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Abstract

We consider a stopping problem based on fuzzy stochastic system
which is defined by sequences of fuzzy random variables. By a fuzzy-
number-valued extension of classical random variables, a fuzzy stopping
time for these sequences is discussed. Here we will induce a linear rank-
ing function on a-cut of fuzzy numbers and formulate the fuzzy reward
of a stopping rule as an optimization problem. Then an optimal fuzzy
stopping time can be analyzed. Our aim is to characterize the optimal
fuzzy stopping time of fuzzy stochastic system and describe the optimality
equation treated as Dynamic programming. An example of the Markov
model is presented.

Fuzzy stopping problem; dynamic fuzzy system; fuzzy decision; One-step Look
Ahead policy.
1 Introduction
Zaheh’s extension principle for mapping f:

7(b) = sup 3(a).
b=7f(a)



Fix w throughout. Then, random variables are mapping
Xw):R>R.
Also stopping times are
T(w) €R.
We can apply Zaheh’s extension principle as follows

Fuzzification of values at stopped time(z) = sup  Fuzzification of stopping times(n)
ne=X,(w)

Let a fuzzy stopping time 7(n,w) by
7R [0,1].
Then we obtain

Fuzzification of values at stopped time(z) = sup  7(n,w).
ne=X,(w)

Let a fuzzification of the mapping X.(w) : R — R by a fuzzy random variable
X (w)(2): _
Xn : Q= F(R).

Then 1t follows

1/;(1‘) = Fuzzification of values at stopped time(z) = sup T(7(n,w), X, (w)(x)),

where T is a t-norm and means the intersection of fuzzy sets by extension
principle.
If T is a product, then

() = sup{#(n,w) Xa (W) ()}.

n

If T is a min, then

P (x) = sup min{7(n,w), X, (w)(z)}.
It’s another extension.

Let E, E1, E5 be convex compact subsets of some Banach space. Throughout
the paper, we will denote a fuzzy set and a fuzzy relation by their membership
functions. For the theory of fuzzy sets, refer to Zadeh [?], Novék [?] and Dubois
and Prade [?]. A fuzzy set 4 : F — [0, 1] is called convex if

Az + (1= Ny) > u(z)Au(y), z,yeE, Ael0,1],

where a A b := min{a,b}. Also, a fuzzy relation h : Ey x Ey — [0, 1] is called
convex if

%()\331 + (T =XNaxg, Ayy + (1 = Nya) > z(331, Y1) /\%(452, y2)



for z1,22 € E1, y1,¥2 € F2 and A € [0,1]. The a-cut (a € [0,1]) of the fuzzy
set u is defined by

g ={z € E|u(z)>a} (a>0) and #Ug:=cl {z € F|u(z) >0},

where ‘cl” denotes the closure of a set.

Let F(F) be the set of all convex fuzzy sets, @, on F whose membership
functions are upper semi-continuous and have compact supports and the nor-
mality condition : sup,.pu(z) = 1. We denote by C(E) the collection of all
compact convex subsets of £ and by pg the Hausdorff metric on C(FE). Clearly,
u € F(F) means u, € C(F) for all & € [0,1]. Let R be the set of all real
numbers. We see, from the definition, that C(R) and F(R) are the set of all
bounded closed intervals in R and all upper semi-continuous and convex fuzzy
numbers on R with compact supports, respectively.

The addition and the scalar multiplication on F(R) are defined as follows:
For m,n € F(R) and A > 0,

(m+n)(z) = sup {m(z1) An(z2)} (z €R) (L.1)

z1,22€R: z14z2=2r
and

(A) () 1= { ig@)) 120 enm). (1.2)

Hence (m + n)o = Mo + e and  (AM)q = A, (a € [0,1]) holds where
A+B:={z+y|lzecdyeB}, MM={dz|zc A}, A+0=-0+A4:=A
and Af) := () for any non-empty closed intervals A, B in R. We use the following
lemma.

Lemma 1.1 For anyu € F(F1) and p € F(FEy x Es) satisfying p(x,-) € F(Es)

for @ € Ey, it holds that sup {u(z) Ap(z,-)} € F(FE2).
reE,

We consider the dynamic fuzzy system([8, ?]) with fuzzy rewards in order
to consider the a fuzzy stopping problem.

Definition 1 The dynamic fuzzy system is defined by three elements (S,q,7)
as follows:

(i) The state space S is a conver compact subset of some Banach space and
is a element of F(S). Since the system is in a fuzzy environment, so that
a state of the system is called a fuzzy state.

(i1) The law of motion q: S x S — [0, 1] for the system is time-invariant and,
is assumed that § € F(S x S) and §(z,-) € F(S) forallz € S.

(i) The fuzzy reward ¥ : S x R+ [0,1] is assumed that ¥ € F(S x R) and
7(z,) € F(R) forallz € S..



If the system is in a fuzzy state § € F(S5), a fuzzy reward R(S) is earned
and the state is moved to a new fuzzy state Q(3), where @ : F(S) — F(S) and
R: F(S) = F(R) are defined by

QG)(y) = ilég{?(r) Aqlz,y)} (y€5) (1.3)
and
R(3)(z) := ilé};{g(m) AF(z,2)} (z €R). (1.4)

Note that by Lemma 1.1 these maps ) and R are well-defined.

For the dynamic fuzzy system (S,q,7), if we give an initial fuzzy state § €
F(S), we can define a sequence of fuzzy rewards {R(5;)}$2,, where a sequence
of fuzzy states {5;}£2, is defined by

$1:=5 and Sip1 :=Q(S) (t>1). (1.5)

In the following section, a fuzzy stopping problem for {R(S:)}£2, is formulated.

2 Fuzzy stochastic system

For the sake of brevity, denote F = F(S). The metric p on F is given as
p(U, V) = SuPuepo,1] PS (Ua, Vo) for ,v € F (see Nanda [?]). Let B(F) be the
set of Borel measurable subsets of F with respect to p. Putting by Q; = F*
the ¢(> 1) times product of F and by B := B(F") the set of Borel measurable
subsets of F* with a metric p* on F? defined by

t

PHEYAEY) =) 27 p(3,3). (2.1)

=1

We can interpret {5;}52; € Qo0, where {5;}52, is defined by (1.5) with any given
initial fuzzy state 57 = s € F. Here, applying the idea of fuzzy termination time
in Kacprzyk [?, 7, 7], we will define a fuzzy stopping time. Let R be the set of
all natural numbers.

Definition 2 A fuzzy stopping time is a fuzzy relation & : Qoo X R — [0, 1] such
that

(i) for eacht > 1, &(-,t) is By-measurable, and

(i) for each @ € Qo, 6(W, ") is non-increasing and there exists iz € R with
g(w,t) =0 for allt > tz.

In the grade of membership of stopping times, ‘0’ and ‘1’ represent ‘stop’
and ‘continue’ respectively. That is, the lower the value, the higher the grade
of “stop”. We denote by X the set of all fuzzy stopping times.



Lemma 2.1 Let any 6 € X. Define a map 64 : Qs — R by
Fo(@)=min{t > 1 |6(@,t) <a} (@e Q) foraec(0,1]. (2.2)
Then, we have:
(i) {6a<tteB: (t21);
(i) 6a(@) <6a(@) (@WEQw) fa>a';
(i) limgipg 6o (@) = 6o(@) (@€ Q) if a>0.

Proof. (i) is from {6, >t} = {@ € Qo | 6(&,t) > a} € B;. (ii) and (i)
follow immediately from the definition. qed.

In order to treat an optimal fuzzy stopping problem, we specify a function
G(s,5) with a linear ranking function g, which measures the system’s perfor-
mance when a fuzzy stopping time & € ¥ and an initial fuzzy state 5§ € F were
adapted. It seems to be natural that the scalarization of the total fuzzy reward
should be incorporated for these kind of optimization. Refer to Fortemps and
Roubens [7], Wang and Kerre [?, 7] and Kurano et al [9] for a ranking method
and an ordering of fuzzy sets.

We define weo () : F = Qoo by
Woo (8) 1= {5t }121, (2.3)

and {5:}£2, is defined by (1.5) with §; = 5. Let g : C(R) — R be a continuous
and monotone function. Using this, the description of the scalarization of the
total fuzzy reward will be completed by

G(s,5) ::/0 9(p(8,8)q) da (2.4)

Fo—1
where 74 1= 6o(weo(5)) and ¢(5,5)q := Z R(5t) provided 2(1) := {0}. Note
t=1
that since ¢(8,8)o € C(R) and the map a — g(¢(5,7)q) is left-continuous on
(0, 1], the right-hand integral of (2.4) is well-defined. Now, our objective of the
problem is to maximize (2.4) over all fuzzy stopping times & € X for each initial
fuzzy state s € F.

Definition 3 Fors € F, a fuzzy stopping time 6* is called s-optimal if G(5,¢) <
G(5,6%) for all & € 3. If & is S-optimal for all S € T, &* is called optimal.

First, we establish several notations that will be used in the sequel. Associ-
ated with the fuzzy relations § and 7, the corresponding maps Q,, : C(S) — C(95)
and R, : C(S) = C(R) (o € [0,1]) are defined, respectively, as follows: For
D e C(9),

{ye S| q(z,y) > afor somez € D} fora >0

Qu(D) = { c{y € S|q(z,y) > 0 for somez € D} for a =0, (2:5)



and

{z € R|7(z,z) > a for somez € D} for a > 0

Ra(D) := { c{z € R|7(z,z) >0 for somez € D} for a =0. (2.6)

By ¢ € F(S x S) and ¥ € F(S x R), these maps Qo and R, (a € [0,1]) are
well-defined. The iterates Q°, (¢ > 0) are defined by setting QY := I(identity)
and iteratively,

QZH = QaQta (t > 0)'

In the following lemma, which is easily verified by the idea in the proof of Kurano
et al. [8, Lemma 1], the a-cuts of Q(5) and R(3) defined by (1.3) and (1.4) are
specified using the maps @, and R,.

Lemma 2.2 ([8, ?]). For any a € [0,1] and § € F, we have:

(i) R(8)a = Ra(5a);
(i) 50 = Qu'(5a) (t21),
where 5t o 1= (5;)a and {5:}52, is defined by (1.5) with 57 =5.
Here we need the following assumption which is assumed to hold henceforth.

Assumption A (Lipschitz condition). There exists a constant K > 0 such
that

ps(Qa(D1), Qa(D2)) < K ps(D1, D) (2.7)

for all @ € [0, 1] and Dy, D4 € C(S).

Theorem 2.1 Let a fuzzy stopping time & € X. Then, the map &'(-,-) : F x
R — [0,1] defined by (5,1) := &(we(8),t) (5 € F,t € R) has the following
properties (i) and (ii):

(i) &'(-,t) is B(F)-measurable for each t > 1.

(i1) For each s € F, &'(8,-) is non-increasing and there erists tz € R such that
7(5,t) =0 for all t > t;.

Proof. For t > 1, we define a map w; : F — F* by w(5) := {5;}}_,, where
{51}52, is defined by (1.5) with §; = 5. For (i), it suffices to prove that wyp is
continuous for each ¢ > 1, together with the measurability of 6. We will show
only the case of t = 2, since the case of ¢ > 3 is proved from (2.1) in the same
manner. For 5,5 € F, we have

P (w2(3) wa(¥)) < p(3.7) + 271 p(Q(E), Q) < (1+ K/2)p(3.5),



from Lemma 2.2 and Assumption A. This shows the continuity of wa(-). Also,
(i1) follows from the definition of a fuzzy stopping time. qed.

Observing the scalarization (2.4) and the objective function G(5, &) for the
stopping problem, we can confine ourselves to the class of fuzzy stopping times
() : F x R— [0, 1] satisfying (i) and (ii) in Theorem 2.1. The class of such
fuzzy stopping times will be denoted by ¥’. The following theorem is useful in
constructing an optimal fuzzy time which is done in Section ?7.

Theorem 2.2 Suppose that, for each a € [0, 1], there exists a B(C(S))-measurable
map o, : C(S) — R. Using this family {04 }aelo,1], define the map 6 : F x R —
[0,1] by

&(s,t) = sup {aA t:00(3a)>t) )}, seF, t>1. (2.8)
a€l0,1]

Then, if for each s € F, 04(5q) is non-increasing and left-continuous in a €

[0, 1], it holds that
(i) €X', and
(i) 00(54) =min{t >1|a(5,t) <a} (ae€(0,1]).

Proof. Tf 04(54) is non-increasing in o € [0, 1], the inequalities &(5,¢) >
(s, t+1) (t > 1) follow from (2.8). Also, (2.8) implies that, for each ¢ > 1 and
a €]0,1],

(FeFleG 1) 2a)= ({FEF | vaci/n(Facisn) >1}. (2.9)
n=1
For a continuous map 7, : F — C(S) defined by 1,(5) = 54 (5 € F), we have
(5eFloa(a) >t} =1 ({D €C(S) | oa(D) > t+1}),

sothat {s € F | ¢(5,t) > a} € B(F) follows from (2.9) and B(C(S))-measurability
of o4. The above facts imply & € X', Also, (ii) holds obviously. qed.

3 Optimal fuzzy stopping time

In this section, we try to construct an optimal fuzzy stopping time, by applying
an approach by a-cuts. Now, we define a non-fuzzy stopping problem specified
by C(S), Qu« and R, (a € [0,1]), associated with the fuzzy stopping problem
considered in the preceding section. For each a € [0,1] and any initial subset
¢ € C(9), a sequence {c;}52, C C(S) is defined by

e :=c and ep1 = Qaler) (E>1). (3.1)
Let

Yy ={0:C(S)~» R |{oc =t} € B(C(S)) for each t > 1}. (3.2)



Using this sequence {e:}52; given by (4.1) with ¢ := ¢, let

t—1

*(e,t) = E Ro(c;) for e € C(S). (3.3)

=1

Note that ¢%(c,o(c)) = 27:(?_1 Ro(Q%71(e)) € C(R) for all ¢ € £;. The non-
fuzzy stopping problem considered here is to maximize g(¢* (¢, o(c))) over all
o € X1, where g is the weighting function given in Section 7?7. A map 7, € 3
is called an a-optimal stopping time if

9(¢%(c,ma(e))) > g(¢“(c,0(c))) for all o € &y.
In order to characterize a-optimal stopping times, let

¥ (¢) := sup g(¢®(c,o(c))) fort >1and c e C(S5), (3.4)

o€,

where Xy :={oVi|oe X} (t>1).

Assumption B (Closedness). For any a € [0, 1], if (¢*(54,1),5:.0) € K*(9)
for some ¢, then (¢ (5a,t'), 5t ,o) € K*(g) for all#’ > t where K*(g) := {(h,¢) €
C(R) x €(S) | g(h) = g(h + Ra(Qal(c)))}.
For ¢ € C(S5), let
ra(e) = min{t € B | (% (c,1), &) € K*(9)). (3.5)

Then, the next lemma is given as deterministic versions of the results for
stochastic stopping problems in Chow et al. [4] and Kadota et al. [?].

Lemma 3.1 (c.f. [4, Theorems 4.1 and 4.5] and [?]). Suppose Assumption B
holds. Let a € [0,1]. The following (i) and (it) hold:

(i) 7 () = max{g(¢*(c, 1)), 741 (0)} (t = 1,ceC(S)).

(ii) Suppose that lim;co g(¢®(c, 1)) = —oo and sup,s; g(9*(e,t)) < oo for
each ¢ € C(S). Then, 12 is a-optimal and v§(-) = g(¢®(-, 72(+))).

Chow et al. [4] studied the general case in optimal stopping problems, and
Kadota et al. [?] discussed the one-step look ahead optimal stopping times
given by (3.5). For each a € [0,1], applying the above lemma, we can find
an a-optimal stopping time 7 under conditions of Lemma 3.1(ii). Assuming
the existence of a-optimal stopping times for each a € [0,1], let {7} }ae[0,1] be
the family of such stopping times. Here, we try to construct an optimal fuzzy
stopping time from {7} },¢[0,1]. For this purpose, a regularity condition is need
to prove our main results Theorem 3.1.

Assumption C (Regularity). 72(5,) is non-increasing in « € [0, 1].



We can assume the left-continuity of the map a — 7(5,), by considering
limyr4a 72 (547) instead of 7%(5,). Define a map 7 : F x R — [0, 1] by

7*(5,t) ;== sup {a A 1{t:7;(§a)>t}(t)} : (3.6)
a€l0,1]

forall s &€ F and t € R.

Theorem 3.1 Suppose Assumptions B and C hold. Then, 7 defined by (3.6)
is an s-optimal fuzzy stopping time.

Proof. From Assumption C, 7%(54) < 72 (5ar) if @ > o, so that 7* € ¥’ follows
from Theorem 2.2. For any 5§ € F and & € ¥/, from Lemma 2.1 and 2.2 we have

CT CT

Z o(Bra) = Z ' (Q571(5a)). (3.7)

Since o4 € X1, the optimality of 7% implies by (3.7) that, for all & € [0, 1],

9(2(5,6)a) = 9(¢” (52, 0a(5a))) < 9(¢* (50, 72(52))) = 9(2(5,77)a).

Therefore, we have

G(3,5) = / 0(9(5,5)a) da < / 0(9(5, 7)) da = G(3,77).

This means that 7* is s-optimal, as required. qed.
If the regularity does not hold for some 5§ € F, the s-optimality of 7 does
not follow. But, 7* defined by (3.6) is thought of as a good fuzzy stopping time.

4 Numerical example

In this section, an example is given to illustrate the theoretical results. Let
S :=[0,1] and 0 < 3 < 0.98. The fuzzy relations ¢ and 7 are given by

q~(x,y):(1—10_2|y—[>’9:|)\/0, éL‘,yE[O,l]

and, for a given constant A > 107%(1 — 3),

0 otherwise

F(r,z):{l 1f.'13—z.:)\ for z €[0,1], z € R,

where A means an observation cost. Then, each @, and R, of (2.5) and (2.6)
are calculated easily as follows: For 0 <a <b <1,

Qul[a,b])=[fa—(1—a),Bb+ (1 —a)] and Ra([a,b])=[a—Ab—A].



Now, let the linear ranking function to be g([a,b]) = b (0 < a < b < 1). Easily
we have that

o) =g (i Ram)) e RPN}
and
58(6) = sup gl e.o(e) =sup { L0 a0

where by 1= b— 1072(1 —a)/(1 — 8) and Ay := A = 107%(1 — a)/(1 — ) for
a € [0,1]. Then, applying Lemma 4.1, the a-optimal stopping time 77 is given
by

Ta(la,8]) = min{t > 1] (p%([a,b] 1), '[a,b]) € K*(9)}
= min{t > 1‘% —A(t—1)> % —)\at}

for each a € [0,1]. Let 5(z) = (1 — 4|2z = 1|) V0 for z € [0.1]. We see that
Sa = [(34+ @)/8, (5 — a)/8]. Therefore
ey Aa(1—5)
T (5a) = {log 7(—ba)logﬂ/logﬂJ +1,

where |-] is the largest dominated integer. Since § is regular with respect to
{72 }ae[0,1], Theorem 3.1 implies that the s-optimal fuzzy stopping time 7* is

given by
Ao(1 =)
{00 o 2557 10w > 1}

{ov 8(1— B+ f'log B) +500ﬂtlogﬂ+800(1—ﬂ)A} il
8(1— B+ B log B) + 1003 log 3 '

The numerical values are given in Table 1.

7*(5,1)

t 1 2 3 4 5 6 7 8 9

7(5,1) || 0.938 | 0.812 | 0.681 | 0.546 | 0.405 | 0.260 | 0.108 | 0.000 | 0.000

Table 1. 5-optimal fuzzy stopping time 7*(8, ) when A = 0.5 and 8 = 0.97.
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