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Abstract
A continuous-time version of the multivariate stopping problem is considered.

Associated with vector valued jump stochastic processes, stopping problems with a
monotone logical rule are defined under the notion of Nash equilibrium point. The
existence of an equilibrium strategy and its characterization by integral equations
are obtained. Illustrative examples are provided.

1 Introduction

In social life or in business, group decision making is often alleviated by cooperating
with each individual’s opinion in the whole group. How can we impose their opinion to
the group decision? As one abstraction of such a situation, we shall try to propose a
multivalued stopping game by introducing a monotone logical function to sum up each
individual’s opinion. The discrete-time case has already been discussed [4], [10]. Here we
consider the continuous-time case, which is formulated as a multiobjective extension of
Karlin’s model [3] and a rule’s extension of Sakaguchi’s model [7]. As a related result,
Presman and Sonin [6] have obtained the multiperson best choice problem on the Poisson
stream but their rule of a decision to stop is different from ours. Szajowski and Yasuda
[8] treat the case when the process is a Markov Chain.

The situation of our problem is as follows. A group of p players observes a p-
dimensional stochastic process. Each player can decide to stop or to continue the process
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at any time when the p-dimensional successive offers will have happened, and the indi-
vidual declarations are summed to make the group decision for the process by using a
monotone logical rule. When the process is stopped by the group of p players, components
of the stochastic process are given to each player as a reward, so that he wishes to make
his expected gain as large as possible.

First, we introduce some definitions and notations to formulate our stopping problem
in Section 2. Then, by preparing several lemmas, we show the existence of an equilibrium
stopping strategy and obtain its characterization by an integral equation in Section 3. In
Section 4, examples of the underlying model are given.

2 Formulation

We consider a p-dimensional vector valued stochastic process {Xt; t ≥ 0} with ith com-
ponent X i

t , adapted to Ft on a probability space (Ω,F , P ) where Ft is the σ-algebra
generated by {Xs; 0 ≤ s ≤ t}. Let us assume that the process {Xt; t ≥ 0} is an indepen-
dent jump process (see, Feller [2]), that is, there are two independent stochastic sequences
Zn = (Z1

n, Z2
n, . . . , Zp

n) and τn, n = 0, 1, 2, . . . , which satisfy Xt = Zn if τn ≤ t < τn+1 for
any t, t ≥ 0, under the following assumption:

Assumption 2.1.

(a) p-Dimensional random vectors Zn = (Z1
n, Z

2
n, . . . , Z

p
n), n = 0, 1, 2, . . . , are i.i.d. with

a common distribution F on Rp, where R = (−∞,∞).

(b) τ0 = 0 a.s. and τn − τn−1, n = 1, 2, . . . are i.i.d. with a common distribution G on
R+, where R+ = [0,∞) and G(0) = 0.

(c)
∫

Rp
|z|F (dz) < ∞ and µG =

∫

R+

tG(dt) < ∞, where | · | is a norm on Rp.

In order to denote the declaration for each player i(i = 1, . . . , p), when the process is
{Xt; t ≥ 0}, let σi(t, x) be a {0, 1}-valued Borel measurable function on R+ × Rp with
σi(0, x) = 1. We call σi = σi(·, ·) an individual strategy for player i, and σ = (σ1, . . . , σp) a
strategy. The individual strategy σi(t, x) may be interpreted as follows; when the amount x
of the offer has happened and the time interval remaining until termination is t, σi(t, x) =
1(0) means player i declares to stop (continue). In particular, σi(0, x) = 1 means that
any player i must declare to stop when the time remaining until termination is 0.

The individual declarations are summed up by a logical rule. A logical rule is a
map π : {0, 1}p → {0, 1} and is called monotone if π(1, . . . , 1) = 1 and π(σ1, . . . , σp) ≤
π(σ̃1, . . . , σ̃p) for σi ≤ σ̃i (1 ≤ i ≤ p). A monotone logical rule includes a wide variety in a
choice system such as a unanimity rule, an equal/unequal majority rule, and a hierarchical
rule, some of which are given in the last section. For example, if no less than r (≤ p)
members in a group of p players declare to stop, the group decision is to stop the process
(equal majority rule). That is, π(σ1, . . . , σp) = 1(0) if

∑p
i=1 σi ≥ (<) r. Refer also to our

previous papers [4] and [10].
For a strategy σ, a monotone logical rule π and a planning horizon T , a stopping time

t(T, σ, π) for the group of p players is defined by

t(T, σ, π) = min{τ(σ, π), T},
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where τ(σ, π) = the first τk such that π(σ(T −τk, Xτk
)) = 1 for k ≥ 0. Note that t(T, σ, π)

means the first time that the declaration σi of each player i is summed up for the group
of p players, to stop the process by the rule π. Since the monotone logical rule π is fixed,
π is suppressed in t(T, σ, π) hereafter.

An expected reward of player i for a strategy σ is defined by

ui(T, σ) = E[X i
t(T,σ)], T ≥ 0.

Since the problem is fundamentally formulated as a noncooperative game, a notion of
Nash equilibrium point (see Nash [5] and Vorob’ev [9] ) can be utilized. A strategy ∗σ =
(∗σ1, . . . , ∗σp) is equilibrium if, for each i,

ui(T, ∗σ) ≥ ui(T, ∗σ−i‖σi)

for any individual strategy σi and any T ≥ 0, where

∗σ−i‖σi = (∗σ1, . . . , ∗σi−1, σi , ∗σi+1, . . . , ∗σp).

In this chapter, we will find an equilibrium strategy ∗σ and the corresponding stopping
time t(T, ∗σ, π) given a monotone rule π.

3 Lemmas and Theorems

In this section, the existence of an equilibrium strategy and its characterization are ob-
tained. First, we will derive the integral equation of u(T, σ) = (u1(T, σ), . . . , up(T, σ)), T ≥
0 for given a strategy σ. Let Gn be the σ-algebra generated by (Zk, τk), k = 0, 1, . . . , n−
1 and τn for each n.

Lemma 3.1.

E[X i
t(T,σ)I{t(T,σ)≥τn}|Gn] = ui(T − τn, σ)I{t(T,σ)≥τn} a.e.,

where IA is the indicator for a set A.
Proof. By Assumption 2.1, it holds that

t(T, σ) = t(T − τn, σ) + τn on {t(T, σ) ≥ τn} (13.1)

for some n and that

E[X i
t(T−τn,σ)+τn

|Gn] = ui(T − τn, σ) a.e.. (13.2)

So, the proof is completed by noting {t(T, σ) ≥ τn} ∈ Gn. 2

Let Z = (Z1, . . . , Zp) be a p-dimensional random variable whose distribution is F and
let F be the σ-algebra generated by Z. For any set A ∈ F and any α ∈ R, define the
operators Li, i = 1, . . . , p, by

Li(A; α) = E[ZiIA] + αP (Ac).
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Lemma 3.2. For each i(i = 1, . . . , p), ui(T ) = ui(T, σ) satisfies the following integral
equation:

ui(T ) = Li({π(σ(T,Z)) = 1}; G ◦ ui(T )), (13.3)

where σ(T,Z) = (σ1
(T,Z), . . . , σ

p
(T,Z)) and G ◦ ui(T ) =

∫ T

0
ui(T − s)G(ds).

Proof. By Assumption 2.1, we have

ui(T ) = E
[
Zi

0I{t(T,σ)=0}
]
+ E

[
X i

t(T,σ)I{t(T,σ)≥τ1}
]
. (13.4)

From Lemma 3.1, it holds that

E[X i
t(T,σ)I{t(T,σ)≥τ1}|G1] = ui(T − τ1)I{t(T,σ)≥τ1} a.e.

Thus, noting {t(T, σ) = 0} = {π(σ(T,Z0)) = 1} and {t(T, σ) ≥ τ1} = {π(σ(T,Z0)) = 1}c,
(13.3) follows from (13.4), replacing Z0 by Z. 2

To show the existence of an equilibrium strategy, we need several further lemmas.
Let S be the set of all {0, 1}-valued Borel measurable functions on R+ ×Rp. For any

number α ∈ R and i (i = 1, . . . , p), define σi[α] ∈ S by σi[α] = 1 if Zi ≥ α, = 0 otherwise,
which is called an individual strategy of a control-limit-type.

For any (σ1, . . . , σp) ∈ Sp, let us denote π(σ) = π(σ1
(T,Z), . . . , σ

p
(T,Z)) for simplicity.

Lemma 3.3. For any α ∈ R and (σ1, . . . , σp) ∈ Sp,

Li({π(σ) = 1}; α) ≤ Li({π(σ−i‖σi[α]) = 1}; α).

Proof. Since π is monotone, we have π(σ1, . . . , σi−1, 1, σi+1, . . . , σp) ≥ π(σ1, . . . , σp) ≥
π(σ1, . . . , σi−1, 0, σi+1, . . . , σp) for all σ ∈ Sp. Thus, from the definition of σ−i‖σi[α], it
follows that

{Zi − α ≥ 0, π(σ−i‖σi[α]) = 1} ⊃ {Zi − α ≥ 0, π(σ) = 1}

and
{Zi − α < 0, π(σ−i‖σi[α]) = 1} ⊂ {Zi − α < 0, π(σ) = 1},

which implies
E[(Zi − α)I{π(α)=1}] ≤ E[(Zi − α)I{π(σ−i‖σi[α])=1}].

So, the proof is completed by noting Li(A; α) = E([Zi − α)IA] + α for all A ∈ F . 2

Lemma 3.4. For any α, β ∈ R, with α ≥ β and (σ1, . . . , σp) ∈ Sp,

Li({π(σ−i‖σi[α]) = 1}; α) ≥ Li({π(σ−i‖σi[β]) = 1}; β). (13.5)

Proof. By Lemma 3.3, it holds that

Li({π(σ−i‖σi[α]) = 1}; α) ≥ Li({π(σ−i‖σi[β]) = 1}; α). (13.6)

Since α ≥ β, then

Li({π(σ−i‖σi[β]) = 1}; α) ≥ Li({π(σ−i‖σi[β]) = 1}; β),
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so that (13.5) follows from (13.6). 2

Lemma 3.5. For any fixed i and any strategies σ = (σ1, . . . , σp) ∈ Sp, let us consider
the following integral equation with respect to v(T ) := vi(T ), for simplicity :

v(T ) = Li({π(σ−i‖σi[G◦v(T )]) = 1}; G ◦ v(T )) (13.7)

for T ≥ 0. Then, we have:

(i) The solution v(T ) exists uniquely in L1([0,∞), dG); and

(ii) v(T ) ≥ ui(T ; σ) for T ≥ 0.

Proof. First we shall show the uniqueness of the solution of (13.7). Let α = G ◦ v(T )
and α′ = G ◦ v′(T ), where v(T ) and v′(T ) are two solutions of (13.7) in L1([0,∞), dG).
We generally assume α ≥ α′. Then, since

π(σ−i‖σi[α]) = π(σ−i‖σi[α′]) on {Zi ≤ α′} ∪ {Zi > α},
we have

E
[
ZiI{π(σ−i‖σi[α])=1}

]
− E

[
ZiI{π(σ−i‖σi[α′])=1}

]

= E
[
ZiI{α′<Zi≤α,π(σ−i‖σi[α])=1}

]
− E

[
ZiI{α′<Zi≤α,π(σ−i‖σi[α′])=1}

]

≤ α P{α′ < Z i ≤ α, π(σ−i‖σi[α]) = 1} − α′P{α′ < Z i ≤ α, π(σ−i‖σi[α′]) = 1}
≤ α P{π(σ−i‖σi[α]) = 1} − α′P{π(σ−i‖σi[α′]) = 1}.

It follows from (13.7) that v(T )− v′(T ) ≤ α− α′. Thus, we have 0 ≤ v(T )− v′(T ) ≤ G ◦
v(T )−G ◦ v′(T ) from Lemma 4.4, which implies

|v(T )− v′(T )| ≤
∫ T

0
|v(T − s)− v′(T − s)|G(ds) for all T ≥ 0.

By the well-known Gronwall-Bellman’s theorem (see, e.g. Bellman [1]), we obtain the
result

v(T ) = v′(T ) for all T ≥ 0

in L1([0,∞), dG).
Next, we shall show the existence of the solution of (13.7). For any strategy σ it holds

from Lemma 3.2 that

ui(T ; σ) = Li({π(σ(T,Z)) = 1}; G ◦ ui(T ; σ)). (13.8)

Now putting αi
1 = G ◦ ui(T, σ) and σi

1 = σi[αi
1], we define

ui
1(T ) = Li({π(σ−i‖σi

1
) = 1}; αi

1).

Then we observe from Lemma 3.3 that

ui
1(T ) ≥ ui

1(T ; σ). (13.9)

If we define, recursively, for each n ≥ 2,

ui
n(T ) = Li({π(σ−i‖σi

n
) = 1}; αi

n), (13.10)
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αi
n = G ◦ ui

n−1(T ) and σi
n = σi[αi

n],

we see that
ui

n(T ) ≥ ui
n−1(T ) (13.11)

by applying Lemma 3.4. Hence by the monotone convergence theorem, when n → ∞ in
(13.10), it holds that the limit ui(T ) := limn→∞ ui

n(T ) equals a solution v(T ) := vi(T ) of
(13.7) in L1([0,∞), dG). Clearly, (ii) holds from (13.9) and (13.11). 2

Condition 3.1. There are vi(T ) ∈ L1([0,∞), dG), i = 1, . . . , p, which satisfy the
following p simultaneous integral equations:

vi(T ) = Li({π(∗σ) = 1; G ◦ vi(T )), i = 1, . . . , p, T ≥ 0, (13.12)

where ∗σ = (∗σ1, . . . , ∗σp) and ∗σi = ∗σi
(T,Z) = σi[G ◦ vi(T )].

We are now ready to prove the main theorem.

Theorem 3.1. Under Condition 1, it holds that:

(i) ui(T, ∗σ) = vi(T ), i = 1, . . . , p for T ≥ 0.

(ii) ∗σ is an equilibrium strategy.

Proof . (i) By Lemma 3.2, ui(T ; ∗σ) satisfies (13.12). Thus, from (i) of Lemma 3.5, the
uniqueness of the solution of (13.12) implies (i) of Theorem 3.1. Also, (ii) follows from
(ii) of Lemma 3.5. 2

Remark 3.1. Theorem 3.1 says that under Condition 3.1 there exists an equilibrium
strategy of control-limit-type, whose threshold for each player i is αi = G◦ vi(t) when the
remaining time interval until termination is t.

Remark 3.2. In most cases the direct verification of Condition 3.1 seems to be difficult.
However, if G(T ) < 1 for all T > 0 as the case that G(ds) = λe−λsds, λ > 0 (an
exponential distribution), (13.12) has a unique solution v(T ) = (v1(T ), . . . , vp(T )) in
L∞[0,∞)p, where L∞[0,∞) denotes the set of all bounded Borel measurable functions on
[0,∞). This result is used as the example in the next section. In fact, we define the map
U : L∞[0,∞)p → L∞[0,∞)p by

Uu(T ) =
(
L1(π{σu(T )) = 1}; G ◦ u1(T ), . . . Lp(π{σu(T )) = 1}; G ◦ up(T )

)
,

where u(T ) = (u1(T ), . . . , up(T )) ∈ L∞[0,∞)p and

σu(T ) = (σ1[G ◦ u1(T )], . . . , σp[G ◦ up(T )]).

Then, by the same way as in the proof of Lemma 3.5, we get

||Uu− Uu′||T ≤ G(T )||u− u′||T for any u, u′ ∈ L∞[0,∞)p and T ≥ 0,

where ||u||T = max1≤i≤p sup0≤t≤T |ui(t)| for u(T ) ∈ L∞[0,∞)p.
The above discussion shows that U is a contraction w.r.t. the norm || · ||T , so that U

has a unique fixed point vT ∈ L∞[0,∞)p. Since T is arbitrary, v := limT→∞ vT satisfies
(13.12). Also, the uniqueness of the solution of (13.12) follows from Lemma 3.5.
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Remark 3.3. If the observation cost is incurred at each arrival time of offers, a p-
dimensional random vector (net profit) Zn = (Z1

n, . . . , Zp
n) is defined by

Zn = Yn − (n + 1)c,

where Yn = (Y 1
n , . . . , Y p

n ) are i.i.d. with a common distribution F on Rp and c =
(c1, . . . , cp) is a constant observation cost.

The corresponding p-simultaneous integral equations for (13.12) reduces, for T ≥ 0,

vi(T ) + ci = Li
(
{π(∗σ) = 1}; G ◦ vi(T )

)
, i = 1, . . . , p. (13.13)

Then we can prove in identical fashion that for a solution vi(T ) ∈ L1([0,∞), dG), i =
1, . . . , p, of (13.13) the same theorem as Theorem 3.1 holds.

Remark 3.4. When G is a degenerate distribution with total mass at unity, the integral
equation (13.13) becomes

vi(T ) + ci = Li({π(∗σ) = 1}; vi(T − 1)), i = 1, . . . , p, (13.14)

where ∗σ = (∗σ1, . . . , ∗σp) and ∗σi
(T,Z) = ∗σi[vi(T − 1)]. Thus, if we define a sequence

{vi
n}n=0,1,... for i = 1, . . . , p, by

vi
0 = E[Zi],

vi
n = Li({π(∗σ) = 1}; vi

n−1), n = 1, 2, . . . ,
(13.15)

recursively, then we observe that

vi(T ) = vi
n if n ≤ T < n + 1 for some n.

Assuming that ci > 0 for all i, it follows that vi := limT→∞ vi(T ) exists. Now, as T →∞
in (13.14), we obtain

E[(Zi− vi)+P ({π(∗σ−i‖1) = 1}|Zi)]−E[(Zi− vi)−P ({π(∗σ−i‖0) = 1}|Zi)] = ci, (13.16)

where ∗σ−i‖k = (∗σ1, . . . , ∗σi−1, k, ∗σi+1, . . . , ∗σp) for each k = 0, 1. We note that (13.16)
corresponds to (3.1) of [10].

4 Examples

In this section, we provide some examples involving the two-person stopping problem (p =
2) with the unanimity and simple majority rule as the typical ones of a monotone logical
rule.

Example 4.1 (The Unanimity Rule). Let us consider a unanimity rule, that is,
decide to stop only both of players’ opinion is stop. Let define π(σ1, σ2), σ1, σ2 ∈ {0, 1}
by π(σ1, σ2) = 1 if σ1 = σ2 = 1, = 0 otherwise. Then the integral equation (13.12) of
vi(T ), T ≥ 0 becomes

vi(T ) = vi
T +

∫ ∫

D
(zi − vi

T )F (dz1, dz2), i = 1, 2 (13.17)
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where D = {(z1, z2); z1 ≥ v1
T and z2 ≥ v2

T}. The equilibrium strategy is of control-limit-
type and the threshold of player i is vi

T = G ◦ vi(T ) =
∫
(0,T ] v

i(T − s) G(ds), i = 1, 2.

If Z1 and Z2 are i.i.d. with a common distribution F (z), then v(T ) := v1(T ) = v2(T )
for all T ≥ 0, (13.17) becomes

v(T ) = vT + (1− F (vT ))
∫ ∞

vT

(1− F (z)) dz, (13.18)

where vT =
∫
(0,T ] v(T − s) G(ds).

Now suppose G(ds) = λe−λs ds, λ > 0, that is, the time interval between successive
offers is exponentially distributed. Then since dvT /dT = λ(v(T ) − vT ), we have the
following differential equation from (13.18):

dvT

dT
= λ(1− F (vT ))

∫ ∞

vT

(1− F (z)) dz, (13.19)

which corresponds to (10) of Sakaguchi [7].

Example 4.2 (The Simple Majority Rule). A simple majority rule π(σ1, σ2), σ1, σ2 ∈
{0, 1} for p = 2 is defined by π(σ1, σ2) = 1 if σ1 + σ2 ≥ 1, = 0 otherwise. If Z1 and Z2

are nonnegative and i.i.d. with a common distribution F (z), then v(T ) := v1(T ) = v2(T ),
and (3.13) becomes

v(T ) = vT +
∫ ∫

D
(z1 − vT )F (dz1)F (dz2), (13.20)

where D = {(z1, z2); z1 ≥ vT or z2 ≥ vT}. The equilibrium strategy is of control-limit-type
and the threshold of player i is

vT = G ◦ v(T ) =
∫

(0,T ]
v(T − s) G(ds).

Then, we have from Assumption 2.1 that µF =
∫
R xF (dx) < ∞,

v(T ) = µF − F (vT )
∫

[0,vT ]
z F (dz) + vT{F (vT )}2.

Since ∫

[0,y]
z F (dz) = −y[1− F (y)] +

∫ y

0
(1− F (z)) dz for all y > 0,

we obtain that

v(T ) = µF + F (vT )
∫ vT

0
F (z) dz,

so that

vT =
∫

(0,T ]
G(ds)

{
µF + F (vT−s)

∫ vT−s

0
F (z) dz

}
. (13.21)

Next, suppose G(ds) = λe−λs ds. Then, by elementary calculus, (13.21) becomes

vT · exp{λT} = λ
∫ T

0
eλs ds

{
µF + F (vs)

∫ vs

0
F (z) dz

}
. (13.22)
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By taking the derivative of both sides of (13.22) with respect to T , we have the following
differential equation:

dvT

dT
= λ

{
µF − vT + F (vT )

∫ vT

0
F (z) dz

}
. (13.23)

Thus, by rewriting (13.23),

dv

/{
µF − v + F (v)

∫ v

0
F (z) dz

}
= λ dt,

from which we obtain the inverse function of vT , T (v), given by

T (v) = λ−1
∫ v

0
M−1(ξ) dξ, (13.24)

where M(ξ) = µF − ξ + F (ξ)
∫ ξ
0 F (z) dz.

For a numerical example, supposing F (z) = z, 0 ≤ z ≤ 1, from (13.24) we get

T (v) = 2λ−1
∫ v

0
1/(ξ3 − 2ξ + 1) dξ,

so that

lim
T→∞

vT = (
√

5− 1)/2(≈ 0.6180) and lim
T→∞

v(T ) = (
√

5− 1)/2,

which are the threshold of the control-limit strategy and the expected reward for the
infinite horizon problem (refer to Table 3.1 of [10] for the discrete time case) .
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