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A bstract—Introducing a linear structure for a fuzzy relation, we could prove the linearity of the
fuzzy integral with respect to this relation. It is known that the fuzzy integral does not have the
linearity, so this becomes an obstacle in developing the fuzzy dynamic system. To avoid this, we
will impose some restrictive assumptions for a fuzzy relation defined on the positive orthant of an
n-dimensional Euclidean space. Also, fuzzy Markov decision processes with deterministic stationary
policies are formulated and its characterization is given by a recursive equation in the fuzzy state.
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1. INTRODUCTION

Let denote F(R% ) be the set of all fuzzy sets 3§ on RY}, being upper semicontinuous with a compact
support and SUP R $(z) = 1 where R% is the p051tive orthant of an n-dimensional Euclidean

space. We will follow the usual notation in the fuzzy thoery. For any fuzzy set § on R and
a € [0,1], its a-cut is defined by "

o= {2z €RY |3(:L')>a}(1>a>0) and 3§p :=cl{x € R} | 3(z) > 0}

where cf means the closure of a set. We call §y a support of §. For fuzzy sets §, 7 and a scalar ),

(§+7)(z) := sup  {8(y) A7(2)}
y+z=z; y,2€RT -
and -
3 (-“5-) | if A >0, .
(A3)(z) := A z € RY,
I{O} (SC), if A = 0,

 where AAp = min{\, p} for A\, p € R, and I4(-) is the indicator function for any ordinary subset
A of R%. |
Then, the corresponding a-cut representations are as follows (see [1]):

(§ + Tl = 8¢ + Ta, for 3, ¥ and a € [0, 1],

(A8)q = A8q, for 5, A € R}, and a € [0, 1],
where A+B = {z+y |z € Aandy € B} (A,B CR%} )a.nd)\A {\z|ze€ A} (ACRT,AeRl).

This research is a Jomt work with M. Kurano, J. Nakagami, Y. Yoshlda of Chiba University, Japan. The intensive
discussions with the colleague have improved the results.
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A fuzzy rela,tlon in th1s paper, is deﬁned by q R"’ X IR"' ' [0 1], Wthh satisfies the next two
condltlons - |

ASSUMPTION 1

(i) It is continuous on R%? x R% \ {(0 0)} and
(i) §(-,y) € F(RY), for yeR” -

Note that the continuity breaks at {(0,0)} because of the linearity introduced in the next
section. The fuzzy relation ¢ defines a rule of transition in dynamic fuzzy system Also, it
reduces the fuzzy measure us, and then the fuzzy integral can be defined.

It is shown that, for any fuzzy set § € F(R%), the fuzzy integral with respect to relatlon q(a:, )
becomes

fﬁd‘i(“’a ') :fﬁ(y)ﬂq(x -)dy o

= su a/\
O<agl{ | Hg(z,-) (pa)}

= sup {d(z,y) /\p(y)} T € R’i,
| yGRn o - |

where fi5(z, )(D) = sgp i(z,y) and Po = {y c R | p(y) > a}, aeo,1].
Y

In this paper, the linearity of the fuzzy 1ntegral with respect to this relation is discussed in
Section 2. In Section 3, fuzzy Markov decision processes with deterministic stationary policies
are formulated and its characterization is given by a recursive equation m the fuzzy state The
discussion in Section 3 does not assume the lmearlty of the mtegral

2. RELATIONS FOR THE DYNAMIC FUZZY SYSTEMS
Assumptions for relations of the dynamic fuzzy system are imposed as follows.

ASSUMPTION 2.

(i) (Convexity) §(-,y) is convex for each y, that is, qa(y) is a convex set for each a,y.
(ii) (Linearity) g(-, ay + bz) = ag(;, y) + bd(-, z) for each y,zand a,b>0. '

LEMMA 1. Let A be a convex set. For a,b > 0, Itholds that -
aA + bA = (a + b)A.

PROOF. It is clear. The proof is omitted.

Note that since we are considering the integral by the fuzzy relation, the fuzzy integral is not
the usual scalar one, but the fuzzy set. Therefore, the scalar product and sum appearing in the
next theorem must be understood in the sense of the fuzzy operatlon '

LEMMA 2. Assumption 2(ii) is eqmva]ent to
Go(ay +b2) = ada(y) + bda(2),  fora>0.

PRrOOF. Since §o(y) = {z € R} | §(=, y) > a}, it is easily obtained.

THEOREM 1. Under these assumptions, the linearity of the fuzzy integral with respect to the
relation holds, that is, for 8,7 € F(R%) and a,b > 0,

f(ag + b7) dg(z, ) = a][.’s'dc}'(:z:, )+ b][é"d(j'(a:, ), zeR.

PROOF. Using two lemmas, Assumption 2 implies this linearity.
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3. RECURSIVE EQUATION OF FUZZY MDP

The previous assumption is somewhat too restrictive, so we try to discuss the dynamic de-
cision process without this assumption. Our main tool is to use a-cuts. Firstly, using Zadeh’s
extention principle [2], we will define the total fuzzy reward in the deterministic Markov decision
process(MDP) and their associated rewards of stationary policy are characterized by the fixed
point of a mapping.

In this section, we will formulate a fuzzy Markov decision process which transition follows a
deterministic law. The policy is restricted to a stationary deterministic one.

A rough sketch on the classical MDP is described by the set

(X,4,q,7).

We consider, for simplicity, the case such-that X is a compact state space, A is a compact
action space, a deterministic transition function ¢ : X x A — X and a bounded reward function
r: X x A — [0,M], where M is a positive constant. A stationary policy ) = (f,f,...) is
a sequence of function f from X to A and § denotes a discount factor. Hereafter, assume that
each of ¢, r, f is continuous.

Under these assumptions, the aim of this section is to formulate a fuzzy Markov decision process
from the classical one.

Let us denote that F(Y) equals the set of all upper semicontinuous fuzzy sets on Borel set Y.
Using the above notion, define the fuzzy state § as in the set of all fuzzy state space F(X).
Similarly the fuzzy action @ as in the set of all fuzzy action space F(A).

To consider the recursive equation in the fuzzy MDP, we fix the policy f(®) = (f, f, .. .) so

gr(z) =gz, f(z))  and  re(z):=7(z, f(x))

could be used for simplicity.
For a fuzzy state p € F(X) and fixed policy f (00) = (f, f,--.), let define a fuzzy transition by

dr(P)(y) :==sup{p(z); gs(z) =y, z€ X}, yeX

and a fuzzy reward by
7r(0)(2) :=sup{f(z); z€ X, rp(z) =2}, z2¢€[0,M],

respectively. ‘ ,
If we adapt the fuzzy policy f(®) = (f, f,...)the fuzzy state process changes as time goes by,

Po:=p€ F(X), Ptt+1:=ds(P)

fort=0,1,2,.... ,
Now for the initial fuzzy state § and the stationary policy f(®) = (f,f,-..), the discounted
total fuzzy reward is defined formally as

Rp(p) =) B'F¢(Be).

t=0

This is a formal sum so that we must discuss its convergence.

Let CS[0, M] be a set of all closed subset in the interval [0, M]. And let p be Hausdroff metric
on CS[0, M]. Hence, the space (CS[0, M], p) becomes a compact metric space.
To discuss the convergence for fuzzy states, the a-cut is a useful tool as previously applied
in [3]. ‘
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DEFINITION 1. For 3,3 € F(X), _
S, — 8§ as n — 00,
if and only if
sup{p(8n,as8q); 0L a<1}—0 asn— oo,
where the subscript oo means the corresponding a-cut.

THEOREM 2. It holds that

(a) The fuzzy total reward R¢(p) with a stationary policy f () = (f, f,...) and the initial
fuzzy state p converges. '
(b) For any o > 0,

o0

Rf (ﬁ)a — Z /@t'Ff (ﬁt)a

t=0

where Py 1= p € F(X), P41 := 4s(Pt), fort =0,1,2,... with the fuzzy transition qr.

Let us consider the following function space

V= {v;CS’(X) acs([o, 1]‘—4,3])}'

That is, for any closed set D C X, if v € V, then v(D) is a closed subset of [0, M/(1 — ()]. Let
define an operator Uy associated with a policy f(®) = (f,f,...) from V to V such that

Usv(D) := r¢(D) + Bv(gs (D)), forveV, De(CS(X)

where g¢(D) := {qs(z);x € D}.
LLEMMA 3. The operator Uy for each policy f (00) = (f, f,...) is a contractive mapping on V.

Hence, by this lemma, there exists a fixed point and we denote it as v} € V.

THEOREM 3. The fuzzy total reward R £(p) with an initial fuzzy state p and a fuzzy stationary
policy f () = (f, f,...) Is characterized by using a-set as

ot

Ri(P)a =v}(Fa)y 0<a<l.

PrROOF. From Theorem 2 and Lemma 3,

o0

B(B)a = S B (t)a

-
-

s 11

ﬂtff (ﬁt,a)

ﬁtff(éjf (ﬁa’)) -

|
O

t
7t (Pa) + BR (4 (Pa))-

Since R #(P)o depends on Py, it could be assigned as v(Dq) := R £(D)a. Letting D = pq,
v(D) = Usv(D).

That is, v is the fixed point of Uy and v = v%. }

This report is the preliminary results about the tuzzy integral and Markov decision processes.
It will be applied to define a fuzzy potential and the multistage decision processes in order to

expand the notion of fuzzy.
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