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Abstract. To solve a mathematical model for American put option with uncer-
tainty, we utilize two essentials, i.e., a λ−weighting function and a mean value of
fuzzy random variables simultaneously. Estimation of randomness and fuzziness as
uncertainty should be important when we deal with a reasonable and natural model
extended from the original optimization/decision making. Three kinds of mean val-
ues by fuzzy measures, which are based on Possibility, Necessity and Credibility, are
demonstrated particularly. We consider the optimal expected price of the American
put option by dynamic programming under a reasonable assumption. A numerical
example is given to illustrate our idea.
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1. Introduction

The option pricing for stocks plays an important role in stock markets.
Approaches with fuzzy logic to European options are discussed by some
authors(C.Carlsson and R.Fullér [2], M.R.Simonelli [13], Y.Yoshida [18],
Z.Zmeškal[20]). This paper deals with a discrete-time mathematical
model for American put option with uncertainty of stock prices. It is
not easy in general to calculate American put option with an expira-
tion date in continuous-time systems, and the study of the discrete-
time case is one of the most important approaches to investigate the
continuous-time model through approximation. Mathematical model-
ing of stochastic systems in optimization/decision-making has many
applications to engineering, economics, etc.. One of the conditions that
stochastic modeling works successfully is stability of systems. If the sys-
tems are unstable when the models are applied actually, losses/errors,
which cannot be explained by only probabilistic elements, sometimes
occur between the decision maker’s expected price and the actual price.
On selling and buying stocks by means of internet in financial markets
when stock prices change radically, the loss from time lag through
internet etc. might be more huge. This kind of loss is not only a problem
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arising from probabilistic sense where something occurs or not, and it
is difficult to formulate them by only probabilistic theory.

In this paper, probability is applied as the uncertainty such that
something occurs or not with probability, and fuzziness is applied as
the uncertainty such that we cannot specify the exact prices because of
a lack of knowledge regarding the present stock market. By introduc-
ing fuzziness to stochastic processes in optimization/decision-making,
we consider a new model with uncertainty of both randomness and
fuzziness, which is a reasonable and natural extension of the original
stochastic process. The optimal stopping problem for a sequence of ran-
dom variables has a long history and has been studied by many authors
in financial engineering(Elliott and Kopp [3], Pliska [9], Ross [11] and
so on).

We need to discuss the optimal stopping problem with randomness
and fuzziness as uncertainty since the American put option model are
represented by an optimal stopping problem in stochastic processes.
In order to describe an optimal stopping model with fuzziness, we
need to extend real-valued random variables in the classical probabil-
ity theory to ‘fuzzy random variables’ which are fuzzy-number valued
random variables. Fuzzy random variables were first studied by Puri
and Ralescu [10] and have been studied by many authors. It is known
that the fuzzy random variable is one of the successful hybrid notions
of randomness and fuzziness.

In the next section, we introduce a fuzzy stochastic process by
fuzzy random variables to define prices in American put option with
uncertainty. The prices are called ‘fuzzy prices’ in this paper. Extend-
ing the idea in Yoshida et al. [17], we introduce mean values of a
fuzzy number defined by fuzzy measures and λ-weighting functions.
This paper evaluates the randomness and fuzziness in fuzzy stochastic
processes by the probabilistic expectation and the mean values de-
fined by fuzzy measures and λ-weighting functions. The mean values
are demonstrated particularly in three kinds of important fuzzy mea-
sures: possibility measure, necessity measure and credibility measure.
In Section 3, American put option model with uncertainty is formu-
lated and fuzzy prices of the American option are evaluated by the
probabilistic expectation and mean values defined by fuzzy measures
and λ-weighting functions from the viewpoint of Yoshida et al. [16]. In
Section 4, an optimality equation for the optimal fuzzy price is derived
by dynamic programming under a reasonable assumption. Next, we
consider the optimal expected price of the American put option and
writer’s (seller’s) optimal expected prices. Further, an optimal exercise
time is given for the American put option. Finally, in the last section,
a numerical example is given to illustrate our idea.
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2. Fuzzy stochastic processes

First we give some mathematical notations regarding fuzzy numbers.
Let (Ω,M, P ) be a probability space, where M is a σ-field of Ω and
P is a non-atomic probability measure. R denotes the set of all real
numbers, and let B(R) and C(R) be the Borel σ-field of R and the set of
all non-empty bounded closed intervals respectively. A ‘fuzzy number’
is denoted by its membership function ã : R 7→ [0, 1] which is normal,
upper-semicontinuous, fuzzy convex and has a compact support. R
denotes the set of all fuzzy numbers, and Rc is the set of fuzzy numbers
with continuous membership functions. Refer to Zadeh [19] regarding
fuzzy set theory.

Fuzzy numbers with its corresponding membership functions are
identified in this paper. The α-cut of a fuzzy number ã(∈ R) is given by
ãα := {x ∈ R | ã(x) ≥ α} (α ∈ (0, 1]) and ã0 := cl{x ∈ R | ã(x) > 0},
where cl denotes the closure of an interval. In this paper, we write the
closed intervals by ãα := [ã−α , ã+

α ] for α ∈ [0, 1]. Hence we introduce a
partial order º, so called the ‘fuzzy max order’, on fuzzy numbers R:
Let ã, b̃ ∈ R be fuzzy numbers. ã º b̃ means that ã−α ≥ b̃−α and ã+

α ≥ b̃+
α

for all α ∈ [0, 1]. Then (R,º) becomes a lattice. For fuzzy numbers
ã, b̃ ∈ R, we define the maximum ã ∨ b̃ with respect to the fuzzy max
order º by the fuzzy number whose α-cuts are

(ã ∨ b̃)α = [max{ã−α , b̃−α }, max{ã+
α , b̃+

α }], α ∈ [0, 1]. (2.1)

An addition, a subtraction and a scalar multiplication for fuzzy num-
bers are defined as follows: For ã, b̃ ∈ R and µ ≥ 0, the addition and
subtraction ã± b̃ of ã and b̃ and the scalar multiplication µã of µ and
ã are fuzzy numbers given by

(ã + b̃)α := [ã−α + b̃−α , ã+
α + b̃+

α ], (ã− b̃)α := [ã−α − b̃+
α , ã+

α − b̃−α ]

and (µã)α := [µã−α , µã+
α ] for α ∈ [0, 1].

A fuzzy-number-valued map X̃ : Ω 7→ R is called a ‘fuzzy random
variable’ if the maps ω 7→ X̃−

α (ω) and ω 7→ X̃+
α (ω) are measurable for

all α ∈ [0, 1], where X̃α(ω) = [X̃−
α (ω), X̃+

α (ω)] = {x ∈ R | X̃(ω)(x) ≥
α} (see [15]). Next we need to introduce expectations of fuzzy random
variables in order to describe an optimal stopping model in the next
section. A fuzzy random variable X̃ is called integrably bounded if both
ω 7→ X̃−

α (ω) and ω 7→ X̃+
α (ω) are integrable for all α ∈ [0, 1]. Let X̃ be

an integrably bounded fuzzy random variable. The expectation E(X̃)
of the fuzzy random variable X̃ is defined by a fuzzy number (see [10])

E(X̃)(x) := sup
α∈[0,1]

min{α, 1E(X̃)α
(x)}, x ∈ R, (2.2)
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where E(X̃)α := [
∫
Ω X̃−

α (ω) dP (ω),
∫
Ω X̃+

α (ω) dP (ω)] (α ∈ [0, 1]). We
note that the map α 7→ ∫

Ω X̃±
α (ω) dP (ω) is continuous by the monotone

convergence theorem since α 7→ X̃±
α (ω) is continuous for ω ∈ Ω. In the

rest of this section, we introduce stopping times for fuzzy stochastic
processes. Let T := {0, 1, 2, · · · , T} be the time space, where a pos-
itive integer T is called an ‘expiration date’. Let a ‘fuzzy stochastic
process’ {X̃t}T

t=0 be a sequence of integrably bounded fuzzy random
variables such that E(maxt∈T X̃+

t,0) < ∞, where X̃+
t,0(ω) is the right-

end of the 0-cut of the fuzzy number X̃t(ω). For t ∈ T, Mt denotes the
smallest σ-field on Ω generated by all random variables X̃−

s,α and X̃+
s,α

(s = 0, 1, 2, · · · , t; α ∈ [0, 1]). We call (X̃t,Mt)∞t=0 a ‘fuzzy stochastic
process’. A map τ : Ω 7→ T is called a ‘stopping time’ if {ω ∈ Ω |
τ(ω) = t} ∈ Mt for all t = 0, 1, 2, · · · , T . Then, the following lemma is
trivial from the definitions ([16]).

Lemma 2.1. Let τ be a stopping time. We define

X̃τ (ω) := X̃t(ω) if τ(ω) = t for t = 0, 1, 2, · · · , T and ω ∈ Ω.

Then, X̃τ is a fuzzy random variable.

Next we consider the evaluation of fuzzy random variables. Fuzzy
random variables have two kinds of uncertainty (randomness and fuzzi-
ness). In this paper, the randomness is evaluated by the probabilistic
expectation, and the fuzziness is evaluated by λ-weighting functions
and fuzzy measures. Let g : C(R) 7→ R be a map such that

g([x, y]) := λx + (1− λ)y, [x, y] ∈ C(R), (2.3)

where λ is a constant satisfying 0 ≤ λ ≤ 1. This scalarization is used
for the estimation of fuzzy numbers, and λ is called a ‘pessimistic-
optimistic index’ and means the pessimistic degree in decision making
(Fortemps and Roubens [4]). We call g a ‘λ-weighting function’.

Definition 2.1 (Wang and Klir [14]). A map M : B 7→ [0, 1] is called
a ‘fuzzy measure’ on B if M satisfies the following (M.i), (M.ii) and
(M.iii) (or (M.i), (M.ii) and (M.iv)):

(M.i) M(∅) = 0 and M(R) = 1;

(M.ii) M(I1) ≤ M(I2) holds for I1, I2 ∈ B satisfying I1 ⊂ I2;

(M.iii) M(
⋃∞

n=0 In) = limn→∞M(In) holds for {In}∞n=0 ⊂ B satisfying
In ⊂ In+1 (n = 0, 1, 2, · · · );

(M.iv) M(
⋂∞

n=0 In) = limn→∞M(In) holds for {In}∞n=0 ⊂ B satisfying
In ⊃ In+1 (n = 0, 1, 2, · · · ).
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Extending the idea in Yoshida et al. [17], we introduce mean values
of a fuzzy number as follows: Using fuzzy measures M and λ-weighting
functions g, we define mean values of a fuzzy number ã ∈ R by

Ẽ(ã) =
∫ 1

0
Mã(ãα) g(ãα) dα

/ ∫ 1

0
Mã(ãα) dα, (2.4)

where ãα is the α-cut of the fuzzy number ã. Mã is a fuzzy measure
depending on the fuzzy number ã, (2.4) is normalized by the values
Mã(ãα)(α ∈ [0, 1]), and Mã(ãα) means the confidence degree that the
fuzzy number ã takes values at the interval ãα (see Example 2.1). Next,
let ã ∈ R, and we define its mean value by

Ẽ(ã) := lim
n→∞ Ẽ(ãn), (2.5)

where {ãn}∞n=1(⊂ Rc) is a sequence of fuzzy numbers whose member-
ship functions are continuous and satisfy ãn ↓ ã pointwise as n →∞. If
the limiting value (2.5’) is independent of the selection of the sequences
{ãn}∞n=1 ⊂ Rc, we call (2.5’) well-defined. In this paper, we deal with
the case where the limiting value is well-defined (see Example 2.1).

Example 2.1. Let a fuzzy number ã ∈ Rc. An evaluation measure Mã

is called the ‘possibility evaluation measure’, the ‘necessity evaluation
measure’ and the ‘credibility evaluation measure’ induced from the
fuzzy number ã if it is given by the following (2.6) and (2.7) respectively:

MP
ã (I) := sup

x∈I
ã(x), I ∈ B; (2.6)

MN
ã (I) := 1− sup

x 6∈I
ã(x), I ∈ B; (2.7)

MC
ã (I) :=

1
2

(
sup
x∈I

ã(x) + 1− sup
x6∈I

ã(x)

)
, I ∈ B. (2.8)

We note that MP
ã , MN

ã and MC
ã satisfy Definition 2.1(M.i) – (M.iv)

since ã is continuous and has a compact support. Since MP
ã (ãα) = 1

and MN
ã (ãα) = 1 − α and MC

ã (ãα) = 1 − α/2 from (2.6) – (2.8), the
corresponding mean values Ẽ(ã) are reduced to

ẼP (ã) :=
∫ 1

0
g(ãα) dα; (2.9)

ẼN (ã) :=
∫ 1

0
2(1− α) g(ãα) dα; (2.10)

ẼC(ã) :=
∫ 1

0

4
3
(1− α

2
) g(ãα) dα. (2.11)
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They are called a ‘possibility mean’, a ‘necessity mean’ and a ‘credibility
mean’ of the fuzzy number ã respectively.

In the same idea, we introduce mean values of fuzzy random vari-
ables X̃ as follows.

E
(
Ẽ(X̃)(·)

)

:= E

(∫ 1

0
MX̃(·)(X̃α(·)) g(X̃α(·)) dα

/ ∫ 1

0
MX̃(·)(X̃α(·)) dα

)
,

(2.12)
where X̃α(·) = [X̃−

α (·), X̃+
α (·)].

3. American put option with uncertainty of stock prices

In this section, we formulate American put option with uncertainty of
stock prices by fuzzy random variables. Let T := {0, 1, 2, · · · , T} be the
time space with an expiration date T similarly to the previous section,
and take a probability space Ω := RT+1. Let r (r > 0) be an interest
rate of a bond price, which is a riskless asset, and put a discount rate
β = 1/(1 + r). Define a ‘stock price process’ {St}T

t=0 as follows: An
initial stock price S0 is a positive constant and stock prices are given
by

St := S0

t∏

s=1

(1 + Ys) for t = 1, 2, · · · , T, (3.1)

where {Yt}T
t=1 is a uniform integrable sequence of independent, identi-

cally distributed real random variables on [−1,∞) such that E(Yt) = r
for all t = 1, 2, · · · , T . The σ-fields {Mt}T

t=0 are defined as follows:
M0 is the completion of {∅,Ω} and Mt(t = 1, 2, · · · , T ) denote the
complete σ-fields generated by {Y1, Y2 · · ·Yt}.

We consider a finance model where the stock price process {St}T
t=0

takes fuzzy values. Now we give fuzzy values by triangular fuzzy num-
bers for simplicity. Let {at}T

t=0 be an Mt-adapted stochastic process
such that 0 < at(ω) ≤ St(ω) for ω ∈ Ω. A ‘stock price process with
fuzzy values’ are represented by a sequence of fuzzy random variables
{S̃t}T

t=0:
S̃t(ω)(x) := L((x− St(ω))/at(ω)) (3.2)

for t ∈ T, ω ∈ Ω and x ∈ R, where L(x) := max{1−|x|, 0} (x ∈ R) is the
triangle shape function (Fig.3.1). Hence, at(ω) is a spread of triangular
fuzzy numbers S̃t(ω) and corresponds to the amount of fuzziness in the
process. Then, at(ω) should be an increasing function of the stock price
St(ω) (see Assumption S in the next section).
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Figure 3.1

Fig. 3.1. Fuzzy random variable S̃t(ω)(x).

Let K (K > 0) be a ‘strike price’. The ‘price process’ {P̃t}T
t=0 of

American put option under uncertainty is represented by

P̃t(ω) := βt(1{K} − S̃t(ω)) ∨ 1{0} for t = 0, 1, 2, · · · , T, (3.3)

where ∨ is given by (2.1), and 1{K} and 1{0} denote the crisp number
K and zero respectively. An ‘exercise time’ in American put option is
given by a stopping time τ with values in T. For an exercise time τ , we
define

P̃τ (ω) := P̃t(ω) if τ(ω) = t for t = 0, 1, 2, · · · , T, and ω ∈ Ω. (3.4)

Then, from Lemma 2.1, P̃τ is a fuzzy random variable. Now we analyze
(3.3) by α-cuts technique of fuzzy numbers. The α-cuts of fuzzy random
variables (3.2) are

S̃t,α(ω) = [St(ω)− (1− α)at(ω), St(ω) + (1− α)at(ω)], ω ∈ Ω, (3.5)

and so we put

S̃±t,α(ω) := St(ω)± (1− α)at(ω), ω ∈ Ω (3.6)

for t ∈ T and α ∈ [0, 1]. Therefore, the α-cuts of (3.3) are

P̃t,α(ω)
= [P̃−

t,α(ω), P̃+
t,α(ω)]

:= [βt max{K − S̃+
t,α(ω), 0}, βt max{K − S̃−t,α(ω), 0}],

(3.7)

and we obtain E(maxt∈T supα∈[0,1] P̃
+
t,α) ≤ K < ∞ since S̃−t,α(ω) ≥ 0,

where E(·) is the expectation with respect to some risk-neutral equiva-
lent martingale measure([3]). Let ω ∈ Ω and let τ be an exercise time.
From (2.5), the evaluation of the fuzzy number P̃τ (ω) is given by

Ẽ(P̃τ )(ω) := Ẽ(P̃τ (ω))

=
∫ 1

0
MP̃τ (ω)(P̃τ,α(ω)) g(P̃τ,α(ω)) dα

/ ∫ 1

0
MP̃τ (ω)(P̃τ,α(ω)) dα, ω ∈ Ω.

(3.8)
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From (2.12), we put the expectation of (3.8) by P (τ):

P (τ) := E(Ẽ(P̃τ )(·))
= E

(∫ 1

0
MP̃τ (·)(P̃τ,α(·)) g(P̃τ,α(·)) dα

/ ∫ 1

0
MP̃τ (·)(P̃τ,α(·)) dα

)
.

(3.9)
Then P (τ) means an evaluation of the expected price of American put
option when τ is an exercise time. In American put option, we must
maximize the expected values P (τ) of the price process by stopping
times τ . Put the ‘optimal expected price’ by

V := sup
τ :τ≤T

P (τ). (3.10)

In the next section, this paper discusses the following optimal stopping
problem regarding American put option with fuzziness.

Problem P. Find a stopping time τ∗(τ∗ ≤ T ) and the optimal
expected price V such that

P (τ∗) = V . (3.11)

Then, τ∗ is called an ‘optimal exercise time’. On the other hand, for
an exercise time τ , the expectation of the fuzzy random variable P̃τ is
a fuzzy number whose α-cut is a closed interval

E(P̃τ )α = E(P̃τ,α) = [E(P̃−
τ,α), E(P̃+

τ,α)] for α ∈ [0, 1], (3.12)

where P̃τ(ω),α(ω) = [P̃−
τ(ω),α(ω), P̃+

τ(ω),α(ω)] is the α-cut of fuzzy number

P̃τ (ω). The expectation of the fuzzy random variable P̃τ is a fuzzy
number(see (2.2))

E(P̃τ )(x) := sup
α∈[0,1]

min{α, 1E(P̃τ )α
(x)}, x ∈ R, (3.13)

where E(P̃τ )α =
[∫

Ω P̃−
τ,α(ω) dP (ω),

∫
Ω P̃+

τ,α(ω) dP (ω)
]
. Thus, by (2.5)

we have another estimation regarding the price process {P̃t}t∈T of
American put option at time τ :

Ẽ(E(P̃τ ))

=
∫ 1

0
ME(P̃τ )(E(P̃τ )α) g(E(P̃τ )α) dα

/ ∫ 1

0
ME(P̃τ )(E(P̃τ )α) dα.

(3.14)
However, (3.14) coincides with (3.9) in cases of the possibility mean,
the necessity mean and the credibility mean in Example 2.1. Now we
discuss it in the following more gerneral framework.
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Assumption M. There exists a nonincreasing function ρ : [0, 1] 7→
[0, 1] such that

Mã(ãα) = ρ(α), α ∈ [0, 1] for all ã ∈ R.

In Example 2.1, the possibility evaluation measure MP
ã , the necessity

evaluation measure MN
ã and the credibility evaluation measure MC

ã

have the following nonincreasing functions ρ in Assumption M:

ρP (α) := 1 : in case of the possibility evaluation measure;
ρN (α) := 1− α : in case of the necessity evaluation measure;
ρC(α) := 1− α/2 : in case of the credibility evaluation measure.

Lemma 3.1. Suppose Assumption M holds. Let τ be an exercise time.
Then it holds that

P (τ) = E

(∫ 1

0
MP̃τ (·)(P̃τ,α(·)) g(P̃τ,α(·)) dα

/ ∫ 1

0
MP̃τ (·)(P̃τ,α(·)) dα

)

=
∫ 1

0
ME(P̃τ )(E(P̃τ )α) E(g(P̃τ,α)) dα

/ ∫ 1

0
ME(P̃τ )(E(P̃τ )α) dα

(3.15)

=
∫ 1

0
ME(P̃τ )(E(P̃τ )α) g(E(P̃τ )α) dα

/ ∫ 1

0
ME(P̃τ )(E(P̃τ )α) dα

= Ẽ(E(P̃τ ))

Proof. From (2.2) and the definition (2.3) of g, we have

g(E(P̃τ )α) = g(E(P̃τ,α)) = E(g(P̃τ,α)).

So, the last two equalities hold in (3.15). Under Assumption M, we
have ME(P̃τ )(E(P̃τ )α) = MP̃τ

(P̃τ,α(·)) = ρ(α). By Fubini’s theorem, we
obtain

∫ 1

0
ME(P̃τ )(E(P̃τ )α) E(g(P̃τ,α)) dα

/ ∫ 1

0
ME(P̃τ )(E(P̃τ )α) dα

=
∫ 1

0
ρ(α) E(g(P̃τ,α)) dα

/ ∫ 1

0
ρ(α) dα

= E

(∫ 1

0
ρ(α) g(P̃τ,α(·)) dα

/ ∫ 1

0
ρ(α) dα

)

= P (τ).

These complete the proof of this lemma. ¤
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4. The optimal expected price and the optimal exercise
time

In this section, we discuss the optimal fuzzy price V and the optimal
exercise time τ∗, by using dynamic programming approach. Now we
introduce an assumption.

Assumption S. The stochastic process {at}T
t=0 is represented by

at(ω) := cSt(ω), t = 0, 1, 2, · · · , T, ω ∈ Ω,

where c is a constant satisfying 0 < c < 1.

Figure 4.1

Fig. 4.1. Fuzzy stock price S̃t(ω)(x) and Assumption S.

Assumption S is reasonable since at(ω) means a size of fuzziness and
it should depend on the volatility and the stock price St(ω) because
one of the most difficulties is estimation of the actual volatility ([11,
Sect.7.5.1], Fig.4.1). In this model, we represent by c the fuzziness of
the volatility, and we call c a ‘fuzzy factor’ of the process. From now
on, we suppose that Assumption S and Assumption M hold. By putting
b±(α) := 1± (1− α)c (α ∈ [0, 1]), from (3.2) we have

S̃±t,α(ω) = St(ω)± (1− α)at(ω)
= b±(α)St(ω)

= b±(α)S0

t∏

s=1

(1 + Ys(ω)), ω ∈ Ω
(4.1)

for t ∈ T and α ∈ [0, 1]. Then, from (3.7) and (4.1), we have the fuzzy
price process:

P̃±
τ,α(ω) = βτ(ω) max{K − b∓(α)Sτ (ω), 0}, ω ∈ Ω. (4.2)

For an exercise time τ , we define a random variable

Πτ (ω) := Ẽ(P̃τ )(ω)

=
∫ 1

0
MP̃τ (ω)(P̃τ,α(ω)) g(P̃τ,α(ω)) dα

/ ∫ 1

0
MP̃τ (ω)(P̃τ,α(ω)) dα,

(4.3)
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ω ∈ Ω. From Lemma 3.1, P (τ) = E(Πτ ) is the evaluated price of
American put option when τ is an exercise time. Now we give an opti-
mal exercise time for Problem P and we discuss an iterative method to
obtain the optimal expected price V in (3.14). To analyze the optimal
fuzzy price V , we put

Vt(y) = sup
τ : stopping times, t≤τ≤T

E(β−tΠτ |St = y) (4.4)

for t = 0, 1, 2, · · · , T and an initial stock price y (y > 0). Then we
note that V = V0(y). Next, we define the following stochastic sequence
{Zt}T

t=0: Let t ∈ T. Define

Zt := ess sup
τ : stopping times, t≤τ≤T

E(Πτ |Mt). (4.5)

Refer to [8, Prop.4-1-1] regarding the essential supremum. The random
variables Zt is called ‘Snell’s envelope’([8]). Hence we obtain the fol-
lowing recursive equation for the stochastic sequence {Zt}T

t=0 and the
optimal fuzzy price V .

Lemma 4.1 (Recurrsive equation). The following (i) and (ii) hold.

(i) V = E(Z0|S0 = y).

(ii) Zt(ω) = max{Πt(ω), E(Zt+1|Mt)(ω)}, a.a. ω, t = 0, 1, · · · , T − 1.

Proof. (i) is trivial from the definition of the essential supremum and
(3.10). Next we prove (ii). Let t = 0, 1, · · · , T − 1. From the definition
of the conditional expectation and the monotone convergence theorem,
we have

max{Πt, E(Zt+1|Mt)}

= max

{
Πt, E

(
ess sup

τ : t+1≤τ≤T
E(Πτ |Mt+1)|Mt

)}

= max

{
Πt, ess sup

τ : t+1≤τ≤T
E(Πτ |Mt)

}

= ess sup
τ : t≤τ≤T

E(Πτ |Mt)

= Zt almost surely.

Thus we obtain (ii), and therefore the proof of this lemma is com-
pleted. ¤

Hence we have the following representation about (4.3).
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Lemma 4.2. Let τ be a stopping time satisfying τ ≤ T . Let (4.3) be
the possibility mean in Example 2.1. Then there exists a function f on
(0,∞) such that

Πτ (ω) = βτ(ω)f(Sτ (ω)), ω ∈ Ω. (4.6)

The representation (4.6) also holds in case of the necessity mean and the
credibility mean. Here, the function f is given by f = fP (f = fN , f =
fC) corresponding to the possibility mean (the necessity mean, the
credibility mean respectively), where

fP (y) :=





K − y − 1
2
cy(2λ− 1) + λϕP,1(y) if 0 < y < K

(1− λ)ϕP,2(y) if y ≥ K,

(4.7)

fN (y) :=





K − y − 2
3
cy(2λ− 1) + λϕN,1(y) if 0 < y < K

(1− λ)ϕN,2(y) if y ≥ K,

(4.8)

fC(y) :=





K − y − 5
9
cy(2λ− 1) + λϕC,1(y) if 0 < y < K

(1− λ)ϕC,2(y) if y ≥ K,

(4.9)

with functions ϕP,1, ϕP,2, ϕN,1, ϕN,2, ϕC,1, ϕC,2 on (0,∞): For y > 0,

ϕP,1(y) :=
1

2cy
max{0, K2(y)}2,

ϕP,2(y) :=
1

2cy
max{0, K1(y)}2,

ϕN,1(y) :=
1
cy

max{0,K2(y)}2 − 1
3(cy)2

max{0,K2(y)}3,

ϕN,2(y) :=
1
cy

max{0,K1(y)}2 − 1
3(cy)2

max{0,K1(y)}3,

ϕC,1(y) :=
2

3cy
max{0, K2(y)}2 − 1

9(cy)2
max{0,K2(y)}3,

ϕC,2(y) :=
2

3cy
max{0, K2(y)}2 − 1

9(cy)2
max{0,K2(y)}3.

Here we put K1(y) := K − y + cy and K2(y) := −K + y + cy.

Proof. Fix any ω ∈ Ω. From (2.3) and (4.2), we have

g(P̃τ,α(ω)) = λP̃−
τ,α(ω) + (1− λ)P̃+

τ,α(ω)

= λβτ(ω) max{K − b+(α)Sτ (ω), 0}
+(1− λ)βτ(ω) max{K − b−(α)Sτ (ω), 0}.
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It is represented as g(P̃τ,α(ω)) = βτ(ω)h(Sτ (ω), α) with a function h on
(0,∞)× [0, 1] such that

h(y, α) :=





K − bλ(α)y if 0 < y < K/b+(α)
(1− λ)(K − b−(α)y) if K/b+(α) ≤ y < K/b−(α)
0 if y ≥ K/b−(α),

(4.10)
where bλ(α) := λb+(α) + (1 − λ)b−(α) = 1 + (2λ − 1)(1 − α)c. Then,
in case of necessity mean values, we can easily calculate that the in-
tegration of 2(1 − α) h(y, α) is given by the following function fN on
(0,∞):

fN (y) :=
∫ 1

0
2(1− α) h(y, α) dα

=





K − y − 2
3
cy(2λ− 1) + λϕN,1(y) if 0 < y < K

(1− λ)ϕN,2(y) if y ≥ K,

where ϕN,1 and ϕN,2 are given in the statements of this lemma. Thus
we have

Πτ (ω) =
∫ 1

0
2(1− α) g(P̃τ,α(ω)) dα

=
∫ 1

0
βτ(ω)2(1− α) h(Sτ (ω), α) dα = βτ(ω)fN (Sτ (ω)).

We can easily check the other cases in a similar way. Thus we obtain
this lemma. ¤

Figure 4.2

Fig. 4.2. The function fP (y) (λ = 1/2, c = 0.05,K = 35).

Fig.4.2 indicates the function fP (y), whch is given by (4.7), in case
of the possibility measure at λ = 1/2, c = 0.05, K = 35. Since the stock
price process {St}T

t=0 is Markov by (3.1), we obtain the following results
from Lemma 4.2.

Theorem 4.1 (Optimality equation).
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(i) The optimal expected price V = V0(y) with an initial stock price
y (y > 0) is given by the following backward recursive equations
(4.11) and (4.12): For t = 0, 1, · · · , T − 1, y > 0,

Vt(y) = max{βE(Vt+1(y(1 + Y1))), f(y)}, (4.11)

VT (y) = f(y). (4.12)

(ii) Define a stopping time

τ∗(ω) := inf{t ∈ T | Vt(St(ω)) = f(St(ω))}, ω ∈ Ω, (4.13)

where the infimum of the empty set is understood to be T . Then,
τ∗ is an optimal exercise time for Problem P, and the optimal value
of American put option is

V = V0(y) = P (τ∗) (4.14)

for an initial stock price y > 0.

Proof. (i) Taking expectations of Lemma 4.1(ii) with E(·|St = y),
from (3.1), (4.3) and (4.6) we have

βtVt(y) = max{βtf(y), βt+1E(Vt+1(yS1))}
= max{βtf(y), βt+1E(Vt+1(y(1 + Y1)))}.

While by (4.4) and (4.6), we also have

VT (y) = E(βT ΠT |ST = y) = E(f(ST )|ST = y) = f(y).

Thus we obtain (4.11) and (4.12) from these equations.
(ii) Using the supermartingale {Zt}T

t=0, from Lemma 4.1(i) and [8,
Prop.6-1-3] we have

V = E(Z0|S0 = y) = E(Πτ∗ |S0 = y) = P (τ∗).

Therefore, τ∗ is an optimal exercise time for Problem P and we also
obtain (4.14). ¤

5. A numerical example

Now we give a numerical example to illustrate our idea in Sections 3
and 4.

Example 5.1. We consider CRR type American put option model
(see Ross [11, Sect.7.4]). Put an expiration date T = 10, an interest
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rate of a bond r = 0.05, a fuzzy factor c = 0.05, an initial stock price
y = 30 and a strike price K = 35. Assume that {Yt}T

t=1 is a uniform
sequence of independent, identically distributed real random variables
such that

Yt :=
{

eσ − 1 with probability p
e−σ − 1 with probability (1− p) (5.1)

for all t = 1, 2, · · · , T , where σ = 0.25 is a volatility of the stock and
the probability p is given by p = (1+r−e−σ)/(eσ−e−σ). Then we have
the risk neutral condition E(Yt) = r. This model has a binomial form
where the stock will go up with probability p and will go down with
probability 1−p. If we take a λ-weighting function g with a pessimistic-
optimistic index λ = 1/2 in (2.3), Fig.5.1 shows the corresponding
optimal expected price of American put option V0(y) for each initial
stock price y in case of the possibility mean, and then the corresponding
optimal exercise time is reduced to

τ∗(ω) = inf{t ∈ T | Vt(St(ω)) = fP (St(ω))}
= inf{t ∈ T | St(ω) ≤ y∗t },

where y∗t is the stopping boundary price for the stock prices St which
is given by [0, y∗t ] = {y ∈ [0,∞) | Vt(y) = fP (y)} and we can easily
calculate it (see Table 5.1).

Table 5.1. The stopping boundary price y∗t
(λ = 1/2; c = 0.05; K = 35; y = 30)

t 0 1 2 3 4 5

y∗t 24.895 24.976 25.131 25.277 25.484 25.798

6 7 8 9 10

26.052 26.921 27.101 29.807 30.000

Figure 5.1
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Fig. 5.1. The optimal expected price of American put option V0(y)
and the function fP (y) (λ = 1/2, c = 0.05,K = 35, y: initial stock

price)

The optimal expected price of American put option V0(y) changes
corresponding to the pessimistic-optimistic index λ(0 ≤ λ ≤ 1) in the
λ-weighting function (2.3), where λ means the pessimistic degree in
the writer’s decision making. By the optimality equation in Theorem
4.1(i), we can calculate the optimal expected price V0(y). The initial
option price is K − y = 5, but Table 5.2 shows the optimal expected
price of American put option V0(y) at initial stock price y = 30.

Table 5.2. The optimal expected price V0(y)
(λ = 1/3, 1/2, 2/3; c = 0.05;K = 35; y = 30)

λ = 0 λ = 1/3 λ = 1/2 λ = 2/3 λ = 1

The possibility mean ẼP 7.780 7.482 7.396 7.311 7.013

The necessity mean ẼN 7.908 7.567 7.396 7.226 6.885

The credibility mean ẼC 7.822 7.538 7.396 7.255 6.971

We can utilize the results of λ = 1 and λ = 0 as confidence intervals
in fuzzy and stochastic environment. For example, from the possibility
mean case of Table 5.2, the interval [7.013, 7.780] can be taken as a kind
of confidence intervals for the optimal expected price V0(y). Similarly
in the necessity mean case (the credibility mean case resp.), we can give
the corresponding confidence intervals by [6.885, 7.908] ([6.971, 7.822]).
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