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Abstract - -We consider utility-constrained Markov decision processes. The expected utility of the 
total discounted reward is maximized subject to multiple expected utility constraints. By introducing 
a corresponding Lagrange function, a saddle-point theorem of the utility constrained optimization 
is derived. The existence of a constrained optimal policy is characterized by optimal action sets 
specified with a parametric utility. @ 2006 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - M a r k o v  decision processes, Utility constraints, Discount criterion, Lagrange tech- 
nique, Saddle-point, Constrained optimal policy. 

1. I N T R O D U C T I O N  A N D  P R O B L E M  F O R M U L A T I O N  

Utility-constrained Markov decision processes (MDPs) arise in the case where the decision maker 
wants to maximize the total reward under more than one utility function. The typical case is, 
for example, that in the group decision problem with different utility functions each player wants 
to maximize the reward under his own specified utility function. In such a case, we want to 
maximize the one type of expected utility of the reward while keeping other types of expected 
utilities higher than some given bounds. 

In this paper, we consider general utility-constrained MDPs in which the expected utility of 
the total discounted rewards is maximized subject to multiple expected utility constraints and 
the objective is to show that the Lagrange approach to general utility-constrained MDPs is 
successfully done. In fact, by introducing a corresponding Lagrange function, a saddle-point 
theorem is given, by which the existence of a constrained optimal policy is proved. And a 
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constra ined opt imal  pol icy is character ized by opt imal  act ion sets specified with  a paramet r ic  
utility. 

However, we do not  specify the  kind of ut i l i ty  function; it is expected  to enlarge the  pract ical  

appl icat ion of MDPs.  As far as we are aware, it  appears  tha t  l i t t le work has been done on 

the Lagrange method  to general  u t i l i ty-const ra ined MDPs.  The  me thod  of analysis  for general 
ut i t i ty functions is closely re la ted to [1,2], in which discounted MDPs  have been s tudied with 

general ut i l i ty  function and whose results are appl ied to character ize  a const ra ined opt imal  policy. 
Recently, Kurano  et al. [3] derived a saddle-point  theorem for constra ined MDPs  with average 
reward criteria.  For the  ut i l i ty  t r ea tmen t  for MDPs  and constra ined MDPs,  refer to  [1,2,4-7] and 

their  references. 

In the  remainder  of this  section, we define the  ut i l i ty-const ra ined problem to be examined and 
a constra ined opt imal  policy. F i rs t  we consider s t andard  Markov decision processes (MDPs),  

specified by 

(s, {A(i)}~s, q, T), 

where S = { 1 , 2 , . . .  } denotes the set of the s ta tes  of the  processes, A(i)  is the  set of actions 
available at  each s ta te  i E S,  taken to be a Borel subset  of some Polish space A. The  mat r ix  

q = (q~j(a)) is a t rans i t ion  probabi l i ty  sat isfying tha t  Y~jes  q~j(a) = 1 for all i E S and a E A(i) ,  
and r ( i , a , j )  is an immedia te  reward function defined on { ( i , a , j )  l i E S, a E A ( i ) ,  j E S}.  

Throughout  this  paper ,  the  following assumpt ion will remain operative.  

ASSUMPTION 1. 

(i) For each i E S, A(i)  is a closed set of  a compact metr ic  space A. 

(ii) For each i , j  E S, both q~j(.) and r( i ,  . , j )  are continuous on A(i) .  
(iii) The function r is uniformly bounded, i.e., I r ( i ,a , j ) l  < M for ali i , j  E S, a E A(i) ,  and 

some M > 0. 

The sample  space is the  product  space f/ = (S x A) ~176 such tha t  the  pro jec t ion  Xt ,  A t  on 
the t TM factors S,  A describe the  s ta te  and the  act ion of t - t ime  of the  process (t _> 0). A policy 

~r =: (zr0, ~rl . . . .  ) is a sequence of condit ional  probabi l i t ies  rrt such tha t  zrt(A(it) I io, a0,.  �9 it) = 1 
for all histories (i0, a 0 , . . . , i t )  E ( S x A )  t x S. The set of policies is denoted by H. Let Ht = 

(Xo, Ao . . . .  , A t _ l , X t )  for t _> 0. 

ASSUMPTION 2. We assu//le that 

(i) P r o b ( X t + l  = j l H t - l , A t - l , X t  = i, At  = a) = qij(a), 
(ii) P r o b ( A t + l  E D I Ht) = 7rt(DI Ht)  

for ai1 t >_ 0, i , j  E S, a E A(i) ,  any  Borel subset D E A, and for any  given ir = (Tro,Trl,... ) E l-I. 

Let P ( X )  be denoted  by the set of all probabi l i ty  measures on any Borel measurable  set X. 
Then,  any init ial  probabi l i ty  measure v E ;~ and policy 7r E 11 de termine  the probabi l i ty  

measure  P~ E 7~(f~) in a usual way. 

For the  s ta te -ac t ion  process {X~, At; t = 0, 1, 2 , . . .  }, its discounted present  value is defined by 

013 

:= ~ 9tT(xt, zxt, xt+l), (11) 
t=0  

where /3  (0 < /3 < 1) is a discount factor. Then,  for each v E P ( S )  and 7r E I I ,  /3 is a random 

variable from the probabi l i ty  space (ft, P~) into the  interval f - M / ( 1  - / 3 ) ,  M / ( 1  -/3)].  

ASSUMPTION 3. Let g, hi (1 < i < k) be any real-vaIued functions on the set of real  numbers  R 

satisfying tha t  

(i) 9 is upper semicontinuous; 
(ii) each hi (1 < i < k) is lower semicontinuous. 
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For any given threshold vector ~ = (al ,  c~2,..., ctk) 6 R k and any initial probability measure 
E T'(S), let 

v(v,~) := {~ E n l E~(hd~)) _< ~,, for all i(1 < i < k)},  

where E~ is the expectation with respect to Pff. Interpreting g, h~ (1 < i < k) as given utility 
functions, we will consider the following utility-constrained optimization problem: 

Problem A: maximize E~(g(B))  subject to 7r E V(v ,a ) .  

The optimal solution 7r* E 12(u, a)  of Problem A, if it exists, is called a v-constrained optimal 

policy, or simply a constrained optimal policy. 
Note tha t  Problem A includes, for example, the constrained moment  problem (cf. [8]): for 

t h e  i th  moment of B with a sign ( -1 )  i, 

�9 maximize E~r(B ) subject to ( -1)~E~(B i) _< a t  (2 < i < k + 1), 

and the constrained threshold probability problem (cf. [9,10]): 

�9 maximize P,~(B >_ a) subject to P~(B <_ b) <_ c~ for some b < a. 

We shall use the following result in the sequel. 

LEMMA 1.i. (See [II].) For any v 6 ~(S), @(u) ;= {Pff E ~:)(f~) 7r E If} is convex and compact 

in the weak topology. 

In Section 2, the saddle-point statement for Problem A is gwen, whose results are applied 

to obtain the existence of a constrained optimal policy. The characterization of a constrained 

optimal policy is given and the exponential case is discussed in Section 3. 

2.  S A D D L E - P O I N T  T H E O R E M  F O R  

U T I L I T Y - C O N S T R A I N E D  M D P S  

In this section, we prove the saddle-point theorem for the Lagrangian associated with Prob- 
lem A. For any initial probability measure u E 7)(S), we define the Lagrangian, L ~, that  corre- 
sponds to Problem A as follows: 

k 

L"(Tr, A) := E~(g(B)) + E Ai (c~i - E~(h~(B))) 
i = l  

(2.1) 

for any rr E II and A = (A1,A2,. . . ,Ak) E R k := R k N { A i  >_ 0 (1 <_ i _< k)}. Without  any 
confusion, A E Rk+ will be written simply by A _> 0. 

The following statement on saddle-points can be proved similarly to tha t  of Luenberger [12, 

p. 221, Theorem 2] and so omitted. 

THEOREM 2.1. (Cf. [12].) Suppose that there exists 7r* E I I  and A* ~_ 0 such that L ' (  ., .) with 
p E 7)(S) possesses a saddle-point at 7r*, )C, i.e., 

L~(Tr, A *) _< L'(Tr*,A *) < L 'Qr* ,A)  (2.2) 

for all 7r E rI and A > O. Then, 7r* solves Problem A and is a u-constrained optimal policy. 

The above theorem motivates us to obtain sufficient conditions for the existence of a saddle- 
point of the Lagrangian L v. To this purpose, it is convenient to rewrite the expected utility using 

the distribution function of the present value. 
Let., for each u E 7'(S) and 7r E H, 

F: (x )  := P;(B < z), 

~(v)  := {F: ( . )  I ~ e n } .  

(2.3) 

(2.4) 
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Now, with some abuse of notation, we define 

A) := / g x ( x )  dF(x )  L ' ( F ,  

for any F E ~(u) and A >_ 0, where 

k 

g~(~) := g(~) + ~ ~,(", 
i = 1  

Then, the Lagrangian L ~ defined in (2.1) is obviously 
F = F~. Thus, we have the following corollary. 

(2.5) 

- h ~ ( ~ ) ) .  ( 2 . 6 )  

rewritten by L~(zr, A) = L ' (F ,A)  with 

COROLLARY 2.1. Let ~r* E H and A* _> 0. Then, L~( ., .) with ~ E 7~(S) possesses a saddle-point 
atTr*, fl* i f  and only i f  the following relation holds with F* = F~. 

L ' ( F ,  A*) < L~(F  *, A*) < L ' ( F * ,  A), (2.7) 

for all F E g2(~) and A >_ O. Then, 7r* solves Problem A and is a u-constrained optimal policy. 

LEMMA 2.1. For any ~ E P (S ) ,  it holds that 

(i) ff~(L,) is convex and compact in the week topology; 
(ii) L~( ., A) is concave and upper semicontinuous for each A >_ 0; 

(iii) L~(F, .) is convex and continuous for each F E ~(~). 

PROOF. Noting that  the present value B is a continuous map from • to [ - M / ( 1  -~3), M / ( 1  -/3)], 

(i) follows from Lemma 1.1. Since fix(-) is upper semicontinuous, 
(ii) follows from (2.5), also, 

(iii) clearly holds. I 

From Lemma 2.1, we observe that  Fan's minimax theorem (cf. [13]) is applicable to obtain the 
following. 

LEMMA 2.2. It  holds that, for any ~ E P(S) ,  

inf max L ' ( F , A ) =  max i n f f ' ( F , A ) .  (2.8) 
~_>o Fer F~ (v )  ~>0 

Henceforth, the common value of  (2.8) will be denoted by L*. In order to prove the existence of 
a saddle-point with (2.7), we need the following condition. 

SLATER CONDITION. There exists a ~r 6 YI such that 

E~(h~(B)) < a~, for all i, 1 < i < k. (2.9) 

Since L~(/~, A) ~ oc as [[A][ - -~  ec with /~ -- F~ under condition (2.9), the convex function 
maxF~v(~) L ' ( F ,  A) is bounded from below, so that  there exists A* > 0 such tha t  

L~(F, A*) _< L*, for all F E (I)(u) (2.10) 

by (2.8). On the other hand, by Lemma 2.2, there exists F* E ~(~) with 

L~(F*, A) >_ L*, for all A > 0. (2.11) 

Thus, applying Corollary 2.1, (2.10) and (2.11) lead the following main theorem. 

THEOREM 2.2. Under condition (2.9), the Lagrangian L ' ( . ,  .) with the initial probabili ty measure 
~ P ( S )  has a saddle-point, i.e., there exists 7r* E H and A* _> 0 satisfying (2.2). 

Also, from Theorem 2.1 and 2.2, the following corollary holds. 

COROLLARY 2.2. Under condition (2.9), there exists a constrained optimal policy. 
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3.  C H A R A C T E R I Z A T I O N  O F  T H E  
C O N S T R A I N E D  O P T I M A L  P O L I C Y  

In this section, by applying the results in [1], a constrained optimal policy is characterized by 

optimal action sets. 
Let ~ E P(S) .  Then, for each A _> 0, ~r* E YI is called g~-optimal if 

E~.(g)~(13)) > E~(g),(B)), for all 7r E 11, 

where gx is given in (2.6). 
The following lemma can be easily proved (cf. [14]). 

LEMMA 3.1. Let # E i"I and A = (A1, A2, . . . ,  Ak) r Rk+ �9 Then, for any t~ E 7~(S), the Lagrangian 
L~( -, -) given in (2.1) has a saddle-point at #, A iff the following holds: 

(i) # is g~-optimal; 
(ii) # E V(u, a); 

(iii) k Ei=l  Xi(ai - E~( hi(13) ) ) = O. 

l b  characterize g~-optimality in Lemma 3.1 (i), let 

f (s + Ztr( i ,a , j )  + /3t+lz) F(dx) ,  (3.1) Ut {g;~ } ( s, i, a, j )  m a x  
FEcP(j) J 

for t > 0, s E [ - M / ( 1  - / 3 ) , M / ( 1 - / 3 ) ] ,  and i , j  E S, where i f u  E P (S)  is degenerate at {j}, p is 
simply denoted by j and ~(u) by r Since ga(-) is upper semicontinuous and O(j) is compact 
in the week topology, the maximum in (3.1) is attained. Here, for each A > 0, we define the 

sequence {Aff}~= o by 

At ~ (s, i ) : =  arg max ~ q,y (a) Ut { g~ } (s, i, a, j ) ,  
a~A(i) jES  

(3.2) 

for s E [ - M / ( 1  - /3 ) ,  M/(1  -/3)] and i E S. Then, we have the following. 

THEOREM 3.1. For any zJ E P(S) ,  a policy r~* E V(t,, a) is a constrained optimal policy iff there 

exists A* > 0 such that 

(i) P~ . (A,  E A~' (B t -x ,X t ) )  = 1 where Bt = Et~-o/3*r(X, ,A, ,X~+l)  (t >_ 1); 
(ii) k E~=, At(a, - E~. (h~(u))) = o. 

PROOF. Applying the results of Theorem 3.3 in [1], it can be shown that  rr* is ga.-optimal iff 
thc above (i) holds. So, Theorem 3.1 follows from Lemma 3.1. | 

Consider the exponential utility case with k = 1, i.e., g(x) = ha~(x) and hi(x)  = h),2(x) 
(A1, A2 7 ~ 0), where ha(-) is a utility function with constant risk sensitivity 5, as follows: 

{ sign(a)e &, 5 ~ 0 ,  
h~(z) := 

x, 5 = 0 .  

In this case, g~(x) in (2.6) is given as g~(x) = g(x) + A(a - h i ( x ) )  with a Lagrange multiplier A. 
For each A _ > 0 a n d i E S ,  t _ > 0 , - c ~ < x < o c ,  let 

Pff(i,s)= sup / {sign(A1)cx**+v'alX- ~sign(~2)e x=*+z%x} dF(x). 
FEe(i) 

(3.3) 

Then, the following recursive equation holds: 

P~(i , s )  = max E qij(a)P~+ 1 ( j , s  + f l t r ( i , a , j ) ) .  (3.4) 
aEA(i) 
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In fact, by using the dynamic programming method, 

Pt~(i,s) = sup f {sign(,~l)e ~ls+z'x~z -,ksign(A2)e ~s+~*~2x} dF(x) 
Fcr 

= max E q ~ j ( a )  sup / {sign()h)e ~'(~+~%(i'~'j))+~'+1~ 
aeA(i) J FEq,(j) 

-,~ sign(A2)e~(~+Z'r(~'a'J)) ~ a2~'+'~} dF(x) 

= max Eqij(a)Pt~+l (j,s + Ztr(i,a,j)). 
aEA(i) J 

Obviously, 
lim Pt~(i, s) = sign()~l)e ~ls - ,~ sign()~2)e ~2s. 

Also, Ut{gx} in (3.4) is written as follows: 

U t { g ~ } ( s , i , a , j )  = P?+l ( j ,  8 -t- ~ t?~( i , a , j ) )  ~- )ko~. 

(3.5) 

(3.6) 

We note that the efficient algorithm for obtaining a constrained optimal policy by Theorem 3.1 
is not so easy. Implementing a numerical work or applying the result in the real world problem 
should be our future work. 
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