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Abstract-h a stochastic and fuzzy environment, a multiobjective fuzzy stopping problem is 
discussed. The randomness and fuzziness are evaluated by probabilistic expectations and linear 
ranking functions, respectively. Pareto optimal fuzzy stopping times are given under the assumption 
of regularity for stopping rules, by using X-optimal stopping times. @ 2003 Elsevier Ltd. All rights 
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1. INTRODUCTION 

This paper presents a multiobjective fuzzy stopping model of ‘fuzzy stochastic systems’ in co- 
operation with sequences of ‘fuzzy random variables’. The fuzzy random variable, which is a 
fuzzy-number-valued extension of classical random variables, was studied by Puri and Kalescu [l] 

and has been discussed by many authors. It is one of the successful hybrid notions of random- 
ness and fuzziness. On the other hand, stopping problems for a sequence of real-valued random 
variables had a long history and were studied extensively. Their applications are well known in 
various fields [2,3] and especially in the finance theory, recently. The optimal fuzzy stopping for 
fuzzy random variables is discussed by Yoshida et al. [4], and dynamic fuzzy systems without 
randomness are studied by Yoshida [5-71. This paper analyzes a multiobjective stopping model 
for fuzzy stochastic systems, by extending the results of the classical stochastic systems [8,9]. 

We also discuss the optimization by ‘fuzzy’ stopping times. Fuzzy stopping times are introduced 
for dynamic fuzzy systems by Kurano et al. [lo] and they are discussed by Yoshida et al. [ll], 
and this paper applies the notion of fuzzy stopping times in a stochastic and fuzzy environment. 
In this paper, we evaluate the randomness and fuzziness regarding the stopped fuzzy stochastic 
systems by probabilistic expectations and linear ranking functions, respectively. We also give 

The author would like to thank the referees for valuable comments and suggestions. 

08981221/03/$ - see front matter @ 2003 Elsevier Ltd. All rights reserved. 
doi: lO.l016/SO898-1221(03)00323-7 

Typ=et by 44-W 



1166 Y. YOSHIDA et al. 

Pareto optimal fuzzy stopping times for the multiobjective model, by introducing the notion of 
X-optimal stopping times. 

In Section 2, the notations and definitions of fuzzy random variables are given. In Section 3, 
fuzzy stopping times are introduced. We formulate a multiobjective optimal stopping problem 
for fuzzy stochastic systems by fuzzy stopping times. In Section 4, we give Pareto optimal fuzzy 
stopping times for the problem under the assumption of regularity for stopping rules. 

2. FUZZY RANDOM VARIABLES 

Some mathematical notations of fuzzy random variables are given in this section. Let (R, M, P) 
be a probability space, where M is a g- field and P is a nonatomic probability measure. Let 
Iw be the set of all real numbers, let B denote the Bore1 a-field of Iw, and let Z denote the set 
of all bounded closed subintervals of lK. A fuzzy number is denoted by its membership function 
Z : Iw H [0, l] which is normal, upper-semicontinuous, fuzzy convex, and has a compact support. 
Refer to [12] for the theory of fuzzy sets. R denotes the set of all fuzzy numbers. The a-cut of a 
fuzzy number S~(E R) is given by 

& := {x E Iw 1qx:) 2 a) (0 E (O,l]) and I50 := cl{a: E R 1 a(z) > O}, 

where cl denotes the closure of an interval. In this paper, we write the closed intervals by 

[I?], := [[&Ii , [ii]:] , for ~1 E [O,l]. 

A map I? : s2 H R is called a fuzzy random variable if 

{ (w,x) E R x IR 1 &w)(x) > a} E M x 8, 

Condition (2.1) is also written as 

for all Q E (O,l]. (2.1) 

{(w, Z) E R x W 1 2 E [I’(U)] ,} E M x t3, for all o E [0, 11, (2.2) 

where [X(W)]~ = [[X(w)];, [X(U)]:] := {Z E Iw 1 x(w)(x) 2 (Y} is the a-cut of the fuzzy 
number X(w) for w E R. We can find some equivalent conditions (131; however, in this paper, we 
adopt a simple equivalent condition in the following lemma. 

LEMMA 2.1. (See [14, Theorems 2.1 and 2.21.) For a map x : R H R, the following (i) and (ii) 
are equivalent. 

(i) x is a fuzzy random variable. 
(ii) The maps w ++ [Y?(w)]; and w H [x(w)]? are measurable for all Q E [O,l]. 

Now we introduce expectations of fuzzy random variables for the description of stopping models 
for fuzzy stochastic systems. A fuzzy random variable x is called integrably bounded if w H 
[X(w)]; and w H [X(w)]? are integrable for all QI E [0, 11. Let x be an integrably bounded fuzzy 
random variable. The expectation E(x) of the fuzzy random variable 2 is defined by a fuzzy 
number [15, Lemma 31 

where 1~ is the classical indicator function of a set D and we put closed intervals 

[E (x)] := [/- [-f&4]; dJ’(w), s, [%4]; dP(w)] 7 Q E [‘A 11. a n 
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3. FUZZY STOPPING IN A MULTIOBJECTIVE MODEL 

Let k be a positive integer. In this section, we formulate a multiobjective optimal ‘fuzzy’ 
stopping problem for k fuzzy stochastic systems. Let {1,2,. . . , k} denote the set of k objects 
which are described by fuzzy stochastic systems with the time space N := (0, 1,2,. . . }. For 
an object i = 1,2,. . . , k, let {~~}~=c b e a sequence of fuzzy random variables such that, for 
72 = 0, 1,2, . . . ) 

where the interval [[X:(U)],, [Y?:(w)]:] is the O-cut of the fuzzy number X;(U). Let M,, n = 
0,l) 2, . . . ) denote the smallest a-field on R generated by all random variables [Z:(w)], and 
[xi(w)],+ (i = 1,2,. . , k; m = O,l, 2,. . . , n; (Y E [0, l]), and M, denote the smallest a-field 
containing u,“==, M,. Then we call ({~~}~=a, {Mn}rco) the fuzzy stochastic system for an 
object i. A map T : a++ W U {co} is called a stopping time if it satisfies 

{u I+) = n} E Mn, foralln=0,1,2 ,.... (3.1) 

Then we have the following lemma which is trivial from the definitions. 

LEMMA 3.1. Let i = 1,2,. . .‘, k be an object and let r be a finite stopping time. We define 

q(w) := 2;(u), wE{wIr(w)=n}, forn=0,1,2 ).... (3.2) 

Then, 2: is a fuzzy random variable. 

Now, for an object i, we consider the estimation of the fuzzy stochastic system stopped at a 
finite stopping time r, by the evaluation of the fuzzy random variable x:. Let a map g : Z t-+ W 
satisfy the following three conditions (L.i)-(Liii): 

(L.9 d[a, bl + k, 4) = 546 bl) + g([c, 4 for [a, % k, 4 E 1. 
(Lii) g(x[a, b]) = xg([a, b]) for [a, b] E Z, X 2 0. 
(L.iii) a 5 g( [a, b]) 5 b for [a, b] E Z. 

This function is called a ‘linear ranking function’ which is used for the evaluation of fuzzy num- 
bers [16]. Conditions (L.i) and (L.ii) mean linearity and (L.iii) means the regularity about the 
estimation of a-cuts of fuzzy numbers. Then, g preserves the order of intervals corresponding to 
the ‘fuzzy max order’ 

!A% bl) L La a 

for [~lbl,[c,4 ET such that [a, b] 3 [c, d], which means that a 5 c and b 5 d. Then, the following 
lemma can be checked easily. 

LEMMA 3.2. For a map g : Z H R, the following statements (i)-(iii) are equivalent. 

(i) g is a linear ranking function. 
(ii) g satisfies 

g(h[O, 11 +X2) = ~1g([O, 11) +x2, for Xr 3 0, x2 E R. 

(iii) g satisfies 

g([u, b]) = a(1 - k) + bk, 

where k := g( [0, 11) E [0, 1). 

for [a, b] E 2, 
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From Lemma 3.2(iii), there exist p, q (p, q 10, p + q = 1) such that 

(3.3) 

for an interval [a, b] E 1. Also, we note that if we define 

g(p,q)W := o1 (Noi + q%) da, s (3.4) 

then U 5 6 in the fuzzy max order implies g(p,q)(U) 2 g(p,q)(G). However, the reverse does not 
hold in general. From (3.2), for w E R, the a-cut of the fuzzy number z:(w) must be a closed 
interval [~Z(W)]~. Th ere f ore, from definition (2.3), the expectation is given by the closed interval 

E ([m,] ) . (3.5) Q 

Using the above linear ranking function g, we put 

9 (E ([m] ,)) . (3.6) 

Therefore, the evaluation of the fuzzy random variable 2: is represented by the following integral: 

[g (E ( [%Cja)) da (3.7) 

LEMMA 3.3. For an object i = 1,2,. . . , Ic and a finite stopping time T, it holds that 

&+f[-f:(ja)) do=jolE(g([-%-)]a)) da=E(Jo’g([%C)],) da). (3.8) 
PROOF. Properties (3.3) and (3.4) of g imply immediately, for each CY, g(E([$(.)],)) = 
E(g([x:(.)],)). Therefore, 

Also, by Fubini’s theorem, we have 

These complete the proof of this lemma. I 

In the following definition, we modify fuzzy stopping times introduced by Kurano et al. [lo] in 
order to apply them to fuzzy random variables. 

DEFINITION 3.1. A map 7 : N x C? H [0, l] is called a fuzzy stopping time if it satisfies the 
following (i)-(iii). 

(i) For each n = 0, 1,2,. . . , the map w H ?(n, w) is M,-measurable. 
(ii) For almost all w E R, the map n ++ ?(n, w) is nonincreasing. 

(iii) For almost all w E s1, there exists an integer m such that ?(n, w) = 0 for all n 1 m. 

Regarding the grade of membership of fuzzy stopping times, ‘?(n, w) = 0’ means ‘to stop at 
time n’ and ‘?(n, w) = 1’ means ‘to continue at time n’, respectively. And the intermediate value 
‘0 < ?(n, w) < 1’ is a notion of ‘fuzzy stopping’. It is easy to check the following lemma regarding 
construction of fuzzy stopping times [lo]. 
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LEMMA 3.4. 

(i) Let 7 be a fuzzy stopping time. Define a map ?, : 0 H N by 

Tcy(w) := inf{n 1 ?(n,w) < (Y}, w E f-2, for a E (O,l], (34 

where the infimum of the empty set is understood to be +oo. Then, we have 
(a) {w~?,(~)~n}EA4~forn=0,1,2,...; 
(b) Ta(w) 5 T=,(w) a.a. w E 52 if a 2 cy’; 
(c) lim,,T, fat(w) = f,(w) a.a. w E R if a > 0; 
(d) TO(W) := lim,lo?,(w) < co a.a. w E Q. 

(ii) Let {?cu}aE[~,l~ be maps 7, : Cl H N satisfying the above (a), (b), and (d). Define a map 
? : N x R et [0, l] by 

for n = 0,1,2,. . and w E R. (3.10) 

Then ? is a fuzzy stopping time. 

F&zy stopping times are always finite from Definition 3.l(iii). Now, by using Lemma 3.4 and 
the linear ranking function g, we consider the estimation of the fuzzy stochastic system stopped at 
a ‘fuzzy’ stopping time ? regarding the ith object. Let i = 1,2,. . . , k be an object and let ? be a 
fuzzy stopping time ?. From Lemma 3.1, we have [zia(w)la! := [X:(w)], for w E {w ) Fa((w) = n}, 
where Fa(w) are ‘classical’ stopping times given by (3.9). By Lemma 3.3, we define a random 
variable 

G;(w):=lg([%;a(w)]a) da, WER. 

Note that (3.11) is well defined since the function cr I+ g( [xj- (w)]~) is left-continuous on (0, 11. 
Therefore, the expectation E(G$) is the evaluation (3.7) of the fuzzy random variable &. By 
Fubini’s theorem, we have 

E(G;) :=E(&@;e(-)]a) da) =&g([%m(.)]a)) da, (3.12) 

for fuzzy stopping times ?. Then, Pareto optimal solutions for the multiobjective stopping model 
are characterized as follows. 

DEFINITION 3.2. A fuzzy stopping time ?* is called Pareto optimal if there exists no fuzzy 
stopping time ? such that 

E(G;) LE(G;,), for all objects i = 1,2,. . . , k, 

and 
E (G;) > E (G;.) , for some object i = 1,2,. . . , k. 

4. PARETO OPTIMAL FUZZY STOPPING TIMES 
In this section, we give Pareto optimal solutions for the problem in Section 3. We introduce 

the following X-optimal stopping times in order to obtain Pareto optimal stopping times. Real 
numbers {Ai}L1 are called weights of objects if they satisfy 

1 and Xi 20, i= 1,2,...,k 
i=l 

(4.1) 
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For a set of weights X := {Xi}FZ1, we define a fuzzy stochastic system {~~}~=,, which is 
{M,}~CO-adapted, by 

Xi(W)(Ic) := sup min a 1 - 
aE[OJl 

{ 7 [X~(,)],(“)) ) w E fl2, 32 E R 

where the a-cuts [Z~(W)]~ are closed intervals given by 

For fuzzy stopping times 7, in the same way as (3.11) we define a random variable 

G$(w) := I’9 ([ok&)],) da, for w E R. 

Similarly to the proof of Lemma 3.3, we can easily check that its expectation is reduced to the 
weighted sum of the expectations for objects 

E (G;) = 5 XiE (G;) (4.2) 
i=l 

Now we give the definition of X-optimal stopping times as follows. 

DEFINITION 4.1. Let X := {Xi}fTl b e a set of weights for objects. Then a fuzzy stopping time ?* 
is called X-optimal if 

E (G;.) 2 E (G;) , 

for all fuzzy stopping times 7. 

THEOREM 4.1. Let X := {Xi}fC1 b e a set of weights for objects such that 

IfI Xi = 1 and Xi > 0, i=1,2 )..‘, Ic. (4.3) 
i=l 

Then a X-optimal fuzzy stopping time 7 is Pareto optimal. 

PROOF. Let ?* be a finite X-optimal fuzzy stopping time. If f* is not Pareto optimal, then there 
exists a fuzzy stopping time ? such that 

E (G;) > E (G:,) , for all objects i = 1,2,. . , Ic, 

and 
E (G;) > E (G;,) , for some object i = 1,2, . . , k. 

Then from (4.2) we have 

E (G;) = 5 XiE (G;) > 2 XiE (G;,) = E (G$,) . 
i=l i=l 

This contradicts the A-optimality of 7, and so we obtain this theorem. I 
Finally, in order to construct X-optimal fuzzy stopping times, we introduce the following (A, CY)- 

optimal fuzzy stopping times. 
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DEFINITION 4.2. Let X := {Xi}t=:=l b e a set of weights for objects and let o E [O, I]. A fuzzy 
stopping time ?* is called (X, a)-optimal if 

E (9 ( [%z(9]a)) L E (B ([%,,(9],)) 7 

for all fuzzy stopping times ?. 

In order to characterize (X, a)-optimal stopping times, we let real random variables 

yA := n,a ess sup E(g([.?X.)la) I&), forn=O,L%..., (4.4) 
r:stopping times, T>n 

where the definition of the essential supremum is referred to [2, Chapters l- 61. Define a stopping 
time gi : Q H N by 

d(w) := inf {n I 9 ([RXw)],) = -ii,,(w)} I (4.5) 

for w E Q and (Y E [0, 11, where the infimum of the empty set is understood to be $00. Then the 
following lemma can be checked easily by Chow et al. [2, Theorem 4.11. 

LEMMA 4.1. Let X := {xi}bl be a set of weights for objects. Suppose 

P (CT; < co) = 1, for all (Y E [0, 11. (4.6) 

Then, for (Y E [0, 11, the following (i) and (ii) hold: 

(i) Y&(W) = m={g([~i(w>la), E(yA+,,, I K)(W)) a.a. w E Q for n = 0,1,2,. . . ; 
(ii) gi is (X,a)-optimal and E(-y&) = E(g([xi2(-)],)). 

In order to construct an optimal fuzzy stopping time from the (X, cy)- optimal stopping times 
{a~},,~o,~~, we need the following regularity condition. 

ASSUMPTION A. Regularity. The map (Y H o:(w) is nonincreasing for almost all w E R. 

Under Assumption A, we can define a map 8’ : N x 0 H [0, l] by 

forn=0,1,2 ,... and WER. (4.7) 

Then, from Assumption A, u;(w) satisfies (a), (b), and (d) of Lemma 3.4(i). So, @(n,w) 
defined by (4.7) is a fuzzy stopping time from Lemma 3.4(ii). Put the a-cut (3.9) of @(n,w) 
by s:(w). Then, c:(w) has properties (a)-(d) of L emma 3.4(i) and we also have sA(n,w) = 

SUP,~[O,II min{a,l{,l~~(,),,}(w)}. Th us, the map Q! H J!?:(W) is a left continuous version of 
the non-increasing map a! H o;(w). Therefore, G:(w) coinsides with o:(w) except for at most 
countable many o E (0, 11, so we obtain the following result. 

THEOREM 4.2. Let X := {Xi}fZ1 b e a set of weights for objects satisfying (4.3). Suppose (4.6) 
and Assumption A hold. Then 8’ is a X-optimal fuzzy stopping time and it is also Pareto optimal. 

PROOF. From Assumption A and Lemma 3.4(ii), aX is a fuzzy stopping time and we obtain 

for all fuzzy stopping times i by Lemma 4.1. And also the last equals 

s 1 

0 
E(r:,,,) da=~1E(g([~$(9],)) do. 
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Since C?;(U) # C:(U) holds only at most countable Q E (0, l], we have 

Thus, by F’ubini’s theorem, we can show 

Therefore, CA is X-optimal. We also obtain Pareto optimality of 5A from Theorem 4.1 in [2]. 1 
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