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Abstract

The optimization problem for a stopped Markov de-
cision process is considered to be taken over stopping
times 7 constrained so that E7 < « for some fixed
a > 0. We introduce the concept of a randomized
stationary stopping time which is a mixed extension
of the entry time of a stopping region and prove the
existence of an optimal constrained pair of stationary
policy and stopping time by utilizing a Lagrange mul-
tiplier approach. Also, applying the idea of the one-
step look ahead (OLA) policy the optimal constrained
pair is sought concretely. As an example, constrained
Markov deteriorating system is explained.
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1 Introduction

A constrained optimal stopping problem is originated
by Nachman [15] and Kennedy [13], in which a La-
grangian approach has used to reduce the problem
to an unconstrained stopping problem of a conven-
tional type and the constrained optimal stopping time
is characterized. Also, a constrained Markov deci-
sion process has been studied by many authors (cf.
[1, 2, 3,6, 9, 18, 19]). For the case of one constraint,
Beutler and Ross [3] has formed a Lagrange method
from the average expected reward and, by the corre-
sponding parametric dynamic programming equation,
has shown that there exists an optimal constrained
stationary policy requiring randomization between two
actions in at most one state under some ergodic con-
ditions. This Lagrange approach was generalized to
the countable state case by Sennott [18, 19]. On the
other hand, a combined model of the Markov decision
process and stopping problem, called a stopped deci-
sion process, has been considered by Furukawa and
Iwamoto [7] in that the existence of an optimal pair
of policy and stopping time associated with some opti-
mality criteria is discussed. Hordijk [8] has considered
this model from a standpoint of potential theory. Also,
the general utility-treatment for stopped decision pro-
cesses has been studied by Kadota et al[11, 12]. In this
paper, the optimization problem for a stopped decision
process is considered. Stopping times 7 are forced to be
constrained so that E7 < « for some fixed o > 0. We

induce a randomized stationary stopping time in order
to extend the entry time of a stopping region and prove
the existence of an optimal constrained pair of station-
ary policy and stopping time utilizing a Lagrange mul-
tiplier approach. The proof is executed by applying
a Lagrange multiplier method developed by Frid [6],
Beutler and Ross [3] and Sennott [18]. Also, using the
idea of the one-step look ahead (OLA cf.[16]) policy
an optimal constrained pair is derived concretely. The
constrained Markov deteriorating system is illustrated
as an example.

In the reminder of this section, we shall give the prob-
lem formulation referring to Hordijk [8]. Also, an op-
timal constrained pair of policy and stopping time is
defined. A dynamic system, at times t =0,1,2,..., is
observed to be in one of a possible number of states.
Let S be the countable state space, denoted by S =
{1,2,...}. We denote by P(S) the set of all probabil-
ity vectors on S, i.e.,

oo

P(S) = {p=(pr,..)p:s 2062 1), pi 1},

i=1

We allow for breaking down or disappearing of the sys-
tem with positive probability, so ) ;. p; < 1. For each
i € S, P(i) is a subset of P(S), which is assumed to be
given. If at time ¢ the system observed is in state ¢ and
the decision maker takes p(i,-) € P(i), then the system
moves to a new state j € S selected according to the
probability distribution p(,-). This decision process is
then repeated from the new state j.

Let P be the set of all stochastic matrices where i-th
row vector p(i,-) € P(i). A notion of convergence on P
is given as follows: a sequence P,, = (p,(%,)) € P con-
verges to P = (p(i,)) € P if pn(i,5) = p(i,5)(n = o0)
for each ¢,j € S. In this case, we write lim,,_,., P, =
P. Also, P with this topology forms metric space
(cf. [8]). An element of P is called a transition ma-
trix. The policy R for controlling the system is a se-
quence of transition matrices, Py, Py, - € P, denoted
by R = (P, Pi,...), where P, gives the transition
probability at time #(¢ = 0). Here we confine ourselves
to memoryless or Markov policies, which is shown to
be sufficient to our optimization problem (cf. Theorem
13.2 in [8]). We denote by R the set of all policies. If
the policy takes at all times the same transition matrix,
ie., P°:= (P P,...),P € P, it is called a stationary



policy, denoted simply by P and induces a stationary
Markov chain.

The sample space is the product space 2 = S*° such
that the projection X, on the n-th factor S describes
the state at time n. For each R € R and initial state
¢ € S, we can define the measure IP; g on € in an ob-
vious way. In order to solve our problem described in
the sequel, we introduce randomized stopping time(cf.
[5, 10, 13]). To this end, enlarging Q to Q := Q x [0, 1],
let G, = Fn x By, where F,, = 0(Xo, X1,...,Xn),
the o-field induced by {Xo,Xi,...,X,}, and B; is
Borel subsets on [0,1](n 2 0) and Goo = Foo X By,
where F, is the smallest o-field containing all 7, (n =
0). Let N := {0,1,2,...} U {oo}. We call a map
7 : Q — N a (randomized) stopping time with re-
spect to G := {G,,n € N} if {r = n} € G, for each
n € N. The class of stopping times with respect to
G will be denoted by C(G). Let ¢ : P xS — R
and 7 : S — R be running cost and terminal re-
ward functions respectively. For simplicity, we put
cp(i) == c(P,i)(P € P,i € S). Hereafter, we assume
that for P,Q € P with p(i,-) = q(i,) cp(i) = cq(i).
For any policy R = (Py, P1,...) € Rand 7 € C(G), we
define the expected reward Jg - (i) by

(11) JR,T(i) = Ei,R (7-2_: C(XTL) + r(XT)> )

n=0

where [E; g is the expectation with respect to the prod-
uct measure ]P’ZR :=P; g xp on Q and p is a Lebesgue
measure on B; . Note that 7 = oo with positive proba-
bility is admissible with zero reward.

A 7 € C(G) is called randomized stationary if for
each n 2 0, P} (7 = n|Xo, X1,..., Xp 1, X = 4,7 2
n) is depending only on j € S. In such a case, we can
define the set {4(j),7 € S} by

(1.2)

6(j) == P; r(r =n|Xo,..., Xpn 1,Xn =j,7 2 n).

Then obviously

(1.3) 050(j)£1 foreach jeS.

Conversely, for any set {(j),i € S} satisfying (1.3),
we can define a randomized stationary stopping time
7 through (1.2). Such a stopping time is said to be
determined by {d(j)}. When §(j) = 0 or 6(j) = 1 for
all j € S, the corresponding stopping time is called
simply stationary, which is a entry time of I := {j €
S|6(j) = 1}, denoted by .

Let a > 0 be given arbitrarily. Constrained optimal
pairs will be defined with respect to a given initial state.
So without loss of generality we may assume the initial
state is “1”. Let

A(G) :=={(R,7) € R x C(9)| Ey,r(T)

where Er(r(X,)) denotes the vector with ith compo-
nent E; g(r(X;)). In this paper, we will consider the
constrained optimization problem:

(1.4) maximize Jg, (1), subject to (R,7) € A(G).

The constrained pair (R*,7*) € A(G) is called optimal
in state 1 € S if

(15) JR*,T*(]-) 2 JR,T(]-)

for all (R, T) € A(G).

2 Lagrange formulation for con-
strained optimization

In this section, the Lagrange multiplier is introduced
and the parameterized version of stopped decision pro-
cess is analyzed.

Introducing the Lagrange multiplier A 2 0, let

(2.1) cp(i) :=cp(i)— ), i€S and
(22) Jp,(i):=Eir (Tz_: AMNXy) + r(XT)> , i€S
n=0

for each (R,7) € R x C(G). The value function J* is
defined as

(2.3) JNi) = sup
(R, T)ERXC(G)

Jp - (i).

,T

If J*(i) = Jp (i) for all i € S, the pair (R, 7) is called
A-optimal.

We need the following assumption.
Assumption (U): The following (i)—(iii) are satisfied:

(i) P is compact and convex,

(ii) cp(i) S 0for all P € P and i € S and cp(3) is
convex in P € P for each ¢ € S

(iii) There exists a vector u with u 2 |r|e such that

(2.4) e+ Pu S u, and |cple + Pu £ u,

(2.5) limy_oo PNu =0 for all P € P and

(2.6) limp_, p, Pu= Pyu for all Py € P, where e =
(1,1,...)

For each A, the next theorem holds, under the follow-
ings:

Q) :={Q e P| rlglg%((cf‘a +PJ*) = cé; +QJM},
T\ :={ie S|J*i)=r@G)} and
L\ :={ie S|r@) > rgg%(c,é + PJY(i)}.

Theorem 2.1 (c¢f. chap.3,4[8] and [5]) Suppose that
Assumption (U) holds. Then, for any X\ 2 0, we have:



1) S Er|cM(Xn)| < oo for all R € R.

(ii) |J* £ (14+Nu and J satisfies the following Bell-
man’s optimality equation.

2. A= >+ PJY).
(2.7) J r\/rlglg%c(cp-% JN)

where a V b = max{a,b} for real number a,b.

(iii) P;q(mon < o0) =1 for all Q € Q(A) and a pair
(Q°°, 1) with @ € Q(A\) and L(A\) C IV C T'(A) is
A-optimal in i € S.

The following clearly holds.

Corollary 2.1 Suppose that Assumption (U) holds.
Let Q(N),T'(A),L(N\) be as in Theorem 2.1(iii). Let
{6(i) : i € S} be such that 0 £ 6(i) £ 1 and 6(i) =0
if i € D(\),= 1 if i € L(\). Then, for the randomized
stopping time T determined by {6(i) : i € S} through
(1.2), a pair (Q*°,7) with Q € Q(X) is A-optimal.

The next three lemmas are useful in the next section,
whose proofs are done by referring to the idea used in

3, 18].

Lemma 2.1 For each i € S,J*(i) is non-increasing
and continuous in A = 0.

Proof. For any 0 < A1 < A2 and 0 < a < 1, Let
A3 = aX; + (1 — a)A2. Then, we have that, for any
Q)\k S Q(Ak)(k - 1)273)>

Tr(xg) 1

J)\S (z) = Ei,QA3 |: Z C(Xn) — )\37'[‘()‘3) + T(X.,-()‘s)):|
n=0

Tr(xg)—1
< aEig,, { > eXn) = Moy + T(XT(A:;)):| +
n=0

Tr(xg) ~L
(1 — a) E@ng |: Z C(Xn) — )\QTF()\B) + T(XT()\B))],

n=0
which implies J*3 (i) < aJ* (i) + (1 — a)J**(i). This
shows that .J*(i) is convex, so that J* is continuous in
A(A > 0). Let (6,7) be 0-optimal: J°(i) = JJ .. Then,
we set, for A > 0,

JO(i) 2 JA(i) 2 Jp, (i) = J°(i) = AEq (7).

Since E; ¢(7) < 00, the above shows that J* (i) — JO(i)
as A — 0. Also, from the definition of J*, it follows that
J*(i) is non-increasing. g

For some A-optimal pair (Qx, (X)) with @x € Q(N),
let

T(A)—1
(28) Vi) :=Eig, | Y, e(Xn)+r(X,n)
n=0
and
(2.9) K*(i) == E; g, T(\).

Lemma 2.2 Foreachi € S, K*(i) and V(i) are non-
increasing in A(A 2 0).

Proof. For K*, it suffices to show K*(i) > K**9(i) for
any A 2 0 and 6 > 0.

—OK (i) = I3 00 (D) = g, 1y

A6 ; A j
< JQA+5;T()\+5) (@) - JQ*’T(A) (®)

A5 ; A i
< JQA+6,T(>\+5) (4) — JQA+57"'(>‘+‘S) (@)

= _6K)\+6 (’L)v

which implies K*(i) > K**9(i). For the latter, assume
that there exists 6 > 0 and A > 0 with V(7)) >
VA(i). Then, from the monotonicity of K*, it holds
that

JMi) = Vi) — AK?(4)
< VM) = AKM (i) = J$A+5,T(,\+5) (1),
which leads to a contradiction. g

Lemma 2.3 It holds that
(i) for each A 2 0,Q(A) is closed and convez.

(il) Q(N) is upper semi-continuous in A 2 0, i.e., if
Qn € QAn),An = X and Q, — Q as n — oo,
then @ € Q()).

Proof.  Obviously (i) holds. For (ii), let @, €
Q(A\n),An = X and Q, — @ as n — oco. Then, by
the definition, we have

cQ, + QuJ* 2 C;S" + PJ* for all P € P.

Applying the generalized dominated convergence the-
orem(cf. [17, 20]) and Lemma 2.2, as n — oo in the
above, we get

cg+QJ* 2 cp+PJ forall Pe P,

which implies @ € Q(\), as required. g

3 An optimal constrained pair

In this section, the existence of a constrained optimal
pair is proved. The following theorem shows the va-
lidity of the Lagrangian approach to the constrained
problem.

Theorem 3.1 If there exists a non-negative number X
such that

(3.1) ELQX(T(X)) = a for some Q5 € Q(N),

X-optimal pair (Qx,7(\)) is an optimal constrained
one.



Proof. In case of X = 0, the claim holds obviously. Let
X > 0. Then for any (R, 7) € A(G), we have:

JM1) = VA1) = XEXM(1)
2 VR,T(]-) - XKRJ(].) z VR,T(]-) - XCE.
Thus

VAL) 2 V- (1) = M - KX(1))
= Vg,-(1) for any (R,7) € A(G),

which shows that the constrained pair (Qy,7(X)) is
optimal.g

By Theorem 3.1, in order to show the existence of an
optimal constrained pair, it is sufficient to prove that
there exist the multiplier X satisfying (3.1).

To this end, we introduce

(3.2) v :=inf{A\|K*(1) £ a}

Since K*(1) is non-increasing in A > 0, + is well-defined
n (3.2). Here, we need the following assumption.

Assumption (D): (Slater condition cf.[14]) There ex-
ists a pair (R,7) € R x C(G) such that

El,R(T) < a.
Lemma 3.1 Under Assumption (D), v < oo.

Proof. Suppose that vy = co. By Assumption (D), there
exists an € > 0 with Eq g(7) < a@ — ¢ for some R € R
and 7 € C(G). Then, we have:

(383) SN 2.1 2 Ve, (1) = Aa—e).

On the other hand, ¥ = oo implies K*(1) > « for
all A > 0, so that J*(1) < V*(1) — Aa. This means,
together with (3.3), that

Ve,(1) = AMa—¢e) < V1) = A,
which leads to
Ve, (1) + e < VX(1).

As A = oo in the above, we have V(1) — oo, which
contradicts that V*(1) is non-increasing in A > 0. g

Let (An) and (4,) be any sequences such that
(3.4) An > Ang1,0n < 0py1 (n21)
and lim A\, = lim §, =~.
Then, since J* is non-increasing in \, we have that
['(0)C---CT(6n) C---CT(N\) C---CT(N\1).

Here, we can prove the following fact.

Lemma 3.2 The following holds:

(i) Timnsoo T(An) = D(3).
(i) limpyoe D(6a) O L(7).

Proof. Clearly (i) holds. For (ii), let i € S be such
that ¢ ¢ lim, oo I'(6,). Then, r(i) < maxpep(cp +
PJ%)(i) for all n > 1, which implies (i) < (cg, +
Q,J%) (i) for any Q,, € Q(8,) (n = 1). Noting that P
is compact, we can assume that ), - Q € P as n —
00. Applying Lemma 1.1, we get (i) < (co + QJ*)(i).
This means ¢ ¢ I'(y), as required. g

The existence of an optimal constrained pair is given
in the following.

Theorem 3.2 Suppose that Assumptions (U) and (D)
hold. Then there exists an optimal constrained pair
(R*,7*) such that R* is stationary policy and 7* is
a stationary stopping time determmed by {6(i)} with
6(i) = 1if i ¢ L(7) and 6(i) = 0 if i ¢ ['(y) and

requiring randomization in at most one state.
Proof. For any sequences (\,),(d,) satisfying (3.4),
there exist sequences (_ ),(@,,), such that Q, €
Q(An)v (Qn) € Q(én) (1) = EI,QH (TF(6 )) é
a, KM (1) = E1,§n(7'l“(>\n)) <a (nz21). Ngtlng f
is compact, we can assume that Qn - Qand Q, = @Q
as n — oo for some @ and Q € P. By Lemma 2.4,
Q,@ € Q(v). Also, from Assumption (U), QNe — 0
as N — oo for all @ € P, so that, applying the gener-
alized dominated convergence theorem (cf.[17, 20]), b
Lemma 3.2 we get

(3.5) ElyQ(TF(v)) and

(3.6) E, ()

If at least one of inequalities (3.5) and (3.6) holds in
equality, from Theorem 3.1 it follows that there is an
optimal constrained pair for state 1.

a
(0%

A 1V

Suppose that E1,g(7r(,)) > @ and E, 5(7r(,)) < a.
We must investigate the following two case. In
case that E1 g(mr(y)) < «, from Corollary 2.1 there
exists randomized stopping time 7 determined by
{6(i),i € S} with §(i) = 1if i € T(y),=01if 4 ¢ T'(y)
and 0 £ 0(7) £ 1if I'(y) —L(y) and E; o(7) = «, which
means from Theorem 3.1 that the constrained pair
(Q°°,7) is optimal. For this case, obviously 7 can be
requiring randomization in at most one state. In case
that E1,(7r(,)) > @, noting E, 5(r(,)) < a, there
exists a € (0,1) such that ]El,aQJr(lfa)@(TF(V)) = a.
Since Q(y) is convex, a@ + (1 — a)Q € P, so that a
constrained pair ((a@ + (1 — a)@)>, 7p(,)) is optimal
in state 1. g

Using the idea of the OLA policy for the usual stop-
ping problem, we can derive some results. For each



A 20, let

*(\) := {i € S|r(i) > glg%(c; + Pr)(i)} and

I* () = {i € T*OIr(i) > max(eh + Pr)(i)}.

Here we introduce an assumption insuring the validity
of the OLA stopping time.

Assumption (A4,): For any P = (p(i,j)) €
P,p(i,j) =0ifieI™*(A\) and j ¢ T*(A\) ori € T
and j ¢ T*(\).

Corollary 3.1 Suppose that Assumptions in Theorem
3.1 hold and Assumption (A.) holds for v as in (3.2).
Then, we have:

(i) T(y) =T*(y) and L(y) = L*(v)

(ii) Let {J(i),i € S} satisfy that J(i) = maxpep(ch +
PJ)(i) fori € S and J(i) = r(i) fori € T (7).
Then, for the initial state “1”,

TO) = sup  Jpe(1)

(R,7)EA(9)

Here we give a simple example for a Markov deteri-
orating system with state space S = {1,2,...}. This
system is formulated as follows:

0 fori,j € S} for some (0 < B < 1) and P is
convex and compact.

(ii) For any P = (p(i,7)) € P,p(i,j) =0if i > j.
(iii) ep(i) = —c for some ¢ > 0.

(iv) The reward function r on S has a property that
for each P € P,(Pr — r)(i) is non-increasing in
i€ S.

Under these assumptions, we observe that Assumptions
(U) and (D) hold. Also, by simple calculation we find
that for A 2 0 there exists non-negative integer iy < iy
such that T*(\) = [iy, 00) and T*()\) = [2,,00), so that
Assumption (Ay) hold for all A = 0. Thus, for any
a > 0, from Corollary 3.1 we know that there exists an
optimal constrained pair for this system.
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