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Abstract

We formulate a new multi-stage decision process with Markov-type fuzzy transition, which is termed Markov-type fuzzy
decision process. In the general framework of the decision process, both of state and action are assumed to be fuzzy itself.
The transition of states is defined using the fuzzy relation with Markov property and the discounted total reward is described
as a fuzzy number on a closed bounded interval. To discuss the optimization problem, a partial order of convex fuzzy
numbers is introduced. In this paper the discounted total reward associated with an admissible stationary policy is
characterized by a unique fixed point of the contractive mapping. Moreover, the optimality equation for the fuzzy decision
model is derived under some continuity conditions. Also, an illustrated example is given to explain the theoretical results and
the computation in the paper.
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1. Introduction

Fuzzy decision making, introduced by Bellman and Zadeh [3], is a multi-stage process in which the goals
and/or the constraints are fuzzy. The method of dynamic programming is shown to be a powerful computa-
tional technique for these problems [3,8]. For a wide application, it is desirable to develop a theory for the
multi-stage decision process under fuzzification of the state and its transition by fuzzy relations. Baldwin and
Pilsworth [2] have proposed a multi-stage decision model described by fuzzy mappings which is an extension of
the Bellman—Zadeh model. They have taken an optimal decision which maximizes the measure of the truthness
of ““control and goal constraints satisfied’’.

In this paper, by trying to do direct fuzzification of the deterministic decision system, we will define a
multi-stage decision process with Markov-type fuzzy transition [10,14,15], which is different from the
Baldwin-Pilsworth model. The optimization of the discounted total reward for the processes under some partial
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order, called *“fuzzy max order’’, on the class of convex fuzzy numbers is considered. Based on the a-cut of the
fuzzy set the analysis is done by operators on some class of functions, which is used in Markov decision
processes (for example, see [5,6]) and, applying Banach’s fixed point theorem, the discounted total fuzzy reward
from any fuzzy policy satisfying some reasonable conditions is obtained as a unique solution of the related
fuzzy relational equations. Also, an optimality fuzzy relational equation is given to characterize an optimal
fuzzy policy.

In Section 2, we list the notations and construct the model to be analyzed in the succeeding sections. In
Section 3, the functional characterization of the discounted total fuzzy reward is given and several results useful
in policy improvement are obtained. The optimization is done in Section 4, in which the fuzzy optimality
equation is studied under some continuity conditions. A numerical example is given in Section 5.

2. The fuzzy decision model

In this section, we shall give notations and mathematical facts in order to describe a fuzzy decision processes
considered in the sequel. Let E, E,, E, be convex subsets of some Banach space. Throughout the paper we will
denote a fuzzy set and a fuzzy relation by their membership functions. Refer to Zadeh [16] and Novék [13] for
the theory of fuzzy sets.

The set of all fuzzy sets § on E is denoted by & (E), which are assumed, throughout the paper, to be upper
semi-continuous and have a compact support with the normality condition: sup, £S(x)=1.

A fuzzy relation between the spaces E, and E, means that p: E; X E; [0, 1] and p € F(E, X E,). The
a-cut (a €[0, 1]) of the fuzzy set § is defined as

5,={x€E|5(x)2a} («>0) and 5, =cl{xe€E|5(x) >0},
where ¢l denotes the closure of the set. A fuzzy set § € F(E) is called convex if
S(Nx+(1=N)y)=5(x) A3(y) =x, y€E, refo, 1],

where a A b = min{a, b} [1]. Note that § is convex iff the a-cut §, is a convex set for all a €[0, 11 [7]. Some
papers on convex analysis call this notion quasi-concave.
A fuzzy relation p € F(E, X E,) is called convex if

POhx, +(1=N)x,, Ay, +(1=N)y,) =B(x;, 31) AP(x2, ¥2)

for x,, x, €E,, y,, ¥, €E,, and A €[0, 1]. The class of all convex fuzzy set is denoted by using the subscript
c as

F,(E) ={5€F(E)|5 is convex}.

The set of all non-empty convex closed subsets of E is denoted by #(E). Then clearly § € 7 (E) means that
5, € #(E) for all a €[0, 1].

Let us restrict the term of convex fuzzy number to be that of the closed convex support contained in the
interval [0, M]1C R, == [0, ] with a positive number M, that is,

7.([0; M]) = {5eF(R,)I5c[0, M]},

and let ([0, M]) be the set of all closed intervals of [0, M]. For non-empty closed intervals, the Hausdorff
metric & can be considered and it becomes a complete separable metric space, i.e.,

5([a, b), [c, d]) =la—clVvIb—dl for]a, b, [c, d] e#([0, M]),
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where a V b =max{a, b}. The addition and the scalar multiplication of fuzzy sets on F (IR +) are defined as
follows [11]: For 7, m€ F(R,) and A € R, define

(7 +m)(u) = sup {Ai(u) A ia(uy)}

upu €R oy +u,=u
and

A(u/N)  ifA>0

D)=\ ;) ita=0, “SR

+

where 1,(-) is the classical indicator function of a set A C R.,. It is easily seen that, for a € (0, 1],
(A+m),=Ff,+m, and (A7), =\7,

holds for these operations. Here the operation on sets is defined ordinary as A+ B:={x+y|x€A, y € B}
and NA={\x|xe€A} for A, BCR,.
The following result appeared in [7]:

Lemma 2.1 ([7].
() Foranysi, neF(R,) and \eER,, i+meF (R,) and \i e Z(R,).
(i) For any 5€ F(E,) and p € F(E, X E,), then sup, . g, S AP(x,) € F(E,).

Now, we consider Markov-type fuzzy decision processes constructed by six objects (S, A, [0, M], g, 7, B),
which satisfy the following conditions:

(i) Let S and A be a state space and an action space, which are given as convex compact subsets of some
Banach space respectively. The decision process is assumed to be fuzzy itself, so that both the state of the
system and the action taken at each stage are denoted by elements of #(S) and F,(A), called the fuzzy state
and the fuzzy action respectively.

(ii) The law of motion for the system and the fuzzy reward can be characterized by time invariant fuzzy
relations § € F (SXAX S) and F€F(SXAX[0, M]), where M is a given positive number. Explicitly, if
the system is in a fuzzy state §€.%(S) and the fuzzy action @ € F,(A) is chosen, then it transfers to a new
fuzzy state O(3, @) and a fuzzy reward R(3, @) has been obtained, where Q and R are defined by the
following:

0(5.8)(y)= s S(x)A&(a)AG(x, a,¥) (yES), (2.1)
(x,a)eSX A
R(5,a)= sup S(x)ANd(a)AF(x,a,u) (0<u<M). (2.2)
(x,@esxA
Note that, by Lemma 2.1, it holds that O(3, aX-) € #(S) and R(3, aX-) € #.(0, M) for all S€.FLS), de
Z(A).

(iii) The constant scalar B is a discount rate satisfying 0 < < 1.

First we will define a policy based on the fuzzy state and fuzzy action as follows. Let IT: = {w | w : Z.(S5) —»
Z.(A)} be the set of all maps from F.(S) to F(A). Any element w €1l is called a strategy. A policy,
it =(m,, w,, W3,...), is a sequence of strategies such that m, €Il for each r Especially, the policy
(w, w, m,...) is a stationary policy and is denoted by m". ~ v

For any policy 4 = (w, 7,,...) and any initial fuzzy state §€.7.(S), we define sequentially the fuzzy
states {5} as

~

3"1 = S"’ S:I+l = Q(S"” TI'I( :S-t)) for t= 1, 2,..- (2'3)



652 M. Kurano et al. / European Journal of Operational Research 92 (1996) 649—662

The transition of fuzzy states by (2.3) has the Markov property, that is, the state of the (r+ Dth step is
determined by that of tth step, so that the decision processes defined above could be called Markov-type, as is
said in the title.

To describe the discounted total fuzzy reward from a fuzzy policy 4, let us consider the convergence of a
sequence of fuzzy numbers belonging to F.(R,).

Definition 2.1 (10, 12]. For 7,, i € F.(R ), lim, _, ,, 7, = fi iff im,_, Sup, <o, 1j 7> fig) = 0.
The following lemma is a special case of the convergence theorem proved in [14].

Lemma 2.2. For §€%/S) and %t = (w,, w,,...),

{ Y. B 'R(5,, 'n,(.'s',))} (2.9

t=1

is convergent in (0, M/(1 — B)D.
From the above lemma, we can define the discounted total fuzzy reward as follows:
b(7, 5) = L B R(S,, m(5)) 5[0, M/(1-B)]) (25)

t=1

for §€F,(S) and it = (7, mWy,...).

The problem is to maximize the fuzzy reward (%, 3) over a certain class of fuzzy policies {%} with respect
to a given partial order on ([0, M/(1 — B)]. In the sequel, the problem is analyzed by introducing the partial
order called ‘‘fuzzy max order’’.

Remarks. The fuzzy decision process defined in the previous argument is compatible with the extension
principle of Zadeh [16], which gives a natural extension of non-fuzzy systems. To explain the notion, we treat
the following usual continuous deterministic systems: Foragiven aq, €A, t=1,2,..., the transition of states is
described by

X =f(x,a) (1=1,2,...), (2.6)

where x; €S is an initial state and f:SX A~ S is a continuous deterministic transition function. A fuzzy
relation f€ (S X A X S) will be defined by

1 if y=f(x, a)

0 if y#f(x,a)

Then, using the above f, the deterministic system (2.6) can be rewritten in the fuzzy environments:
J’E,+1=Q()"c,, Zz',) (r=1,2,...),

where ¥, = 1;,,, @,=1(,, and

Q(f,,ﬁ,)(y)=( sup £(x)Aa(a) Af(x, a,y) (YES).
x,a)ESXA

f(x, a, y)={

This shows that the transition (2.1) of fuzzy states is a fuzzy extension of the deterministic system (2.6) by
extending the state space S and action space A to fuzzy sets & (S) and F(A), respectively.
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3. Partial order for the optimization

We introduce a partial order on %.([0, M/(1 — B)]) and give some results on the optimization of the fuzzy
decision processes defined in the previous section. For 7, m € 7 ([0, M/(1 — B)]), a partial order for fuzzy
numbers is defined as

fix=im
if min 7i, > min 7, and max 7, > max i, for all « €[0, 1] where min and max mean the left or right end

point of the a-cut interval respectively [9]. It is immediate that (#_([0, M /(1 — B)]), >=) becomes a complete
lattice [4]. Note also that

supii, € 7 ([0, M/(1—-B)]) for {&,} cF ([0, M/(1-B)])

holds, where the supremum is taken with respect to the order = .

Definition 3.1. The fuzzy strategy w: % (S) = F_(A) is called admissible if the a-cut set w(5), of m depends
only on the scalar o and the set §,, that is, it can be written as

m(5)e=7(a, 5,). (3.1)

Let II, be the collection of all admissible fuzzy strategies. Similarly a policy 4 = (m,, m,,...) is called
admissible if w, €I, (r=1,2,...).

Our problem is to maximize $(%, §) over all admissible policies 4t with respect to the order > on
.10, M/(1 - B)D.

In order to discuss the fuzzy transition and the fuzzy reward, some notations are introduced. A map
G, ()X &(A) » &(S) (a €0, 1] is defined by

{yeS|g(x, a, y) = a for some (x, a) DX B} fora>0,

d.(DXB):=
4ul ) {cl{yESIq(x,a, y) > 0 for some (x, a) €D X B} fora=0,
and a map 7, : () X #(A) » ([0, M) (a €[0, 1]) by

{ueR+|?(x,a,u)_>_o¢forsome(x,a)EDxB} for « >0,
F.(DXB) = )
f{ueR, | 7(x, a, u) > 0 for some (x, a) €D XB} for a=0.
By using g, and 7,, define maps Q7 : #(S) = &(S) and R] : €(S) = €(0, MD (weIl,, a €[0, 1] by
0:(D) =g, (D X w(a, D))
RI(D)=F,(DXw(a, D))

for D € (). For any admissible fuzzy policy 4 = (w,, 7,,...), QF, (> 0) is defined inductively by using
the composition of maps as follows:

05 =1 (identity), Fa(D)=03(D),  OF14(D) =05+ 0}(D),

for t=1,2,... and D € Z(9).
Then, the following lemma holds regarding a-cuts of fuzzy state and fuzzy reward of each step.
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Lemma 3.1. Let $€F,.S) and % =(m,, w,,...) be any admissible policy. Then, for t=1, 2,... and
a€lo, 1],

(1) §t+ 1a = Q;Ffa( Ea);
(i) R(5,, m(5))e =Re(51a)s

(iil) $(¥, §)o= =ZOB’R(§,, 7(5,))a-

Proof. (i) From Lemma 1 in [10], we see that Q(ii, m(@), = Q1 (&,) and R(d, w(i), =R7T(#,) for all
i€ F.,(S) and w e I1,. Based on this fact, (i) is proved by induction. For 7= 1, we have

§2,a = Q(S:’ Trl( E))ox = QZI( S"a) = Qﬁ«( EOL) :
Assume (i) for some ¢ (£ > 1). Then

S =05, m(5))a= 07(5,0) = Q007 1o(5) = 0a(5)

which implies that (i) holds for ¢+ 1. Also, (ii) holds obviously. (iii) follows immediately from the property of
- a-cuts of the fuzzy numbers and Lemma 2.2. O ‘

Let V:={v: &(S) = &0, M/(1 — B)]}. Define a metric d, on V by

d,(v,w)= sup d(v(D),w(D)) forv,weV.
De?(S)

Then (V, d,) is a complete metric space. For v, wE€V, we define an order
vE W

by (D)= ,w(D) for all D e #(S), where >_, means that [a, bl=[c, d] for closed intervals in

#([0, M/(1 —B)) iff a> c and b > d. Further define a map Uur:vev(nell,, a€lo, 1] by

Urv(D) =R3(D) +Bv(Q3(D)) (32)
for v€V and D € Z(S).

We will prove the contractive property of the operator U,". To do it, we need the following lemma whose
proof is easy.

Lemma 3.2.
(i) Let T: ={y} be an index set and [a,, b,], [c,, d,1€ Z(0, M/(1 = B)D for yET. Then

8(3};1;[% by] 3‘;1;[07,617])33;1;8([% b, [y dy])-
Gi) If [a,, b,), [c), 4], [a,, b, L, [c,, d,1€ (0, M/(1 — B))), then

3([a, b ]+ [cr, di], [a, b1+ [cas dz]) 55([“17 b]. [a,. bz]) +8([Cl’ di]. [e;, 4,])-
Gii) If [a, b, [c, dl€e €0, M/(1 — BID, then

3(Bla, b1, Blc, d]) =Bd([a. b]. [c, d]).

Theorem 3.1. Let w €11, and a €[0, 1. It holds that U is monotone, contractive and has a unique map
vy €V such that

v =US o, : (3.3)



M. Kurano et al. / European Journal of Operational Research 92 (1996) 649-662 655

Proof. Let v, w €V be two maps such that
. U7 v(D) =R3(D) +Bo(Qi(D)) and UJw(D)=R7(D)+pw(Q7(D)).
By using Lemma 3.2, we have
3(Us v(D), UTw(D)) <3(R7(D)), RZ(D)) +3(Bu(Q7 (D)), Bw(Q3(D)))
= B3(2(23(D)), w(QI(D))) < Bdy (v, w)
for all D € #(S). This means
dy(UTv, UTw) <Bdy(v, w).

That is, U is contractive and, by Banach’s fixed point theorem, has a unique map »] € V such that
vy = U vy, Further if v >, w, then we have

U v(D) =R7(D) +Bu(Q7 (D)) = RI(D) +pw(Q3(D)) = U w(D)

for all D € €(S). So U v > , U w. Therefore U is monotone. [
The discounted total reward associated with the admissible stationary policy is characterized as follows.

Theorem 3.2. For § € % (S) and any admissible stationary policy w* = (w, @, m,...),
Lb(ﬂm’ 5 a U:(S"a)

holds for o €[0, 1], where vT € V is a unique fixed point of the contractive map U,T.

Proof. Let 5€7(S), n° =(mw, w, m,...) and a €[0, 1]. And define ¥, by

o

Yo7, D) = ¥ B'7'R(Q o( D))

=1
for D € (S). Then from Lemma 3.1 (ii), (iii) we have
(7", Ha= LB 'R(5, 7(5))e= LB T'RI(5,,) = bo(7", 5,)-
=1 =1

On the otherhand, we have
vt D) =R3(0) + 8 L B=*R2(0F . (02(0))
=2

=R3(D) + By (7", Q7 (D)) = UTb,(7", -)(D)

for any D € €(S). Therefore ¥ (1", -) is a fixed point of U,. From Theorem 3.1, v7(-) = ¢ (=", -), which
implies that (y(w*, 3)), = ¥ (7", 5,)=0v7(5,). O

For any admissible policy % = (w,, m,,...), let

-3

Yo (%, D)=} B 'RT(QF | (D)) (DeZ(S)).

t=1

Then, as in the proof of Theorem 3.2, we have ((#, §)), = ¢ (77, 5,) (a €[0, 1]). The following lemma
shows that { (4, §,) can be represented by using the operator U, t> 1.



656 M. Kurano et al. / European Journal of Operational Research 92 (1996) 649—662

Lemma 3.3. Let 5§ € F.(S) be any initial fuzzy state and let % = (7, 7,,...) be any admissible policy. Then

)
l"'u('ﬁ, Ea) = Uclﬂ]UazTr2 e Uuwl_]lba( ’ﬁ-l’ )(5“)

where i1, = (T, T4 1 Tppgsees ).
Gii) Foranyv €V,

G (7, 5,) = im U"U = - - UJ-'0(5,).
1>
Proof. (i) By observing the proof of Theorem 3.2, it holds
U (7, 5,) = Ul (1, ) (5,)-

So, (i) is proved inductively for ¢ > 2.
(ii) Similarly as Theorem 3.1 we have

a(ljot‘“lljox‘ﬂ'2 e Uaﬂ'_llba( 'ﬁt’ -)(Ea)7Uananﬁ2 ot Uuﬁ'—lv( 3:ot)) < B’_ 18(¢a(ﬁt’§a)’v( ga))
which yields (ii) by t—. 0O

Theorem 3.3. Let % = (w,, m,,...) be any admissible policy. Suppose

U (7, D) = U, (7, -)(D) (3.4)
for all D e Z(S), meIl, and a €[0, 1]. Then we have
(7, 3) = ¢(7, 3) (3.5)

for all § € FS) and any admissible policy &.

Proof. By Lemma 3.3 and the monotonicity of U, it can be shown that
‘I’a(’ﬁ" g«x) >"c’illjm((\i-’ S:oz)

for all o« €10, 1] and any admissible policy &. This implies the result easily. O

Theorem 3.4. Ler it = (w,, w,, - : - ) be any policy and let w €11 ,. Suppose

Uaﬂd,u(ﬁ’ ‘)(D)kcilbu(’ﬁ" D) (3.6)
for all D € €(S) and o. €0, 1]. Then we have
(7™, 5) = P(1r, 3) - (3.7

for all 5€ F(S).
Proof. Similarly as the proof of Theorem 3.3, it can be shown easily. O

Remark. Results like Theorem 3.3 and 3.4 have already appeared in the cJ s;c discounted Markov decision
model and used for the policy improvement [5,6]. By the same idea, the al e theorems would be useful in
the policy improvement under the fuzzy decision model. :



M. Kurano et al. / European Journal of Operational Research 92 (1996) 649-662 657

4. Optimality equation

The objective in this section is to give a fuzzy optimality equation which is used in the optimization of the
decision processes.
Define a map U, : V - V(a > 0) by

Uyv(D) = . s;[zA){F“(DXB) +Bo(4,(D xB))} . (4.1)

for v€V and D € #(S), where the supremum is taken with respect to the order >

ci*

Theorem 4.1. Let o €[0, 1]. U, is monotone, contractive and has a unique map v, €V such that
vy =Uu;. (4.2)
Proof. Using Lemma 3.2, for v, w € V we obtain

8(Uyv(D), U,w(D)) < sup )S(Bv(ria(D X B), Bw(qo(D X B))

=B sup 3(v(G(DxB), w(g,(DxB))<Bdy(v,w)
Be®(A)

for D € @(S). Therefore d,(U,v, U,w) < Bd, (v, w). By Banach’s fixed point theorem, there exists a unique
v, €V such that v = U,v; . Also the monotonicity of U, follows obviously. [

It will be shown in this section that a unique fixed point of U, gives the a-cut of the maximum fuzzy reward
under some continuity conditions, so that (4.2) is interpreted as the optimality equation for our fuzzy decision
model.

For any (x, a) €S X A and « €0, 1], let

Fa( %, @) =F({x} X{a}) and G,(x, a)=g,({x} X {a}).
Then, by the definition we have, for each D € #(S) and B-€ #(A),

F.(DXB):= U F(x,a) and §(DXB):= U 3d.(x a).
(x,a)éeDXB (x,a)eDXB

Condition A. (A uniform continuity on 7 and §). There exists non-decreasing and continuous 1: [0, ) — [0, )
such that
@ n(1)>0 asrloO; _
(i) 8(F (x, a), F(x, ) <m(ld —a|) forO<o’ <a;
(i) pg(G(x, @), G, (x, ) <n(lo' —al]) for 0 < o < a
(v) 3(7 (X', a), F,(x, @) < m(dy(x, x)) for x, ¥ €S, a€A, a (0, 1];
) ps(G (¥, @), G(x, @) <m(ds(x', x)for x, ¥ €S, a€ A, ac(0, 1],

where p; is the Hausedorff metric on &(S) induced by a metric dg on S.

Lemma 4.1. Suppose that Condition A holds. Let D,(€ €(S))| D, as o’ T o for all a €(0, 1]. Then
() supy c ()37 (Dy X B), F(D,XB) >0 as o Ta;
(i) supg e g(a)Ps(Gy(Dy X B), §(D, X B)) >0 as o’ T .
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Proof. Let 0 < &’ < a < 1. Then, since

(oD xB), D xB) =3 U R(na, U (xa)

(x,a)€DyXB (x,)€EDyXB
< sup  d(Fu(x,a), F(x, a)), (4.3)
(x,a)eD X B

we have
8(Fy(Dy X B), 7Dy XB)) <m(lof —al).
On the other hand, from Condition A,

8(7,(Dy XB), F,(D,xB))< max mind(F(x, a),7(x, a))
(+',a)ED X B xE€D,

< max min n(dg(x, s)) = Jnax 'q(ds(x D,))

x'€Dy x€D,

<n(ps(Dy» Dy))- (4.4)
Thus we get

8(7( Dy X B). 7( D, X B))
= 8(7y(Dy X B). 7, Dy X B)) +8(7( Dy X B). 7,(D, X B))
<m(lo —al) +n(ps(Dy, D,)) as o Ta
uniformly with respect to B. Also, (4.3) and (4.4) holds for §,, pg, so (ii) can be checked similarly. O

Some properties of v, (a €[0, 1]) are investigated in the following theorem.

Theorem 4.2. Suppose that Condition A holds. Let D (€ #(S))| D, as & T o for a €(0, 1). Then
® ve (D) Dv; (D) for o <a,
(ii) im  ; .V (D) = v (D,).

Proof. Let o <a and v, w€ V such that v(D)cw(D') for all D, D' €(S) with D cD'. Then, for
D, D' € (S) with D c D', we have
7,(D X B) + Buv(g,(D X B)) CFy(D' X B) + Bw(gy(D' X B)) for BeZ(A).
Therefore, by (4.1),
Uyv(D)cUyw(D') for D, D'e®(S) with DCD'.
Thus inductively we obtain
(U)'v(D)c(U,)'w(D') fort=1,2,... and D, D' €&(S) with DCD'.
Since U, and U, are contractive, (U,)'v = v} and (U,)'w = v, as t = , so that
vy (D) cui(D),

which implies (i).
(ii) Let D (e €(S)| D, as o' T ala (0, 1]). We deflne JEV by

J(D)=1[0, M/(1—-B)] forall DeZ(S).
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Put v’(D) = (U,)'J(D) for t=1,2,... and D € &(S). Since U, is a contraction map with modulus B, we
have
v(D) - v; (D) uniformity for  and D € F(S) as 1> .
Therefore in order to prove (i), it is sufficient to show: For all t=1,2,...,
8(v(Dy), v(D,)) >0 as o to. (4.5)
We show this by induction on . In the case of ¢= 1, from Lemma 4.1

8(0((11)(Du,), vg”(Da)') < sup (7 (DyXB), Fy( Dy XB))—0
Be#(A)

as o 1 a. Assuming (4.5) for ¢, from Lemmas 3.2 and 4.1

3(vl* N(Dy), v (Dy)) < sup B(Fy(Dy X B), Fo Do X B))
Be®(A)

+B sup 3(0{(du(Dy X B)), v8(4.(Dy X B))) 0
Be®(A)

as o 1 a. Thus (4.5) holds for all 1=1,2,--- and we complete the proof. O

For 5 € 7.(S), define

v*(5)(u) = sup {aA 1”;(s~u)(u)} uelo, M].
acl0,1]

Then we obtain the following resuit.

Theorem 4.3. Suppose that Condition A holds. Then
v*(5) €7,([0, M/(1-B)]) forall5€F(S)
and
v*(5) = (4, 5) for all admissible policies % and § € F.(S).

Proof. Let §€ %.(S). From Theorem 4.2 and [10,Lemma 3], it is trivial that v*(3) € #(0, M /(1 =B It
follows from (4.1) that

v«:(gu) = UD;(S"Q) >ci.Un:an:k(“svu) fOI' ™ EHA‘
Let 4 = (m,, m,, - - - ) be an admissible policy. Then, by Lemma 3.3(ii),
ll’('ﬁ-’ E)(!:‘*I}a('ﬁ-’ ga) = lim Uuﬂ’Uaﬂz e Uuﬂl_lv*(gu) <civ(;:(:s?m) = U*(§)a
> o
for o [0, 1]. Therefore we get
(4, Sy <o (3). O

Corollary 4.1. Suppose that Condition A holds. If there exists m* ell, such that UF v} =v; for all
a €0, 1), then w** is absolutely optimal, i.e.,

G(m*, 5) = (¥, 5) for all admissible policies % and seZ/(S).

Proof. From the assumption of Corollary 4.1, we get inductively

(U7 ) ve =vs forall 12 1.
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Fig. 1. The fuzzy relation §(x, a, y) when a=1.

As t— o in the above, we have
G ("%, 3) =v;

by Lemma 3.3(ii). Hence w *® is absolutely optimal from Theorem 4.3. 0O

5. A numerical example

In this section we give a numerical example to illustrate the theoretical results and computation in the
preceding sections. Let S:=[0, 1], A==[0, 1], M==1 and 0 < < 1. The fuzzy relation and the reward are
given by

q(’x’ a, y)=A[x/\a,xVa](y)’ X, yES’aEA;

5.1
;(x’a’r)—_'A[x/\a,xVa](r)’ XES’aEA’rE[O’ll’ ( )
respectively, where
2 |c+d
1- -zl V0, 0<c<d=<l1,0<z<1,
Apeay(2) = d—cl 2 ‘ (52)
1,(z), c=d.

Fig. 1 shows the fuzzy relation G(x, -, y) when a = 1. Clearly Condition A holds with n(x) = x(x > 0). We
shall now investigate an admissible policy 4 of taking action 1, that is, w = ©” = (=, =7,...) and w(5) = 1,
for any fuzzy state §€ ([0, 1].

First the discounted total fuzzy reward §(7%, - ), whose a-cut is solved by a unique solution of the following
equation:

v=Uv (veV), (5.3)

which is given in Theorem 3.1.
Let [a, b1 C[0, 1] and 0 < o < 1. Observing that

{ye [0, 1]1 A, 1(¥) = @ for some x € [a, b]} = [(1 —3a)a+za, yab+ —%a],
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o «
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¢ 0.2 0.8 1 0 0.5

Fig. 2. The initial fuzzy state §,(x) = 5(x).

Fig. 3. The optimal fuzzy rewards $(i, $Xu).

we easily have

0z ([a, b]) =R%([a, b]) = [(1 - 30)a+3a, ab+1-3a].
From (3.2),

Uro([a, b]) = [(1 - fa)a+ta, 3ab+1—3a] +Bo([(1—3a)a+3a, sab+1— zal).

(5.4)

In order to calculate the interval equation derived from (5.3) and (5.4), dénote the closed interval by
[T(a), T,(b)] = v(a, b]. Then

T\(a) = (1 —3a)a+ 30 +BT((1 - 3a)a +3a), (5.5)
T,(b) = (30)b+1— 30+ BT (3ab+1—3a). '

The above equation (5.5) is solved by the contractive property of the map defined in the following. If
7:[0, 11~ [0, 1/(1 — B)] is a continuous function satisfying T(x) = rx + ¢ + BT(rx + ¢), where 0<r+c<1
and 0 < ¢ < 1, then T(x) is uniquely determined by T(x) = {r/(1 — Br)}x+c/{(1 — )1 — Brl}

Therefore the unique solution of (5.5) is given

2—a o o 2—-a

W)= ot ome-se-w) T T Tome- s

(5.6)
By Theorem 3.2, we get
W(#, 5)o = [7,(min 5,), 7,(min 5,)]
for the closed interval [min §,, max §,] with the a-cut of 3. Also
U(F, 5)(r)= sup {aA ;s ()} (5.7)
ae(0,1]

for0<r<1/(1-B).
As a numerical example, let the initial fuzzy state be

5(x)=58(x)=(1—-18x—4])Vv0, x€S
and B =0.5. '
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Then, Ys(t, §) becomes _
$(i, 5)(r) = min{7.5(1 +0.267 L(r) — 0.267r), 16( —0.344 — 0.125 L(r) +0.125r)} V 0

where L(r)=(—7.396 +r)(—2.104+r), r€[0, 1]. The graphs of § and ¥(, §) are given respectively
in Fig. 2 and 3. Moreover, by analyzing the optimality equation (4.2), we can show that 4t = (m, m,, m3,.. )
with

w(5)=14,(=1,2,...)

is absolutely optimal.
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