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Abstract In this paper, we shall discuss two properties of a fuzzy number-valued fuzzy set
function deduced from a fuzzy number-valued fuzzy integral over the fuzzy sets. They are the
property‘( s) and the property( p. g. p. ) ,which are concerned with the convergence of sequence
of fuzzy measurable functions on fuzzy number-valued fuzzy measure space.
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0 Introduction

Zhang introduced a fuzzy number-valued fuzzy measure (which is called as“a( z ) fuzzy
measurehereafter)and a (z) fuzzy integral (this means a fuzzy number-valued fuzzy integral)on
fuzzy sets. Zhang(??)discussed also some properties of a fuzzy number-valued fuzzy set function 7
deduced from a (z) fuzzy integral over fuzzy sets with respect to a (z) fuzzy measure x. He
proved that the fuzzy number-valued fuzzy set function 7 preserves some structural
characteristics, such as £ -additivity , null-additivity ,autocontinuity and uniformly autocontinuity,
of the original (z) fuzzy measure «.

The concepts of the pseudometric generating property (it is abrebiated to “{ p. g. p.) 7). and
the property (s) of a (z) fuzzy measure are introduced b.y Lif*). Both the property (p. g. p. ) and
the property (s) of a (z) fuzzy measure play an important role in the study of the convergence for
the sequence of fuzzy measurable functions(see(4]). In this paper, we shall discuss,adding the
previous characteristics, two properties of a fuzzy number-valued fuzzy set function deduced from
a (z) fuzzy integral. It is proved that the property( p. g. .) and the property (s) of a (z) fuzzy
measure u conserves that of the fuzzy number-valued fuzzy set function 7 defined by a (z) fuzzy

integral with respect to a (z) fuzzy measure #.

2 Preliminary definition

In this paper,we shall assume that X is a nonempty set, ¥* is the set of all fuzzy numbers,
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F(X) = {A;A:X — [0,1]) is the class of fuzzy subsets of X , F* (X) is a fuzzy o -algebra of
subsets of F(X) . All fuzzy set A are supposed to belonge to F* (X) . All concepts and signs not
defined in the paper may be found in [1~4].

Definition 1™ Let Fi= {a;a>0,2€ F*}. A fuzzy number-valued fuzzy set function .
F*(X) — F}is said to be fuzzy number-valued fuzzy measure,called by (z) fuzzy measure,if it
satisfies the following conditions .

(ZFM1) (@) =0;

(ZFM2) A C B=x(A) < 2(B);

ZFM3) A CHC-=i[A) = @) imEE);

(ZFM4) A DA, D ,and 2(A) # & :>(ﬁZ,) = (@ lima(A).

Definition 2047 A fuzzy number-valued fuzzy set function xis said to have the property (s)
if (2) EIZ/Z(E,) = 0 ,there exists a subsequence {E.,): of {E,}, such that ;(}EE“{,) = 0.

Definition 31 A fuzzy number-valued fuzzy set function zis said to have the pseudometric
generating property,called by (p. g. p.), if for any € > 0 ,there exists § > 0 such that

HEYV 2(F) <F=p(E U F) <.

Let f: X —~R'anda € R'. Put F, = {z;f(z) 2 a} and

1, fz€F,
0, ifzx & F,.
Definition 4  f is said to be a fuzzy measurable function if Xr, € F*(X) foranye € R.

x,r_ (I) =

Let M3 denote the class of all non-negative fuzzy measurable function on (z) fuzzy measure
space (X,F " (X),z). Unless stated otherwise,all fuzzy set A are supposed to belong to F* (X)
and all real functions we consider are assumed to be non-negative fuzzy measurable function.

Definition 513 Let (X,F* (X),z) be a (z) fuzzy measure space, 4 € F*(X),f € M;.
The fuzzy number-valued fuzzy integral ((z) fuzzy integral in short) of S on A with respect to zis

defined by
[ fdR=_U AT swp o A GCEN %07, sup @ A (GC N 28]
A 2€(0.1] e€[0.0) a€ [0.00)

where F, = {z.f(z) > a},a € [0,00).
3 The inheritance of fuzzy set function

In this section, we discuss the inheritance of the fuzzy number-valued fuzzy set function
induced by the (z) fuzzy integral.
Definition 6") For a given and fixed function f € M} ,we define T F (X))~ F} by
i@ = | iz
for every A € F*(X).7,is called the fuzzy number-valued fuzzy set function induced by f. In

this section, 7 is used instead of 7, if there is no confusion.
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Lemma 197 Let {A4,} C F*(X) and (p) im7(&,) = 0. Then,
(@) limu(A, N %) =0
for any fixed 8> 0.
Lemma 2 Let any « € [0,50) ,we have
[ra<imrd@nu) <& Vr>eR@ENL)<a
Proof I (AN Xz, < afor any ¥ > «a ,then for any A€ (0,17,
(A N Xr, N7 < aand (2(4A N Ar, NELa

Therefore,

[(fdi= U A0 sup s A GG N 207, swp s A GG N 2031
a 2€(0.1] T1€[0.00)

= AE SUPS/\ AN DTV sup s A (AN 200171,
ie(o0.1] 1€ (a,00) .

sup s /\ <;1<A NX)EV sup s A AN X007 ]

<15(0 3 ALaV Jup s A (u(A ﬂ Xr)); ya 'V Sup s A RCAN 2=00F)
g)é(q 9 AlaV sup (/J(A NX:ND5ia V sup (,u(A N 217
< U A[a V a,a V a]
1€
=a.

Conversely,letj fdz < a, then for any A € (0,17, we have
Sup s A (u(A N X))7 < aand Sup s A AN N <a

Therefore,
sup:/‘\ (AN %7 < @and SUPS/\ AN LN <a

3€ (a.00)

Hence,for any Y>>a,
YA AN GDT<aand Y A (AN X8 e
Consequently,for any Y>>a,we have
(#(AN XF)); aand (z(A N Xr, Nt <Ka

That is,
HANE)<a, V¥, >a

Thus, we have proved the first part of conclusion in this lemma. The second issue from the
monotonicity of £. -

Theorem 1 Let 7 be fuzzy number-valued fuzzy set_function induced by f. If % has the
property( p. g. p. ) »then 7 also has the property (p. g. p. ).

Proof  Since x has the property (p.g. p.), for any € > 0, there exists & > 0 such that

A VB <I=pAUB K~

Without loss of generality ,suppose & < ¢.

To prove that 7 has the property (p. g. p.) ,we should show that
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7A) VB K 3=>HAU B <=,

In fact,by using Lemma 2,we have
€A VB <8=p(AN %) V 2EN 1) <8

Therefore,
HAUB N ) <ce

Thus, by using again Lemma. 2, we obtain that
de<e,
<

that is, 7(A U B) < &. This show that 7 has the property (p. g. ».).
Theorem 2 Let 7 be (2) fuzzy set function induced by f . If 2 has the property (s) ,then 7

also has the property (s) .
Proof Let (p) im7(E,) = 0. By lemma 1,for § = %
0.

) lim “(E, N ry) =

,we have

Since # has the property (s) ,there exists a subsequence {A4), },of {E,}, such that

(& lim EQ N %5,) = 0.
A~ too 7

As (p) E'Z;KE:}‘)’) =0 too,by Lemma 1,for A =%,we have
(‘B) lim ;(E:H) N Xry) = 6

oo e
%2)}1 of (E,E}‘)) i such that

Therefore,by the property (s) of z ,there exists a subsequence {E¢

(& lim E®, N %7,) = 0.
b~too ]

Repeating this procedure, we can obtain a sequence {¢,}. of subsequences of {E,}. ,where €,

» such that
(E@h D (EE),

n(k) I &

(E@)om = 1,2,
Vm=1

and
2Clim ES N %, ) = 0.
oo P

Taking E,my = E&)ysm = 1,2, - Then, {E,(.,} is a subsequence of {E,} and satisfies
L:-}kE.(M) c L_J'kE:ﬁﬂi »

k=1,2,--. For any a > 0 ,takem, >> 1 such that % < a. Then,we have
4o Hoo __ 4oo oo __
N U Nx) =N UEm N XD
kel mmk kmmy mek
+oo oo
i UEenx)

k—mo -

doo Feo oy
Ci_ﬂ Q‘(ﬁ.(:) n Xr,)
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Consequently,

Thus

oo te
=N UED N )
too deo (.,
N U Eamy N Xra )
. k=1 m=1 "0

u( lim Eo N Xr,) < u( lim z:;:)) Nx,y)= 0,
oo b0 - 0

;(]-?-?En(m)ﬂx""):a’ Ya>0.

It follows that,by Definition 11, 7( lim E.) = 0. This shows that 7 has the property (s) .
00
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