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Abstract

The optimization problem for a stopped Markov de-
cision process is considered to be taken over stopping
times � constrained so that E � 5 � for some �xed
� > 0. We introduce the concept of a randomized
stationary stopping time which is a mixed extension
of the entry time of a stopping region and prove the
existence of an optimal constrained pair of stationary
policy and stopping time by utilizing a Lagrange mul-
tiplier approach. Also, applying the idea of the one-
step look ahead (OLA) policy the optimal constrained
pair is sought concretely. As an example, constrained
Markov deteriorating system is explained.
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1 Introduction

A constrained optimal stopping problem is originated
by Nachman [15] and Kennedy [13], in which a La-
grangian approach has used to reduce the problem
to an unconstrained stopping problem of a conven-
tional type and the constrained optimal stopping time
is characterized. Also, a constrained Markov deci-
sion process has been studied by many authors (cf.
[1, 2, 3, 6, 9, 18, 19]). For the case of one constraint,
Beutler and Ross [3] has formed a Lagrange method
from the average expected reward and, by the corre-
sponding parametric dynamic programming equation,
has shown that there exists an optimal constrained
stationary policy requiring randomization between two
actions in at most one state under some ergodic con-
ditions. This Lagrange approach was generalized to
the countable state case by Sennott [18, 19]. On the
other hand, a combined model of the Markov decision
process and stopping problem, called a stopped deci-
sion process, has been considered by Furukawa and
Iwamoto [7] in that the existence of an optimal pair
of policy and stopping time associated with some opti-
mality criteria is discussed. Hordijk [8] has considered
this model from a standpoint of potential theory. Also,
the general utility-treatment for stopped decision pro-
cesses has been studied by Kadota et al[11, 12]. In this
paper, the optimization problem for a stopped decision
process is considered. Stopping times � are forced to be
constrained so that E � 5 � for some �xed � > 0. We

induce a randomized stationary stopping time in order
to extend the entry time of a stopping region and prove
the existence of an optimal constrained pair of station-
ary policy and stopping time utilizing a Lagrange mul-
tiplier approach. The proof is executed by applying
a Lagrange multiplier method developed by Frid [6],
Beutler and Ross [3] and Sennott [18]. Also, using the
idea of the one-step look ahead (OLA cf.[16]) policy
an optimal constrained pair is derived concretely. The
constrained Markov deteriorating system is illustrated
as an example.
In the reminder of this section, we shall give the prob-

lem formulation referring to Hordijk [8]. Also, an op-
timal constrained pair of policy and stopping time is
de�ned. A dynamic system, at times t = 0; 1; 2; : : : , is
observed to be in one of a possible number of states.
Let S be the countable state space, denoted by S =
f1; 2; : : :g. We denote by P(S) the set of all probabil-
ity vectors on S, i.e.,

P(S) :=
�
p = (p1; : : : )jpi = 0(i = 1);

1X
i=1

pi 5 1
	
:

We allow for breaking down or disappearing of the sys-
tem with positive probability, so

P
i2S pi 5 1: For each

i 2 S, P(i) is a subset of P(S), which is assumed to be
given. If at time t the system observed is in state i and
the decision maker takes p(i; �) 2 P(i), then the system
moves to a new state j 2 S selected according to the
probability distribution p(i; �). This decision process is
then repeated from the new state j.
Let P be the set of all stochastic matrices where i-th

row vector p(i; �) 2 P(i). A notion of convergence on P
is given as follows: a sequence Pn = (pn(i; j)) 2 P con-
verges to P = (p(i; j)) 2 P if pn(i; j)! p(i; j)(n!1)
for each i; j 2 S. In this case, we write limn!1 Pn =
P . Also, P with this topology forms metric space
(cf. [8]). An element of P is called a transition ma-
trix. The policy R for controlling the system is a se-
quence of transition matrices, P0; P1; � � � 2 P , denoted
by R = (P0; P1; : : : ), where Pt gives the transition
probability at time t(t = 0). Here we con�ne ourselves
to memoryless or Markov policies, which is shown to
be su�cient to our optimization problem (cf. Theorem
13.2 in [8]). We denote by R the set of all policies. If
the policy takes at all times the same transition matrix,
i.e., P1 := (P; P; : : : ); P 2 P , it is called a stationary



policy, denoted simply by P and induces a stationary
Markov chain.
The sample space is the product space 
 = S1 such

that the projection Xn on the n-th factor S describes
the state at time n. For each R 2 R and initial state
i 2 S, we can de�ne the measure Pi;R on 
 in an ob-
vious way. In order to solve our problem described in
the sequel, we introduce randomized stopping time(cf.
[5, 10, 13]). To this end, enlarging 
 to 
 := 
� [0; 1];
let Gn = Fn � B 1 ; where Fn = �(X0; X1; : : : ; Xn),
the �-�eld induced by fX0; X1; : : : ; Xng, and B 1 is
Borel subsets on [0; 1](n = 0) and G1 = F1 � B 1 ;
where F1 is the smallest �-�eld containing all Fn(n =
0). Let N := f0; 1; 2; : : :g [ f1g. We call a map
� : 
 ! N a (randomized) stopping time with re-
spect to G := fGn; n 2 Ng if f� = ng 2 Gn for each
n 2 N . The class of stopping times with respect to
G will be denoted by C(G). Let c : P � S ! R

and r : S ! R be running cost and terminal re-
ward functions respectively. For simplicity, we put
cP (i) := c(P; i)(P 2 P ; i 2 S): Hereafter, we assume
that for P;Q 2 P with p(i; �) = q(i; �) cP (i) = cQ(i):
For any policy R = (P0; P1; : : : ) 2 R and � 2 C(G); we
de�ne the expected reward JR;� (i) by

(1:1) JR;� (i) := E i;R

 
��1X
n=0

c(Xn) + r(X� )

!
;

where E i;R is the expectation with respect to the prod-
uct measure P�i;R := Pi;R�� on 
 and � is a Lebesgue
measure on B 1 . Note that � =1 with positive proba-
bility is admissible with zero reward.
A � 2 C(G) is called randomized stationary if for

each n = 0, P�i;R(� = njX0; X1; : : : ; Xn�1; Xn = j; � =
n) is depending only on j 2 S. In such a case, we can
de�ne the set f�(j); j 2 Sg by

�(j) := P
�
i;R(� = njX0; : : : ; Xn�1; Xn = j; � = n):

(1.2)

Then obviously

(1:3) 0 5 �(j) 5 1 for each j 2 S:

Conversely, for any set f�(j); i 2 Sg satisfying (1.3),
we can de�ne a randomized stationary stopping time
� through (1.2). Such a stopping time is said to be
determined by f�(j)g. When �(j) = 0 or �(j) = 1 for
all j 2 S, the corresponding stopping time is called
simply stationary, which is a entry time of � := fj 2
Sj�(j) = 1g, denoted by ��.
Let � > 0 be given arbitrarily. Constrained optimal

pairs will be de�ned with respect to a given initial state.
So without loss of generality we may assume the initial
state is \1". Let

�(G) := f(R; �) 2 R� C(G)j E 1;R(�) 5 � and

ER(r(X� )) <1g;

where ER(r(X� )) denotes the vector with ith compo-
nent E i;R(r(X� )). In this paper, we will consider the
constrained optimization problem:

(1:4) maximize JR;� (1); subject to (R; �) 2 �(G):

The constrained pair (R�; ��) 2 �(G) is called optimal
in state 1 2 S if

(1:5) JR�;��(1) = JR;� (1)

for all (R; �) 2 �(G).

2 Lagrange formulation for con-

strained optimization

In this section, the Lagrange multiplier is introduced
and the parameterized version of stopped decision pro-
cess is analyzed.
Introducing the Lagrange multiplier � = 0, let

c�P (i) := cP (i)� �; i 2 S and(2.1)

J�R;� (i) := E i;R

 
��1X
n=0

c�(Xn) + r(X� )

!
; i 2 S(2.2)

for each (R; �) 2 R � C(G): The value function J� is
de�ned as

(2:3) J�(i) := sup
(R;�)2R�C(G)

J�R;� (i):

If J�(i) = J�R;� (i) for all i 2 S, the pair (R; �) is called
�-optimal.
We need the following assumption.

Assumption (U): The following (i){(iii) are satis�ed:

(i) P is compact and convex,

(ii) cP (i) 5 0 for all P 2 P and i 2 S and cP (i) is
convex in P 2 P for each i 2 S

(iii) There exists a vector u with u = jrje such that

(2.4) e+ Pu 5 u, and jcP je+ Pu 5 u;

(2.5) limN!1 PNu = 0 for all P 2 P and

(2.6) limP!P0 Pu = P0u for all P0 2 P , where e =
(1; 1; : : : )

For each �, the next theorem holds, under the follow-
ings:

Q(�) := fQ 2 Pjmax
P2P

(c�P + PJ�) = c�Q +QJ�g;

�(�) := fi 2 SjJ�(i) = r(i)g and

�(�) := fi 2 Sjr(i) > max
P2P

(c�P + PJ�)(i)g:

Theorem 2.1 (cf. chap.3,4[8] and [5]) Suppose that
Assumption (U) holds. Then, for any � = 0; we have:



(i)
P1

n=0 ER jc
�(Xn)j <1 for all R 2 R:

(ii) jJ�j 5 (1+�)u and J� satis�es the following Bell-
man's optimality equation.

(2:7) J� = r _max
P2P

(c�P + PJ�):

where a _ b = maxfa; bg for real number a; b.

(iii) Pi;Q(��(�) < 1) = 1 for all Q 2 Q(�) and a pair
(Q1; ��0) with Q 2 Q(�) and �(�) � �0 � �(�) is
�-optimal in i 2 S.

The following clearly holds.

Corollary 2.1 Suppose that Assumption (U) holds.
Let Q(�);�(�);�(�) be as in Theorem 2.1(iii). Let
f�(i) : i 2 Sg be such that 0 5 �(i) 5 1 and �(i) = 0
if i 2 �(�);= 1 if i 2 �(�): Then, for the randomized
stopping time � determined by f�(i) : i 2 Sg through
(1.2), a pair (Q1; �) with Q 2 Q(�) is �-optimal.

The next three lemmas are useful in the next section,
whose proofs are done by referring to the idea used in
[3, 18].

Lemma 2.1 For each i 2 S,J�(i) is non-increasing
and continuous in � = 0.

Proof. For any 0 < �1 < �2 and 0 < a < 1; Let
�3 := a�1 + (1 � a)�2: Then, we have that, for any
Q�k 2 Q(�k)(k = 1; 2; 3);

J�3(i) = E i;Q�3

���(�3)�1X
n=0

c(Xn)� �3��(�3) + r(X�(�3))

�

5 a E i;Q�3

���(�3)�1X
n=0

c(Xn)� �1��(�3) + r(X�(�3))

�
+

(1� a) E i;Q�3

���(�3)�1X
n=0

c(Xn)� �2��(�3) + r(X�(�3))

�
;

which implies J�3(i) 5 aJ�1(i) + (1 � a)J�2 (i). This
shows that J�(i) is convex, so that J� is continuous in
�(� > 0). Let (�; �) be 0-optimal: J0(i) = J0�;� . Then,
we set, for � > 0,

J0(i) = J�(i) = J��;� (i) = J0(i)� � E i;�(�):

Since E i;�(�) <1, the above shows that J�(i)! J0(i)
as �! 0: Also, from the de�nition of J�, it follows that
J�(i) is non-increasing.

For some �-optimal pair (Q�; �(�)) with Q� 2 Q(�);
let

(2:8) V �(i) := E i;Q�

2
4�(�)�1X

n=0

c(Xn) + r(X�(�))

3
5

and

(2:9) K�(i) := E i;Q�
�(�):

Lemma 2.2 For each i 2 S, K�(i) and V �(i) are non-
increasing in �(� = 0).

Proof. For K�, it su�ces to show K�(i) = K�+�(i) for
any � = 0 and � > 0.

��K�(i) = J�+�
Q�;�(�)

(i)� J�Q�;�(�)

5 J�+�
Q�+�;�(�+�)

(i)� J�Q�;�(�)
(i)

5 J�+�
Q�+�;�(�+�)

(i)� J�Q�+�;�(�+�)
(i)

= ��K�+�(i);

which implies K�(i) = K�+�(i): For the latter, assume
that there exists � > 0 and � = 0 with V �+�(i) >
V �(i): Then, from the monotonicity of K�, it holds
that

J�(i) = V �(i)� �K�(i)

< V �+�(i)� �K�+�(i) = J�Q�+�;�(�+�)
(i);

which leads to a contradiction.

Lemma 2.3 It holds that

(i) for each � = 0;Q(�) is closed and convex.

(ii) Q(�) is upper semi-continuous in � = 0, i.e., if
Qn 2 Q(�n); �n ! � and Qn ! Q as n ! 1;
then Q 2 Q(�).

Proof. Obviously (i) holds. For (ii), let Qn 2
Q(�n); �n ! � and Qn ! Q as n ! 1. Then, by
the de�nition, we have

cQn
+QnJ

�n = c�nP + PJ�n for all P 2 P :

Applying the generalized dominated convergence the-
orem(cf. [17, 20]) and Lemma 2.2, as n ! 1 in the
above, we get

cQ +QJ� = c�P + PJ� for all P 2 P ;

which implies Q 2 Q(�); as required.

3 An optimal constrained pair

In this section, the existence of a constrained optimal
pair is proved. The following theorem shows the va-
lidity of the Lagrangian approach to the constrained
problem.

Theorem 3.1 If there exists a non-negative number �
such that

(3:1) E 1;Q
�
(�(�)) = � for some Q� 2 Q(�);

�-optimal pair (Q�; �(�)) is an optimal constrained
one.



Proof. In case of � = 0; the claim holds obviously. Let
� > 0. Then for any (R; �) 2 �(G); we have:

J�(1) = V �(1)� �K�(1)

= VR;� (1)� �KR;� (1) = VR;� (1)� ��:

Thus

V �(1) = VR;� (1)� �(��K�(1))

= VR;� (1) for any (R; �) 2 �(G);

which shows that the constrained pair (Q�; �(�)) is
optimal.

By Theorem 3.1, in order to show the existence of an
optimal constrained pair, it is su�cient to prove that
there exist the multiplier � satisfying (3.1).
To this end, we introduce

(3:2) 
 := inff�jK�(1) 5 �g

SinceK�(1) is non-increasing in � = 0, 
 is well-de�ned
in (3.2). Here, we need the following assumption.

Assumption (D): (Slater condition cf:[14]) There ex-
ists a pair (R; �) 2 R� C(G) such that

E 1;R(�) < �:

Lemma 3.1 Under Assumption (D), 
 <1:

Proof. Suppose that 
 =1: By Assumption (D), there
exists an " > 0 with E 1;R(�) < � � " for some R 2 R
and � 2 C(G): Then, we have:

(3:3) J�(1) = J�R;� (1) = VR;� (1)� �(�� "):

On the other hand, 
 = 1 implies K�(1) > � for
all � > 0; so that J�(1) < V �(1) � ��: This means,
together with (3.3), that

VR;� (1)� �(�� ") < V �(1)� ��;

which leads to

VR;� (1) + �" < V �(1):

As � ! 1 in the above, we have V �(1) ! 1, which
contradicts that V �(1) is non-increasing in � = 0:

Let (�n) and (�n) be any sequences such that

�n > �n+1; �n < �n+1 (n = 1)(3.4)

and lim
n!1

�n = lim
n!1

�n = 
:

Then, since J� is non-increasing in �, we have that

�(�1) �� � � � �(�n) � � � � � �(�n) � � � � � �(�1):

Here, we can prove the following fact.

Lemma 3.2 The following holds :

(i) limn!1 �(�n) = �(
):

(ii) limn!1 �(�n) � �(
):

Proof. Clearly (i) holds. For (ii), let i 2 S be such
that i =2 limn!1 �(�n): Then, r(i) < maxP2P(cP +
PJ�n)(i) for all n = 1; which implies r(i) < (cQn

+
QnJ

�n)(i) for any Qn 2 Q(�n) (n = 1): Noting that P
is compact, we can assume that Qn ! Q 2 P as n !
1. Applying Lemma 1.1, we get r(i) 5 (cQ+QJ�)(i):
This means i =2 �(
); as required.

The existence of an optimal constrained pair is given
in the following.

Theorem 3.2 Suppose that Assumptions (U) and (D)
hold. Then there exists an optimal constrained pair
(R�; ��) such that R� is stationary policy and �� is
a stationary stopping time determined by f�(i)g with
�(i) = 1 if i =2 �(
) and �(i) = 0 if i =2 �(
) and
requiring randomization in at most one state.

Proof. For any sequences (�n); (�n) satisfying (3.4),
there exist sequences (Q

n
); (Qn); such that Qn 2

Q(�n); (Qn
) 2 Q(�n);K

�n(1) = E 1;Q
n

(��(�n)) =

�;K�n(1) = E 1;Qn

(��(�n)) < � (n = 1): Noting P

is compact, we can assume that Q
n
! Q and Qn ! Q

as n ! 1 for some Q and Q 2 P . By Lemma 2.4,

Q;Q 2 Q(
): Also, from Assumption (U), QNe ! 0
as N ! 1 for all Q 2 P ; so that, applying the gener-
alized dominated convergence theorem (cf.[17, 20]), by
Lemma 3.2 we get

E 1;Q(��(
)) = � and(3.5)

E 1;Q(��(
)) 5 �:(3.6)

If at least one of inequalities (3.5) and (3.6) holds in
equality, from Theorem 3.1 it follows that there is an
optimal constrained pair for state 1.

Suppose that E 1;Q(��(
)) > � and E 1;Q(��(
)) < �:
We must investigate the following two case. In
case that E 1;Q(��(
)) < �; from Corollary 2.1 there
exists randomized stopping time � determined by
f�(i); i 2 Sg with �(i) = 1 if i 2 �(
);= 0 if i =2 �(
)
and 0 5 �(i) 5 1 if �(
)��(
) and E 1;Q(�) = �; which
means from Theorem 3.1 that the constrained pair
(Q1; �) is optimal. For this case, obviously � can be
requiring randomization in at most one state. In case
that E 1;Q(��(
)) > �; noting E 1;Q(��(
)) < �; there

exists a 2 (0; 1) such that E 1;aQ+(1�a)Q(��(
)) = �:

Since Q(
) is convex, aQ + (1 � a)Q 2 P ; so that a

constrained pair ((aQ + (1 � a)Q)1; ��(
)) is optimal
in state 1.

Using the idea of the OLA policy for the usual stop-
ping problem, we can derive some results. For each



� = 0, let

��(�) := fi 2 Sjr(i) = max
P2P

(c�P + Pr)(i)g and

��(�) := fi 2 ��(�)jr(i) > max
P2P

(c�P + Pr)(i)g:

Here we introduce an assumption insuring the validity
of the OLA stopping time.
Assumption (A�): For any P = (p(i; j)) 2
P ; p(i; j) = 0 if i 2 ��(�) and j =2 ��(�) or i 2 ��(�)
and j =2 ��(�).

Corollary 3.1 Suppose that Assumptions in Theorem
3.1 hold and Assumption (A
) holds for 
 as in (3.2).
Then, we have:

(i) �(
) = ��(
) and �(
) = ��(
).

(ii) Let fJ(i); i 2 Sg satisfy that J(i) = maxP2P(c


P +

PJ)(i) for i 2 S and J(i) = r(i) for i 2 ��(
):
Then, for the initial state \1",

J(1) = sup
(R;�)2�(G)

JR;� (1)

Here we give a simple example for a Markov deteri-
orating system with state space S = f1; 2; : : :g. This
system is formulated as follows:

(i) P � fP = (p(i; j))j
P

j2S p(i; j) = �; p(i; j) =
0 for i; j 2 Sg for some �(0 < � < 1) and P is
convex and compact.

(ii) For any P = (p(i; j)) 2 P ; p(i; j) = 0 if i > j.

(iii) cP (i) = �c for some c > 0.

(iv) The reward function r on S has a property that
for each P 2 P ; (Pr � r)(i) is non-increasing in
i 2 S.

Under these assumptions, we observe that Assumptions
(U) and (D) hold. Also, by simple calculation we �nd
that for � = 0 there exists non-negative integer i� 5 i�
such that ��(�) = [i�;1) and ��(�) = [i�;1); so that
Assumption (A�) hold for all � = 0: Thus, for any
� > 0, from Corollary 3.1 we know that there exists an
optimal constrained pair for this system.
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