zozo, {J\/in}ffzo> the

fuzzy stochastic system for an object . A map 7 : Q — N U {oc} is called a stopping
time if it satisfies

{w|r(w)=n}eM, foralln=0,1,2,---. (3.1)
Then we have the following lemma which is trivial from the definitions.

Lemma 3.1. Let: = 1,2,---,k be an object and let 7 be a finite stopping time. We
define B N
X (w) =X (v), we{r=n} forn=0,1,2,---. (3.2)

Then, )N(fr is a fuzzy random variable.

Now, for an object 1, we consider the estimation of the fuzzy stochastic system stopped
at a finite stopping time 7, by the evaluation of the fuzzy random variable X:. Let
g : T — R be a o-additively homogeneous map, that is, g satisfies the following (3.3) and

(3.4):
g (Z cn) = g(cn) (3.3)

n=0

for bounded closed intervals {¢,}>2, C T such that >~ ¢, € T, and

9(uec) = pg(c) (3.4)

for bounded closed intervals ¢ € 7 and real numbers y > 0, where the operation on closed
intervals is defined ordinary as - ¢, = cl{d.7" 2z, | 2, € ¢oyn = 0,1,2,---} and
pe = {pz | € c}. Weighting functions, which satisfy (3.3) and (3.4), are used for the
evaluation of fuzzy numbers (Fortemps and Roubens [3]). ;From (3.2), for w € Q, the
a-cut of the fuzzy number X’ (w) must be a closed interval [X?(w)],. Therefore, from the
definition (2.3), the expectation is given by the closed interval

B([X;()]a). (3.5)



Using the above scalarization function g, we put

g(E([X7()]a). (3.6)

Therefore, the evaluation of the fuzzy random variable X i is represented by the following
integral:

1
| aEEi L) de (37)
0
Lemma 3.2. For an object 1 = 1,2,---,k and a finite stopping time 7, it holds that

[ oo o= [ Bosionda= e ([ aitolda). @)

Proof. The properties (3.3) and (3.4) of g imply

d(E([XE()])) = Ba([XE()])).
Therefore . .
/0 g(B([Xi()],)) da = / B(g([X()].)) do

Also, by Fubini’s theorem, we have

[ Bt de =& ([ gificaq).

These complete the proof of this lemma. O

In the following definition, we modify fuzzy stopping times introduced by Kurano et
al. [5] in order to apply them to fuzzy random variables.

Definition 3.1. A map 7: N x Q — [0, 1] is called a fuzzy stopping time if it satisfies
the following (i) — (iii):

(i) For each n =0,1,2,---, the map w — 7(n,w) is M,-measurable.
(ii) For almost all w € 2, the map n — 7(n,w) is non-increasing,.

(iii) For almost all w € Q, there exists an integer m such that 7(n,w) = 0 for all n > m.

Regarding the grade of membership of fuzzy stopping times, ‘7(n,w) = 0’ means ‘to

stop at time n’ and ‘7(n,w) = 1'means ‘to continue at time n’ respectively. And the
intermediate value ‘0 < 7(n,w) < 17 is a notion of ‘fuzzy stopping’. It is easy to check
the following lemma regarding construction of fuzzy stoppingtimes ([5]).

Lemma 3.3.



(i) Let 7 be a fuzzy stopping time. Define a map 7, : § — N by
To(w) :=inf{n | T(n,w) < a}, we forac(0,1], (3.9)
where the infimum of the empty set is understood to be +o0c. Then, we have:
(a) {fa<n}teM, torn=0,1,2,--;
(b) Talw) < Tw(w) aa.wef ifa>d;
)

(c

(d) Folw) :=limypo To(w) < 00 a.a. w € Q.

a

limyip T (W) = To(w) aa.weQ ifa>0;

(i) Let {74}aep,1) be maps 7, : ) — N satisfying the above (a) (b) and (d). Define a
map 7 : N x Q+— [0,1] by

7(n,w) := sup min{a, iz 5 (w)} forn=0,1,2,--- and w € Q. (3.10)
a€[0,1]

Then 7 is a fuzzy stopping time.
Fuzzy stopping times are always finite from Definition 3.1(iii). Now we consider the
estimation of the fuzzy stochastic system stopped at a ‘fuzzy’ stopping time 7 regarding
the i-th object. Let 1 = 1,2,--- .k be an object and let 7 be a fuzzy stopping time. ;From

Lemma 3.1, we have [)N(_";a(w)]a .= [X! ()], for w € {7, = n}, where 7,(w) are ‘classical’
stopping times given by (3.9). By Lemma 3.2, we define a random variable

GL(w) ::/0 g([)?;a(w)]a)da, w € . (3.11)

Note that (3.11) is well-defined since the function a g([j(f;a (w)]a) is left-continuous
on (0,1]. Therefore the expectation E(GY) is the evaluation (3.7) of the fuzzy random
variable X;. By Fubini’s theorem, we have

p@) = ( [ 18,0000 = [ B0l @12

for fuzzy stopping times 7. Then, Pareto optimal solutions for the multi-objective stopping
model are characterized as follows.

Definition 3.2. A fuzzy stopping time 7* is called Pareto optimal if there exists no
fuzzy stopping time 7 such that

E(GL) > BE(GL.) for all objects i = 1,2,---, k

and

E(GY) > E(G%.) for some object i = 1,2,---, k.



We introduce the following A-optimal stopping times in order to obtain Pareto optimal
stopping times. Real numbers {\*}%_, are called weights of objects if they satisfy

k
XN =1 and N>0 (i=12-- k). (3.13)

=1

For a set of weights X := {\}%_,, we define a fuzzy stochastic system {X}}°2,. which is
{M,.}°2 ;-adapted, by

)N(Ti\(w)(x) ‘= Ssup min{a, 1[}2*((4))]&(1’])}7 w e Q? T E R7
a€[0,1] "

where the a-cuts [X(w)], are closed intervals given by

(X (w)a = [Z /\i[f(ﬁ;(w)]LZ/\i[)?é(w)]i] , wel, n=01,2,---.

For fuzzy stopping times 7, we define a random variable

G2 (w) = /0 g([X2 (w)]a)da for w € Q.

Similarly to the proof of Lemma 3.2, we can easily check that its expectation isreduced
to

k
E(G) =) NE(G). (3.14)
i=1
Now we give the definition of A-optimal stopping times as follows.

Definition 3.3. Let A := {\'}%_, be a set of weights for objects. Then a fuzzy stopping
time 7* is called A-optimal if

E(GL) > E(G3)
for all fuzzy stopping times 7.

Theorem 3.1. Let X := {\'}-_, be a set of weights for objects such that

k
XN =1 and N>0 (i=12--k). (3.15)

=1
Then a M-optimal fuzzy stopping time 7* is Pareto optimal.

Proof. Let 7* be a finite A-optimal fuzzy stopping time. If 7* is not Pareto optimal,
then there exists a fuzzy stopping time 7 such that

E(GL) > B(GL.) for all objects i = 1,2,---, k

and

E(GL) > B(GL.)  for some object i = 1,2,--- k.
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Then from (3.14) we have

k k

E(G) =) NE(GL) > ) NE(GL) = E(GL).

This contradicts the A-optimality of 7*, and so we obtain this theorem. O

Finally, in order to construct A-optimal fuzzy stopping times, we introduce the follow-
ing (A, a)-optimal fuzzy stopping times.

Definition 3.4. Let A := {\}% | be a set of weights for objects andlet o € [0,1]. A
fuzzy stopping time 7* is called (A, )-optimal if

E(g([X2()]a) = E(9([X2,(-)]a)
for all fuzzy stopping times 7.

In order to characterize (X, «)-optimal stopping times, we let

o= esssup B(g(X20)IML) forn=0,1,2,---,  (3.16)

T: stopping times, 7>n

where the definition of the essential supremum is referred to [2, Chapter 1-6]. Define a
stopping time o2 : Q s N by

oMw) = inf {n | g([X2(@)]) = 1ha(e) } (3.17)

for w € © and « € [0, 1], where the infimum of the empty set is understood to be +oc.
Then the following lemma can be checked easily by Chow et al. [2, Theorem 4.1].

Lemma 3.4. Let X := {\'}}_| be a set of weights for objects. Suppose
Ploh <o) =1 forall o €[0,1]. (3.18)
Then, for a € [0,1], the following (i) and (ii) hold:
(i) Malw) = max{g([X)(@)]a): Mp10(@)} aa weQ forn=0,1,2;

(ii) o} is (A, @)-optimal and E(vg,) = E(g([)w(ﬁé()]a))

[}

In order to construct an optimal fuzzy stopping time from the (A, a)-optimal stopping
times {02} 4e[0,1], we need the following regularity condition.

A

~(w) is non-increasing for almost all

Assumption A (Regularity). The map a — o
w € .

Under Assumption A, we can define a map 5 : N x Q s [0, 1] by

& (n,w) := sup min{a, Lipaspy(w)} forn =0,1,2,--- and w € Q. (3.19)

a€[0,1]



Put the a-cut (3.9) of &*(n,w) by 6}(w). Then 6}(w) and ¢}(w) may not equal only at
most countable many « € (0, 1], so we obtain the following result.

Theorem 3.2. Let A := {\'}£_ | be a set of weights for objects satisfying (3.15). Suppose
(3.18) and Assumption A hold. Then 6* is a A\-optimal fuzzy stopping time and it is also
Pareto optimal.

A

Proof. ;jFrom Assumption A and Lemma 3.3(ii), 6" is a fuzzy stopping time. ;From

Lemma 3.4, for all fuzzy stopping times 7 we obtain

B@) < [k (X201 do = [ B da= [ BGIR01) o (20

Since 62 (w) # o) (w) holds only at most countable o € (0, 1], we have

P ([ atyena) =8 ([ ai00d0). (.21)

By (3.20), (3.21) and Fubini’s theorem, we obtain

= E(G).

Therefore 6% is Md-optimal. We also obtain Pareto optimality of &* from Theorem 4.1.
O

4. A numerical example

An example is given to illustrate our idea of the multi-objective optimal fuzzystopping
problem in Section 3. In this example, & objects mean k assets in a financial market
{B.}>>, which is a sequence of real random variables. We assume that {B,}22, is a
random walk:

B,:=Y W, n=01,2,, (4.1)
m=0
where {W,,}22 is a sequence of independent random variables such that

PW,=-1)=1/2 and P(W,=1)=1/2 forn=0,1,2,---. (4.2)



The price of each asset i(=1,2,---, k) is described by a fuzzy stochastic system {X?}>2
as follows. ' ' ' '

Y, =p' +r'n4+v'B,, 1=1,2,--- k. (4.3)
where p', r* and v’ are constants such that p' is the initial price of an asset 7 in the market,

r* is the rate of growth of the asset price in the market, and v* is the volatility of the asset
i in the market. Let ¢' and d' be constants satisfying 0 < d' < 3(¢' —r'). We put

M =Y ' —c(n+1) forn=0,1,2,---. (4.4)

where c'(n + 1) means the maintenance cost for asset i. Hence we take a sequence of fuzzy
random variables { X'} by

& | L(Mi(w) —z)/a’, if £ < Mi(w
S = { GCR S ) )

forn=0,1,2,---,w € Q and z € R (see Figure 1), where {a’ }°° is a sequence given by
at = d'(n+1) (n =0,1,2,--+) and the shape function is given by L(z) := max{l—|z|,0}
(z € R). The corresponding o-field M,, is the smallest o-field generated by the random
variables Wy, Wi, Wy, -+  W,,. Then their a-cuts are

(X5 (@) = [M(w) = (1 = a)ay, My(w) + (1 = a)a,], weQ

forn=20,1,2,--- and a € [0, 1].

Figure 1.

Now we take a weighting function by g([z,y]) := (z + 2y)/3 for z,y € R satisfying = < y.
Then g satisfies the properties (3.3) and (3.4), and we can easily check

9([Xa(w)]a) = My (w) + a, weq

for a € [0,1], and so

G (w) = / o([Xi(@)l) da = Mi(w) + gal, wen,

Let A := {\"}%_| be a set of weights for assets satisfying (3.15). It means a kind of portfolio
for the assets. Then we have

Zx/ (X (w da—Z)\ZMZ 12/\” we .



For simplicity, we put

k k
A w) = Z /\iMé(w) and aﬁ = Z X‘d;.
=1 =1

Hence we check Assumption A. Let a,a’ € [0,1] satisfy o' < « and let w € Q. If
g(X;\’a,(w)) = ’yf;al(w) forsome n, then we have

oK) = M) + 1500
= M) + 50y + 2520)
= g(X) () + 2720)
= () + 25,
> Blg(X2,) | M)() + 552 B0} | Mo)(e)
= (9002, + 2520} | M, ) (o)

= B(g(X2()a) | Ma)(w) aaweQ

for all stopping times 7 such that 7 > n. Tt follows g([X}(w)].) = ’72@(”)- Therefore we
obtain 6%(w) < &%/(w) for almost all w € Q, and Assumption A is fulfilled. On the other
hand we have

k

g([XaWa) = Y Ng(IX(w)la)

1

:
= Z p—r Z/\ZUZB Zz\"<c-—r—13adi>(n—|—1).

=1

Therefore the finiteness (3.18) is trivial from Chow et al. [2, Theorem 4.5] since

‘ l—a : 1
N —ri———d' ) =2 XN (c—ri—=d) >0
2 ( 3 >‘z:: ( ' 3)

Putting p* := Ele N(pt =), vt = Zle Mo and ¢} = Ele Y (c —rl— —dl), we

have

9([X2(@)a) = p* + ' Ba(w) = ea(n +1). (4.6)
Thus the finite (A, a)-optimal stopping times for the problem are
orw) = inf {n | g([R(@)]a) = vha(w) }

= inf {n |ess sup B (v B, — i1 | M) (w) < 0™ By (w) — cAn}

— 3

T>n+1
= inf{n|esssupE< Z W (w) — e T—n)|M>(w)§0}
T>n+1 m=n-+1
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for w € ), where fy?w is given by (3.16). By Theorem 4.1, Ad-optimal fuzzy stopping time,
which is also one of Pareto optimal stopping times, is given by

5(n.w) = sup minfa, 1sssn) (@)}, (4.7
a€[0,1]

for n = 0,1,2,--- and w € Q. We can easily check that the corresponding optimal
expected value for the fuzzy stopping problem is

BG) = [ B0l da=p 40 [ BB da - [ QB+ 1)da (49

0

for a portfolio A := {\'}_ for the assets.

Finally, when letting d* to zero especially in this example, we note that the fuzzy
random variables X are reduced to the ‘classical’ random variables.

11



References

[1] J.P.Aubin, Mathematical Methods of Game and Economic Theory (North-Holland,
Amsterdam, 1979).

[2] Y.S.Chow, H.Robbins and D.Siegmund, The Theory of Optimal Stopping: Great
Fzpectations (Houghton Mifflin Company, New York, 1971).

[3] P.Fortemps and M.Roubens, Ranking and defuzzification methods based on area
compensation, Fuzzy Sets and Systems 82 (1996) 319-330.

[4] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, A limit theorem in some dynamic
fuzzy systems, Fuzzy Sets and Systems 51 (1992) 83-88.

[5] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, An approach to stopping prob-
lems of a dynamic fuzzy system, preprint.

[6] Y.Ohtsubo, Multi-objective stopping problem for a monotone case, Mem. Fac. Sci.
Kochi Univ. Ser. A 18 (1997) 99-104.

[7] M.L.Puriand D.A.Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986)
409-422.

[8] M.L.Puri and D.A.Ralescu, Convergence theorem for fuzzy martingales, J. Math.
Anal. Appl. 160 (1991) 107-122.

[9] A.N.Shiryayev, Optimal Stopping Rules (Springer, New York, 1979).

[10] G.Wang and Y.Zhang, The theory of fuzzy stochastic processes, Fuzzy Sets and
Systems 51 (1992) 161-178.

[11] Y.Yoshida, M.Yasuda, J.Nakagami and M.Kurano, A monotone fuzzy stopping time
for dynamic fuzzy systems, Bull. Infor. Cyber. Res. Ass. Stat. Sci., Kyushu University
31 (1999) 91-99.

[12] Y.Yoshida, Markov chains with a transition possibility measure and fuzzy dynamic
programming, Fuzzy Sets and Systems 66 (1994) 39-57.

[13] Y.Yoshida, An optimal stopping problem in dynamic fuzzy systems with fuzzy re-
wards, Computers Math. Appl. 32 (1996) 17-28.

[14] Y.Yoshida, Duality in dynamic fuzzy systems, Fuzzy Sets and Systems 95 (1998)
53-65.

[15] Y.Yoshida, M.Yasuda, J.Nakagami and M.Kurano, Optimal stopping problems of a
stochastic and fuzzy system, submitted.

[16] L.A.Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338-353.

12



