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Abstract. To solve a mathematical model for American put option with uncer-
tainty, we utilize two essentials, i.e., a λ−weighting function and a mean value of
fuzzy random variables simultaneously. Estimation of randomness and fuzziness as
uncertainty should be important when we deal with a reasonable and natural model
extended from the original optimization/decision making. Three kinds of mean val-
ues by fuzzy measures, which are based on Possibility, Necessity and Credibility, are
demonstrated particularly. We consider the optimal expected price of the American
put option by dynamic programming under a reasonable assumption. A numerical
example is given to illustrate our idea.
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1. Introduction

This paper deals with a discrete-time mathematical model for American
put option with uncertainty of stock prices. It is not easy in general to
calculate American put option with an expiration date in continuous-
time systems, and the study of the discrete-time case is one of the
most important approaches to investigate the continuous-time model
through approximation. Mathematical modeling of stochastic systems
in optimization/decision-making has many applications to engineering,
economics, etc.. One of the conditions that stochastic modeling works
successfully is stability of systems. If the systems are unstable when the
models are applied actually, losses/errors, which cannot be explained
by only probabilistic elements, sometimes occur between the decision
maker’s expected price and the actual price. On selling and buying
stocks by means of internet in financial markets when stock prices
change radically, the loss from time lag through internet etc. might
be more huge. This kind of loss is not only a problem arising from
probabilistic sense where something occurs or not, and it is difficult to
formulate them by only probabilistic theory. In this paper, probability
is applied as the uncertainty such that something occurs or not with
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probability, and fuzziness is applied as the uncertainty such that we
cannot specify the exact prices because of a lack of knowledge regarding
the present stock market. By introducing fuzziness to stochastic pro-
cesses in optimization/decision-making, we consider a new model with
uncertainty of both randomness and fuzziness, which is a reasonable
and natural extension of the original stochastic process.

The optimal stopping problem for a sequence of random variables
has a long history and has been studied by many authors in financial
engineering (Elliott and Kopp [2], Pliska [8], Ross [10] and so on).
In this paper, we need to discuss the optimal stopping problem with
randomness and fuzziness as uncertainty since the American put option
model are represented by an optimal stopping problem in stochastic
processes. In order to describe an optimal stopping model with fuzzi-
ness, we need to extend real-valued random variables in the classical
probability theory to ‘fuzzy random variables’ which are fuzzy-number
valued random variables. Fuzzy random variables were first studied by
Puri and Ralescu [9] and have been studied by many authors. It is
known that the fuzzy random variable is one of the successful hybrid
notions of randomness and fuzziness.

In the next section, we introduce a fuzzy stochastic process by
fuzzy random variables to define prices in American put option with
uncertainty. The prices are called ‘fuzzy prices’ in this paper.

Extending the idea in Yoshida et al. [15], we introduce mean values
of a fuzzy number defined by fuzzy measures and λ-weighting functions.
This paper evaluates the randomness and fuzziness in fuzzy stochastic
processes by the probabilistic expectation and the mean values de-
fined by fuzzy measures and λ-weighting functions. The mean values
are demonstrated particularly in three kinds of important fuzzy mea-
sures: possibility measure, necessity measure and credibility measure.
In Section 3, American put option model with uncertainty is formu-
lated and fuzzy prices of the American option are evaluated by the
probabilistic expectation and mean values defined by fuzzy measures
and λ-weighting functions from the viewpoint of Yoshida et al. [14]. In
Section 4, an optimality equation for the optimal fuzzy price is derived
by dynamic programming under a reasonable assumption. Next, we
consider the optimal expected price of the American put option and
writer’s (seller’s) optimal expected prices. Further, an optimal exercise
time is given for the American put option. Finally, in the last section,
a numerical example is given to illustrate our idea.
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2. Fuzzy stochastic processes

First we give some mathematical notations regarding fuzzy numbers.
Let (Ω,M, P ) be a probability space, where M is a σ-field of Ω and
P is a non-atomic probability measure. R denotes the set of all real
numbers, and let B(R) and C(R) be the Borel σ-field of R and the set of
all non-empty bounded closed intervals respectively. A ‘fuzzy number’
is denoted by its membership function ã : R 7→ [0, 1] which is normal,
upper-semicontinuous, fuzzy convex and has a compact support. R
denotes the set of all fuzzy numbers, and Rc is the set of fuzzy numbers
with continuous membership functions. Refer to Zadeh [16] regarding
fuzzy set theory. In this paper, we identify fuzzy numbers with its
corresponding membership functions. The α-cut of a fuzzy number ã(∈
R) is given by ãα := {x ∈ R | ã(x) ≥ α} (α ∈ (0, 1]) and ã0 := cl{x ∈
R | ã(x) > 0}, where cl denotes the closure of an interval. In this paper,
we write the closed intervals by ãα := [ã−α , ã+

α ] for α ∈ [0, 1]. Hence we
introduce a partial order º, so called the ‘fuzzy max order’, on fuzzy
numbers R: Let ã, b̃ ∈ R be fuzzy numbers. ã º b̃ means that ã−α ≥ b̃−α
and ã+

α ≥ b̃+
α for all α ∈ [0, 1]. Then (R,º) becomes a lattice. For fuzzy

numbers ã, b̃ ∈ R, we define the maximum ã ∨ b̃ with respect to the
fuzzy max order º by the fuzzy number whose α-cuts are

(ã ∨ b̃)α = [max{ã−α , b̃−α }, max{ã+
α , b̃+

α }], α ∈ [0, 1]. (2.1)

An addition, a subtraction and a scalar multiplication for fuzzy num-
bers are defined as follows: For ã, b̃ ∈ R and µ ≥ 0, the addition and
subtraction ã± b̃ of ã and b̃ and the scalar multiplication µã of µ and
ã are fuzzy numbers given by

(ã + b̃)α := [ã−α + b̃−α , ã+
α + b̃+

α ], (ã− b̃)α := [ã−α − b̃+
α , ã+

α − b̃−α ]

and (µã)α := [µã−α , µã+
α ] for α ∈ [0, 1].

A fuzzy-number-valued map X̃ : Ω 7→ R is called a ‘fuzzy random
variable’ if the maps ω 7→ X̃−

α (ω) and ω 7→ X̃+
α (ω) are measurable for

all α ∈ [0, 1], where X̃α(ω) = [X̃−
α (ω), X̃+

α (ω)] = {x ∈ R | X̃(ω)(x) ≥
α} (see [13]). Next we need to introduce expectations of fuzzy random
variables in order to describe an optimal stopping model in the next
section. A fuzzy random variable X̃ is called integrably bounded if both
ω 7→ X̃−

α (ω) and ω 7→ X̃+
α (ω) are integrable for all α ∈ [0, 1]. Let X̃ be

an integrably bounded fuzzy random variable. The expectation E(X̃)
of the fuzzy random variable X̃ is defined by a fuzzy number (see [9])

E(X̃)(x) := sup
α∈[0,1]

min{α, 1E(X̃)α
(x)}, x ∈ R, (2.2)
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where E(X̃)α := [
∫
Ω X̃−

α (ω) dP (ω),
∫
Ω X̃+

α (ω) dP (ω)] (α ∈ [0, 1]). We
note that the map α 7→ ∫

Ω X̃±
α (ω) dP (ω) is continuous by the monotone

convergence theorem since α 7→ X̃±
α (ω) is continuous for ω ∈ Ω. In the

rest of this section, we introduce stopping times for fuzzy stochastic
processes. Let T := {0, 1, 2, · · · , T} be the time space, where a pos-
itive integer T is called an ‘expiration date’. Let a ‘fuzzy stochastic
process’ {X̃t}T

t=0 be a sequence of integrably bounded fuzzy random
variables such that E(maxt∈T X̃+

t,0) < ∞, where X̃+
t,0(ω) is the right-

end of the 0-cut of the fuzzy number X̃t(ω). For t ∈ T, Mt denotes the
smallest σ-field on Ω generated by all random variables X̃−

s,α and X̃+
s,α

(s = 0, 1, 2, · · · , t; α ∈ [0, 1]). We call (X̃t,Mt)∞t=0 a ‘fuzzy stochastic
process’. A map τ : Ω 7→ T is called a ‘stopping time’ if {ω ∈ Ω |
τ(ω) = t} ∈ Mt for all t = 0, 1, 2, · · · , T . Then, the following lemma is
trivial from the definitions ([14]).

Lemma 2.1. Let τ be a stopping time. We define

X̃τ (ω) := X̃t(ω) if τ(ω) = t for t = 0, 1, 2, · · · , T and ω ∈ Ω.

Then, X̃τ is a fuzzy random variable.

Next we consider the evaluation of fuzzy random variables. Fuzzy
random variables have two kinds of uncertainty (randomness and fuzzi-
ness). In this paper, the randomness is evaluated by the probabilistic
expectation, and the fuzziness is evaluated by λ-weighting functions
and fuzzy measures. Let g : C(R) 7→ R be a map such that

g([x, y]) := λx + (1− λ)y, [x, y] ∈ C(R), (2.3)

where λ is a constant satisfying 0 ≤ λ ≤ 1. This scalarization is used
for the estimation of fuzzy numbers, and λ is called a ‘pessimistic-
optimistic index’ and means the pessimistic degree in decision making
(Fortemps and Roubens [3]). We call g a ‘λ-weighting function’.

Definition 2.1 (Wang and Klir [12]). A map M : B 7→ [0, 1] is called
a ‘fuzzy measure’ on B if M satisfies the following (M.i), (M.ii) and
(M.iii) (or (M.i), (M.ii) and (M.iv)):

(M.i) M(∅) = 0 and M(R) = 1;

(M.ii) M(I1) ≤ M(I2) holds for I1, I2 ∈ B satisfying I1 ⊂ I2;

(M.iii) M(
⋃∞

n=0 In) = limn→∞M(In) holds for {In}∞n=0 ⊂ B satisfying
In ⊂ In+1 (n = 0, 1, 2, · · · );

(M.iv) M(
⋂∞

n=0 In) = limn→∞M(In) holds for {In}∞n=0 ⊂ B satisfying
In ⊃ In+1 (n = 0, 1, 2, · · · ).
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Extending the idea in Yoshida et al. [15], we introduce mean values
of a fuzzy number as follows: Using fuzzy measures M and λ-weighting
functions g, we define mean values of a fuzzy number ã ∈ R by

Ẽ(ã) =
∫ 1

0
Mã(ãα) g(ãα) dα

/ ∫ 1

0
Mã(ãα) dα, (2.4)

where ãα is the α-cut of the fuzzy number ã. Mã is a fuzzy measure
depending on the fuzzy number ã, (2.4) is normalized by the values
Mã(ãα)(α ∈ [0, 1]), and Mã(ãα) means the confidence degree that the
fuzzy number ã takes values at the interval ãα (see Example 2.1). Next,
let ã ∈ R, and we define its mean value by

Ẽ(ã) := lim
n→∞ Ẽ(ãn), (2.5)

where {ãn}∞n=1(⊂ Rc) is a sequence of fuzzy numbers whose member-
ship functions are continuous and satisfy ãn ↓ ã pointwise as n →∞. If
the limiting value (2.5’) is independent of the selection of the sequences
{ãn}∞n=1 ⊂ Rc, we call (2.5’) well-defined. In this paper, we deal with
the case where the limiting value is well-defined (see Example 2.1).

Example 2.1. Let a fuzzy number ã ∈ Rc. An evaluation measure Mã

is called the ‘possibility evaluation measure’, the ‘necessity evaluation
measure’ and the ‘credibility evaluation measure’ induced from the
fuzzy number ã if it is given by the following (2.6) and (2.7) respectively:

MP
ã (I) := sup

x∈I
ã(x), I ∈ B; (2.6)

MN
ã (I) := 1− sup

x 6∈I
ã(x), I ∈ B; (2.7)

MC
ã (I) :=

1
2

(
sup
x∈I

ã(x) + 1− sup
x6∈I

ã(x)

)
, I ∈ B. (2.8)

We note that MP
ã , MN

ã and MC
ã satisfy Definition 2.1(M.i) – (M.iv)

since ã is continuous and has a compact support. Since MP
ã (ãα) = 1

and MN
ã (ãα) = 1 − α and MC

ã (ãα) = 1 − α/2 from (2.6) – (2.8), the
corresponding mean values Ẽ(ã) are reduced to

ẼP (ã) :=
∫ 1

0
g(ãα) dα; (2.9)

ẼN (ã) :=
∫ 1

0
2(1− α) g(ãα) dα; (2.10)

ẼC(ã) :=
∫ 1

0

4
3
(1− α

2
) g(ãα) dα. (2.11)
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They are called a ‘possibility mean’, a ‘necessity mean’ and a ‘credibility
mean’ of the fuzzy number ã respectively.

In the same idea, we introduce mean values of fuzzy random vari-
ables X̃ as follows

E(Ẽ(X̃)(·))
:= E

(∫ 1

0
MX̃(·)(X̃α(·)) g(X̃α(·)) dα

/ ∫ 1

0
MX̃(·)(X̃α(·)) dα

)
,

(2.12)

where X̃α(·) = [X̃−
α (·), X̃+

α (·)].

3. American put option with uncertainty of stock prices

In this section, we formulate American put option with uncertainty of
stock prices by fuzzy random variables. Let T := {0, 1, 2, · · · , T} be the
time space with an expiration date T similarly to the previous section,
and take a probability space Ω := RT+1. Let r (r > 0) be an interest
rate of a bond price, which is a riskless asset, and put a discount rate
β = 1/(1 + r). Define a ‘stock price process’ {St}T

t=0 as follows: An
initial stock price S0 is a positive constant and stock prices are given
by

St := S0

t∏

s=1

(1 + Ys) for t = 1, 2, · · · , T, (3.1)

where {Yt}T
t=1 is a uniform integrable sequence of independent, identi-

cally distributed real random variables on [−1,∞) such that E(Yt) = r
for all t = 1, 2, · · · , T . The σ-fields {Mt}T

t=0 are defined as follows:
M0 is the completion of {∅,Ω} and Mt(t = 1, 2, · · · , T ) denote the
complete σ-fields generated by {Y1, Y2 · · ·Yt}.

We consider a finance model where the stock price process {St}T
t=0

takes fuzzy values. Now we give fuzzy values by triangular fuzzy num-
bers for simplicity. Let {at}T

t=0 be an Mt-adapted stochastic process
such that 0 < at(ω) ≤ St(ω) for ω ∈ Ω. A ‘stock price process with
fuzzy values’ are represented by a sequence of fuzzy random variables
{S̃t}T

t=0:
S̃t(ω)(x) := L((x− St(ω))/at(ω)) (3.2)

for t ∈ T, ω ∈ Ω and x ∈ R, where L(x) := max{1−|x|, 0} (x ∈ R) is the
triangle shape function (Fig.3.1). Hence, at(ω) is a spread of triangular
fuzzy numbers S̃t(ω) and corresponds to the amount of fuzziness in the
process. Then, at(ω) should be an increasing function of the stock price
St(ω) (see Assumption S in the next section).
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Fig. 3.1. Fuzzy random variable ~St(!)(x).

Let K (K > 0) be a ‘strike price’. The ‘price process’ {P̃t}T
t=0 of

American put option under uncertainty is represented by

P̃t(ω) := βt(1{K} − S̃t(ω)) ∨ 1{0} for t = 0, 1, 2, · · · , T, (3.3)
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where ∨ is given by (2.1), and 1{K} and 1{0} denote the crisp number
K and zero respectively. An ‘exercise time’ in American put option is
given by a stopping time τ with values in T. For an exercise time τ , we
define

P̃τ (ω) := P̃t(ω) if τ(ω) = t for t = 0, 1, 2, · · · , T, and ω ∈ Ω. (3.4)

Then, from Lemma 2.1, P̃τ is a fuzzy random variable. Now we analyze
(3.3) by α-cuts technique of fuzzy numbers. The α-cuts of fuzzy random
variables (3.2) are

S̃t,α(ω) = [St(ω)− (1− α)at(ω), St(ω) + (1− α)at(ω)], ω ∈ Ω, (3.5)

and so we put

S̃±t,α(ω) := St(ω)± (1− α)at(ω), ω ∈ Ω (3.6)

for t ∈ T and α ∈ [0, 1]. Therefore, the α-cuts of (3.3) are

P̃t,α(ω) = [P̃−
t,α(ω), P̃+

t,α(ω)]
:= [βt max{K − S̃+

t,α(ω), 0}, βt max{K − S̃−t,α(ω), 0}], (3.7)

and we obtain E(maxt∈T supα∈[0,1] P̃
+
t,α) ≤ K < ∞ since S̃−t,α(ω) ≥ 0,

where E(·) is the expectation with respect to some risk-neutral equiva-
lent martingale measure([2]). Let ω ∈ Ω and let τ be an exercise time.
From (2.5), the evaluation of the fuzzy number P̃τ (ω) is given by

Ẽ(P̃τ )(ω) := Ẽ(P̃τ (ω))

=
∫ 1

0
MP̃τ (ω)(P̃τ,α(ω)) g(P̃τ,α(ω)) dα

/ ∫ 1

0
MP̃τ (ω)(P̃τ,α(ω)) dα, ω ∈ Ω.

(3.8)
From (2.12), we put the expectation of (3.8) by P (τ) :

P (τ) := E(Ẽ(P̃τ )(·))
= E

(∫ 1

0
MP̃τ (·)(P̃τ,α(·)) g(P̃τ,α(·)) dα

/ ∫ 1

0
MP̃τ (·)(P̃τ,α(·)) dα

)
.

(3.9)
Then P (τ) means an evaluation of the expected price of American put
option when τ is an exercise time. In American put option, we must
maximize the expected values P (τ) of the price process by stopping
times τ . Put the ‘optimal expected price’ by

V := sup
τ :τ≤T

P (τ). (3.10)

In the next section, this paper discusses the following optimal stopping
problem regarding American put option with fuzziness.
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Problem P. Find a stopping time τ∗(τ∗ ≤ T ) and the optimal
expected price V such that

P (τ∗) = V . (3.11)

Then, τ∗ is called an ‘optimal exercise time’. On the other hand, for
an exercise time τ , the expectation of the fuzzy random variable P̃τ is
a fuzzy number whose α-cut is a closed interval

E(P̃τ )α = E(P̃τ,α) = [E(P̃−
τ,α), E(P̃+

τ,α)] for α ∈ [0, 1], (3.12)

where P̃τ(ω),α(ω) = [P̃−
τ(ω),α(ω), P̃+

τ(ω),α(ω)] is the α-cut of fuzzy number

P̃τ (ω). The expectation of the fuzzy random variable P̃τ is a fuzzy
number(see (2.2))

E(P̃τ )(x) := sup
α∈[0,1]

min{α, 1E(P̃τ )α
(x)}, x ∈ R, (3.13)

where E(P̃τ )α =
[∫

Ω P̃−
τ,α(ω) dP (ω),

∫
Ω P̃+

τ,α(ω) dP (ω)
]
. Thus, by (2.5)

we have another estimation regarding the price process {P̃t}t∈T of
American put option at time τ :

Ẽ(E(P̃τ ))

=
∫ 1

0
ME(P̃τ )(E(P̃τ )α) g(E(P̃τ )α) dα

/ ∫ 1

0
ME(P̃τ )(E(P̃τ )α) dα.

(3.14)
However, (3.14) coincides with (3.9) in cases of the possibility mean,
the necessity mean and the credibility mean in Example 2.1. Now we
discuss it in the following more gerneral framework.

Assumption M. There exists a nonincreasing function ρ : [0, 1] 7→
[0, 1] such that

Mã(ãα) = ρ(α), α ∈ [0, 1] for all ã ∈ R.

In Example 2.1, the possibility evaluation measure MP
ã , the necessity

evaluation measure MN
ã and the credibility evaluation measure MC

ã

have the following nonincreasing functions ρ in Assumption M:

ρP (α) := 1 : in case of the possibility evaluation measure;
ρN (α) := 1− α : in case of the necessity evaluation measure;
ρC(α) := 1− α/2 : in case of the credibility evaluation measure;

for α ∈ [0, 1].
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Lemma 3.1. Suppose Assumption M holds. Let τ be an exercise time.
Then it holds that

P (τ) = E

(∫ 1

0
MP̃τ (·)(P̃τ,α(·)) g(P̃τ,α(·)) dα

/ ∫ 1

0
MP̃τ (·)(P̃τ,α(·)) dα

)

=
∫ 1

0
ME(P̃τ )(E(P̃τ )α) E(g(P̃τ,α)) dα

/ ∫ 1

0
ME(P̃τ )(E(P̃τ )α) dα

=
∫ 1

0
ME(P̃τ )(E(P̃τ )α) g(E(P̃τ )α) dα

/ ∫ 1

0
ME(P̃τ )(E(P̃τ )α) dα

= Ẽ(E(P̃τ ))
(3.15)

Proof. From (2.2) and the definition (2.3) of g, we have

g(E(P̃τ )α) = g(E(P̃τ,α)) = E(g(P̃τ,α)).

So, the last two equalities hold in (3.15). Under Assumption M, we
have ME(P̃τ )(E(P̃τ )α) = MP̃τ

(P̃τ,α(·)) = ρ(α). By Fubini’s theorem, we
obtain

∫ 1

0
ME(P̃τ )(E(P̃τ )α) E(g(P̃τ,α)) dα

/ ∫ 1

0
ME(P̃τ )(E(P̃τ )α) dα

=
∫ 1

0
ρ(α) E(g(P̃τ,α)) dα

/ ∫ 1

0
ρ(α) dα

= E

(∫ 1

0
ρ(α) g(P̃τ,α(·)) dα

/ ∫ 1

0
ρ(α) dα

)

= P (τ).

These complete the proof of this lemma. ¤

4. The optimal expected price and the optimal exercise time

In this section, we discuss the optimal fuzzy price V and the optimal
exercise time τ∗, by using dynamic programming approach. Now we
introduce an assumption.

Assumption S. The stochastic process {at}T
t=0 is represented by

at(ω) := cSt(ω), t = 0, 1, 2, · · · , T, ω ∈ Ω,

where c is a constant satisfying 0 < c < 1.
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Fig. 4.1. Fuzzy stock price ~St(!)(x) and Assumption S.

Fig. 4.1. Fuzzy stock price S̃t(ω)(x) and Assumption S.
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Assumption S is reasonable since at(ω) means a size of fuzziness and
it should depend on the volatility and the stock price St(ω) because
one of the most difficulties is estimation of the actual volatility ([10,
Sect.7.5.1], Fig.4.1). In this model, we represent by c the fuzziness of
the volatility, and we call c a ‘fuzzy factor’ of the process. From now
on, we suppose that Assumption S and Assumption M hold. By putting
b±(α) := 1± (1− α)c (α ∈ [0, 1]), from (3.2) we have

S̃±t,α(ω) = St(ω)± (1− α)at(ω)
= b±(α)St(ω)
= b±(α)S0

∏t
s=1(1 + Ys(ω)), ω ∈ Ω

(4.1)

for t ∈ T and α ∈ [0, 1]. Then, from (3.7) and (4.1), we have the fuzzy
price process:

P̃±
τ,α(ω) = βτ(ω) max{K − b∓(α)Sτ (ω), 0}, ω ∈ Ω. (4.2)

For an exercise time τ , we define a random variable: for ω ∈ Ω,

Πτ (ω) := Ẽ(P̃τ )(ω)

=
∫ 1

0
MP̃τ (ω)(P̃τ,α(ω)) g(P̃τ,α(ω)) dα

/ ∫ 1

0
MP̃τ (ω)(P̃τ,α(ω)) dα.

(4.3)
From Lemma 3.1, P (τ) = E(Πτ ) is the evaluated price of American
put option when τ is an exercise time. Now we give an optimal exercise
time for Problem P and we discuss an iterative method to obtain the
optimal expected price V in (3.14). To analyze the optimal fuzzy price
V , we put

Vt(y) = sup
τ : stopping times, t≤τ≤T

E(β−tΠτ |St = y) (4.4)

for t = 0, 1, 2, · · · , T and an initial stock price y (y > 0). Then we
note that V = V0(y). Next, we define the following stochastic sequence
{Zt}T

t=0: Let t ∈ T. Define

Zt := ess sup
τ : stopping times, t≤τ≤T

E(Πτ |Mt). (4.5)

Refer to [7, Prop.4-1-1] regarding the essential supremum. The random
variables Zt is called ‘Snell’s envelope’([7]). Hence we obtain the fol-
lowing recursive equation for the stochastic sequence {Zt}T

t=0 and the
optimal fuzzy price V .

Lemma 4.1 (Recurrsive equation). The following (i) and (ii) hold.

(i) V = E(Z0|S0 = y).
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(ii) For t = 0, 1, · · · , T − 1,

Zt(ω) = max{Πt(ω), E(Zt+1|Mt)(ω)}, almost all ω.

Proof. (i) is trivial from the definition of the essential supremum and
(3.10). Next we prove (ii). Let t = 0, 1, · · · , T − 1. From the definition
of the conditional expectation and the monotone convergence theorem,
we have

max{Πt, E(Zt+1|Mt)}
= max

{
Πt, E

(
ess supτ : t+1≤τ≤T E(Πτ |Mt+1)|Mt

)}

= max
{
Πt, ess supτ : t+1≤τ≤T E(Πτ |Mt)

}

= ess supτ : t≤τ≤T E(Πτ |Mt)
= Zt almost surely.

Thus we obtain (ii), and therefore the proof of this lemma is completed.
¤

Hence we have the following representation about (4.3).

Lemma 4.2. Let τ be a stopping time satisfying τ ≤ T . Let (4.3) be
the possibility mean in Example 2.1. Then there exists a function f on
(0,∞) such that

Πτ (ω) = βτ(ω)f(Sτ (ω)), ω ∈ Ω. (4.6)

The representation (4.6) also holds in case of the necessity mean and the
credibility mean. Here, the function f is given by f = fP (f = fN , f =
fC) corresponding to the possibility mean (the necessity mean, the
credibility mean respectively), where

fP (y) :=

{
K − y − 1

2cy(2λ− 1) + λϕP,1(y) if 0 < y < K
(1− λ)ϕP,2(y) if y ≥ K,

(4.7)

fN (y) :=

{
K − y − 2

3cy(2λ− 1) + λϕN,1(y) if 0 < y < K
(1− λ)ϕN,2(y) if y ≥ K,

(4.8)

fC(y) :=

{
K − y − 5

9cy(2λ− 1) + λϕC,1(y) if 0 < y < K
(1− λ)ϕC,2(y) if y ≥ K,

(4.9)
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with functions ϕP,1(y), ϕP,2(y), ϕN,1(y), ϕN,2(y), ϕC,1(y), ϕC,2(y) for
y > 0:

ϕP,1(y) :=
1

2cy
max{0,−K + y + cy}2,

ϕP,2(y) :=
1

2cy
max{0,K − y + cy}2,

ϕN,1(y) :=
1
cy

max{0,−K + y + cy}2 − 1
3(cy)2

max{0,−K + y + cy}3,

ϕN,2(y) :=
1
cy

max{0,K − y + cy}2 − 1
3(cy)2

max{0,K − y + cy}3,

ϕC,1(y) :=
2

3cy
max{0,−K + y + cy}2 − 1

9(cy)2
max{0,−K + y + cy}3,

ϕC,2(y) :=
2

3cy
max{0,K − y + cy}2 − 1

9(cy)2
max{0,K − y + cy}3.

Proof. Fix any ω ∈ Ω. From (2.3) and (4.2), we have

g(P̃τ,α(ω)) = λP̃−
τ,α(ω) + (1− λ)P̃+

τ,α(ω)

= λβτ(ω) max{K − b+(α)Sτ (ω), 0}
+(1− λ)βτ(ω) max{K − b−(α)Sτ (ω), 0}.

It is represented as g(P̃τ,α(ω)) = βτ(ω)h(Sτ (ω), α) with a function h on
(0,∞)× [0, 1] such that

h(y, α) :=





K − bλ(α)y if 0 < y < K/b+(α)
(1− λ)(K − b−(α)y) if K/b+(α) ≤ y < K/b−(α)
0 if y ≥ K/b−(α),

(4.10)
where bλ(α) := λb+(α) + (1 − λ)b−(α) = 1 + (2λ − 1)(1 − α)c. Then,
in case of necessity mean values, we can easily calculate that the in-
tegration of 2(1 − α) h(y, α) is given by the following function fN on
(0,∞):

fN (y) :=
∫ 1

0
2(1− α) h(y, α) dα

=

{
K − y − 2cy(2λ− 1)/3 + λϕN,1(y) if 0 < y < K
(1− λ)ϕN,2(y) if y ≥ K,

where ϕN,1 and ϕN,2 are given in the statements of this lemma. Thus
we have

Πτ (ω) =
∫ 1

0
2(1− α) g(P̃τ,α(ω)) dα

=
∫ 1

0
βτ(ω)2(1− α) h(Sτ (ω), α) dα = βτ(ω)fN (Sτ (ω)).
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We can easily check the other cases in a similar way. Thus we obtain
this lemma. ¤
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¸Fig. 4.2. The function fP (y) ( = 1=2; c = 0:05; K = 35).
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Fig. 4.2. The function fP (y) (λ = 1/2, c = 0.05,K = 35).

Fig.4.2 indicates the function fP (y), whch is given by (4.7), in case
of the possibility measure at λ = 1/2, c = 0.05, K = 35. Since the stock
price process {St}T

t=0 is Markov by (3.1), we obtain the following results
from Lemma 4.2.

Theorem 4.1 (Optimality equation).

(i) The optimal expected price V = V0(y) with an initial stock price
y (y > 0) is given by the following backward recursive equations
(4.11) and (4.12): For t = 0, 1, · · · , T − 1, y > 0,

Vt(y) = max{βE(Vt+1(y(1 + Y1))), f(y)}, (4.11)

VT (y) = f(y), y > 0. (4.12)

(ii) Define a stopping time

τ∗(ω) := inf{t ∈ T | Vt(St(ω)) = f(St(ω))}, ω ∈ Ω, (4.13)

where the infimum of the empty set is understood to be T . Then,
τ∗ is an optimal exercise time for Problem P, and the optimal value
of American put option is

V = V0(y) = P (τ∗) (4.14)

for an initial stock price y > 0.

Proof. (i) Taking expectations of Lemma 4.1(ii) with E(·|St = y),
from (3.1), (4.3) and (4.6) we have

βtVt(y) = max{βtf(y), βt+1E(Vt+1(yS1))}
= max{βtf(y), βt+1E(Vt+1(y(1 + Y1)))}.

While by (4.4) and (4.6), we also have

VT (y) = E(βT ΠT |ST = y) = E(f(ST )|ST = y) = f(y).

Thus we obtain (4.11) and (4.12) from these equations.
(ii) Using the supermartingale {Zt}T

t=0, from Lemma 4.1(i) and [7,
Prop.6-1-3] we have

V = E(Z0|S0 = y) = E(Πτ∗ |S0 = y) = P (τ∗).

Therefore, τ∗ is an optimal exercise time for Problem P and we also
obtain (4.14). ¤
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5. A numerical example

Now we give a numerical example to illustrate our idea in Sections 3
and 4.

Example 5.1. We consider CRR type American put option model
(see Ross [10, Sect.7.4]). Put an expiration date T = 10, an interest
rate of a bond r = 0.05, a fuzzy factor c = 0.05, an initial stock price
y = 30 and a strike price K = 35. Assume that {Yt}T

t=1 is a uniform
sequence of independent, identically distributed real random variables
such that

Yt :=
{

eσ − 1 with probability p
e−σ − 1 with probability (1− p) (5.1)

for all t = 1, 2, · · · , T , where σ = 0.25 and p = (1+r−e−σ)/(eσ−e−σ).
Then we have E(Yt) = r. If we take a λ-weighting function g with
λ = 1/2 in (2.3), Fig.5.1 shows the corresponding optimal expected
price V0(y) for each initial stock price y in case of the possibility mean,
and the corresponding optimal exercise time is reduced to

τ∗(ω) = inf{t ∈ T | Vt(St(ω)) = fP (St(ω))}
= inf{t ∈ T | St(ω) ≤ y∗t },

where y∗t is given in Table 5.1(see Fig.5.1).

Table 5.1. The boundary price y∗t (λ = 1/2; c = 0.05;K = 35; y = 30)

t 0 1 2 3 4 5

y∗t 24.895 24.976 25.131 25.277 25.484 25.798

6 7 8 9 10

26.052 26.921 27.101 29.807 30.000
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Fig. 5.1. The optimal expected price V0(y) and the function

( = 1=2; c = 0:05; K = 35, y: initial stock price)

Fig. 5.1. The optimal expected price V0(y) and the function fP (y).
(λ = 1/2, c = 0.05, K = 35, y: initial stock price)
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The optimal expected price V = V0(y) at initial stock price y = 30
changes corresponding to the pessimistic-optimistic index λ(0 ≤ λ ≤ 1)
in the λ-weighting function (2.3), where λ means the pessimistic degree
in the writer’s decision making(see Table 5.2).

Table 5.2. The optimal expected price V = V0(y)
(λ = 1/3, 1/2, 2/3; c = 0.05;K = 35; y = 30)

λ = 1/3 λ = 1/2 λ = 2/3
The possibility mean ẼP 7.48169 7.39649 7.31130
The necessity mean ẼN 7.56688 7.39649 7.22611
The credibility mean ẼC 7.53848 7.39649 7.25450
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