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By

Yoshinobu KApoTa*, Masami KUrRANO' and Masami YASUDA?

. Abst ract

This paper is concerned with a general utility of the optimal stopping
problem for denumerable Markov chains. The validity of the one-step
look ahead (OLA) stopping time is shown under a general utility criteria.
It is developed from the view points of the optimality and a “risk-averse”
or “risk-seeking” characterization. The results are applied to the case of
a exponential utility function and illustrated by a simple example.
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1. Introduction

We are concerned with general utility treatment of optimal stopping problems for
a denumerable Markov chain. As for the utility theory, an exponential utility has many
attractive properties as are seen in Fishburn[4] and Pratt[8]. So many authors analyzed
decision processes with it. For such examples of Markov decision processes, see Howard
and Matheson[5] and Chung and Sobel[2].

The analysis under a general utility criterion has been done, for example, in
Rieder[7] and our previous paper[6], which is expected to enlarge the practical applica-
tions of the utility. To our knowledge, Denardo and Rothblum|3] is the only work related
with utility treatment of optimal stopping problem. They analyze the problem in a fi-
nite Markov decision chain with the exponential utility and give a linear programming
corresponding to an optimal stopping time.

Here, we consider the stopping problem for a general utility function with the ran-
dom variable of total rewards. The validity of one-step look ahead (OLA) stopping time
is discussed. For the OLA stopping time, refer to Ross[9]. A sufficient condition is given
for the stopping time to be optimal. A property of the stopping time is characterized by
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being “risk-averse” or “risk-seeking”. Those results are applied to the case of exponential
utility functions and an illustrative example is given.

2. Optimal stopping problem

In this section, we define the optimal stopping problem with general utility criteria
for a denumerable Markov chain. Let S = {0,1,2,---} be a state space and @ =
(gi5;%,7 € S) is the transition probability matrix on S, where ¢;; > 0 for any 1,57 € S
and ) ..cqi; =1 for any « € S. The sample space is the product space {3 = 5%. The
projection X; on €2 to the ¢-th factor S describes the state of the ¢-th time of the process.
For any Borel measurable set M, P(M) denotes the set of all probability measures on
M. Then, for any v € P(S), we define the probability measure P, € P({2) by the usual -
way, where {X;} becomes a stationary Markov chain on S with the initial distribution
v and the the transition matrix (). . |

We call a random variable 0 : Q — {0,1,2,---} a stopping time if P,(c < o0) =1
and {0 = t} is measurable with respect to the o- algebra induced by {Xo, X1, -+, X}
fort=0,1,2,---. Let denote by ¥, the set of all stopping times starting with the initial
distribution v € P(S). Let R be the set of all real numbers. The terminal reward at the
state 2 € S, r; = r(4), is a function from § to R and the observation cost per unit time
is a constant ¢ > 0. The total reward when the system is stopped at time ¢ is given by
the random variable '

Bi := ¢ + T(Xt):

where ¢; := —ct. |
A utility g is a Borel measurable function from R to itself. Let denote by E,[Y]
the expectation of a random variable Y with respect to P,. For any utility g and the
initial distribution v € P(S), our optimal stopping problem is to maximize the expected
utility |
G(ga v, J) ‘= EV[g (BU)]

over all o € X,,. -

For any g and v € P(S), the stopping time ¢* € X, is called (v, g)-optimal, if
G(g,v,0*) > G(g,v,0) for all 0 € £,. The ¢* € (Nep(s) Xv is called g-optimal if it is
(v, g)-optimal for all v € P(S). '

In the subsequent discusSion, it is convenient to rewrite the expected utility G(g, v, o)
by using the distribution function of B, with respect to P,. For this purpose, we define

FJ(z):=P,(B, <z) foreachzeR.

o0
Then, clearly it holds G(g,v,0) = / g(z) Fy (dz). Let

— 0

B(v) = {FI()|o €, }

and

U{g}a,i) = swp [ gla+) F(da)
Fed(i) J -0
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for a € R and ¢ € S, where ®(3) denotes ®(v) for v such that »({z}) = 1.

3. g-optimality and OLA stopping times

In this sectiomn, the validity of the OLA stopping times is discussed in the optimal
stopping problem under the general utility.

In order to characterize the optimal stopping time, we consider the following set
and its hitting time. For each t =0,1,2,-- -, let

(3.1) Se{g} :=={i € S|glce +1:) > ) ai;U{g}(ct+1,5)}
| JES

and _
o* := { the first time ¢ such that X; € Si{g}}.

Denote z7 = max{z, 0}. The following assumption is the statement for each v € P(S5).

AsSuMPTION A(v). E,[supg;>oy 9(B)™ ] < 00.

The next theorem is easily proved by applying the result in Chow, Robbins and
Siegmund[1] to the sequence of random variables {g(B:) }t=0,1,2,.---

THEOREM 3.1. (refer Theorem 4.5 in [1] )

(i) For any v € P(S), suppose that Assumption A(v) and P,(o* < o0o) = 1 hold.
Then, o* € ¥, and o* is (v, g )-optimal.

(ii) Suppose that Assumption A(v) holds for any v € P(S) and that lim;_, g(Bt) =
—00 Py,-a.e.. Then, 0* € (), cp(s) Lv and ™ is g-optimal.

Now, using an idea of the OLA stopping time for optimal stopping problems with
additive utility functions (for example, see [9]), we derive some results on the general
utility case. For each ¢, let

(3.2) Si{g}y ={i€S|glce+mi) > ) aijg(ci1+75)}
. _ erd

Notice from (3.1) that S;{g} C S;{g} for all . The OLA stopping time is a stopping
time whose value is determined by the first hitting time ¢ such that X, € S;{g}. Here,
we introduce an assumption to get useful results on the validity of the OLA stopping
‘time. '

AssuMPTION B. For each t = 0,1,2,---, Q@ = (g;;) and Si{g} sé,tisfy that

g;; =0 if i € S;{g} and j € 5 {9}
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If S¢{g} = S}{g} for all ¢, Assumption B assures the closedness of S5{g}. Notice that
if S;{g} # 0 for some t, then S} {9} #Oforn=1,2,---.

Let denote E, and ¥, for v € P(S) such that v({i}) = 1 by E; and %;, respectively.
In the following lemma, (3.3) is sometimes called the monotone property.

LEMMA 3.2. Suppose that E;[supr>oy 9(ci + Br)T] < oo for any @ € Sf{g} and
t=0,1,2,---. Then, Assumption B implies that

(3.3) U{g}(ct,j) = g(ct + ;) for any j € 5;{g} andt=0,1,2,---.
PROOF. For any £ > 0 there exists a o € ¥, such that

(3:4) U{g}(ct,5) < Ejlg(ct + Bo)] +&.

by the definition of U{g}(ct,J). Let 7 € 5;{g} and i € Siik—1{g} for k=1,2,---. Then
we have the following: -

Ej[g(ct + Bo')'l g = k, Xk—l = Z]
> res Gieg(Ciar + 7o)

< g(Ctyr—1 +15).

This implies from Assumption B that

E;[g(ct + By)|oy Xo—1] < g(ct + Bio—1)vo)
with probability one, where z Vy = max{ z, y}. Thus we get

- Eilgle: +B,)] £ E;|g(ct + B(a—l)VO) J.
By repeating the above discussion, we have for £ =1,2,--- that
(3.5) Ej[g(ct + B,)] < Ej[g(ct + Bo—gyvo) |-

Evaluating the right-hand side of (3.5), we have

Ej[g(ct + B(J—E)VO) ]
< Pj(o < O)g(ct + 1) + Pj(0 > £)Ej[supgg>o1 9(ct + Bi)™ |-

Since Pj(o > £) — 0 as £ — oo, together with (3.4) the above inequalities imply that

(3.6) U{g}ct,7) < g(ct +15) + €.

As ¢ — 01in (3.6), we get U{g}(ct,7) < g(ct + r;). This completes the proof. O

The next theorem gives a sufficient condition for the OLA stopping time to be
optimal under the general utility.
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THEOREM 3.3. Suppose E;[sup>oy g(ct + Bi)t] < oo for any i € S;{g} and
t=0,1,2,---. If Assumption B holds, then it holds that S} {g} = St{g} fort =10,1,2,---.

PROOF. For simplicity of notation, put S; := S;{g} and S; := S:{g}. Since
S¢ C Sf is obvious, it is sufficient to prove Sy C S; for each t. Let 1 € Sf. Using
Assumption B and Lemma 3.1, we have

Y aijU{g}(cts1,5) = Y ai;U{g}Hcer1,5) = N qijgleesr +15) < gleg + ).
jES JE€St,, JEST, _

This implies ¢ € 5%. 0

In case of a linear utility function g(z) = z, (3.2) is reduced to
(3.7) S*:=S;{z}={i€S|c+ri> ) air;)},
| jEeS
which is independent of ¢ and so we denote it as S*. The next theorem shows a property
of the OLA stopping times characterized by the non-decreasing utility.

THEOREM 3.4. Let g be a non-decreasing function.

(i) Ifit is concave, then S;{g} D S* for each t.

(ii) If it is convex, then S;{g} C S* for each t.

PROOF. We give only the proof for (i), since (ii) is proved similarly. For any
i € S* and t, we have from (3.7) that ¢; + 7; > ct41 + ;5 4i;T;- Therefore, using the
monotonicity and the Jensen’s inequality, we get

g(ct + 1) 2 glegr + Z%‘j"‘j) 2 Z gijg(ct+1 +75).
JES jES
This leads ¢ € S}{g}, which implies §* C S;{g}. D

We note that the concave function is risk-averse (cf. Pratt|{8] ) and the convex one
is risk-seeking. Theorem 3.4 says that the OLA stopping time of a risk-averse decision
maker has a tendency to stop earlier than that of a risk seeking one.

4. Exponential utility functions

We consider the case of an exponential utility function

(4.1) ' gx(z) = sign(—A) exp{—Az}

for a non-zero constant ) in this section. This utility function is risk-averse when A > 0
and risk-seeking when A < 0. In order to describe the OLA stopping time for this utility,
let |

NOES Z%’j exp{\(r; —r;)} for 2€S8.
JjeES
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AssuMPTION C. For any A > 0, n,(+) is non-decreasing on S = {0,1,2,---}, and
for A < 0, 175(+) is non-increasing.

PROPOSITION4.1. Suppose (i) is finite for any i € S and gx(z) is given by (4.1).
(i) SF{g»} is independent of t, i.e. S*{gr} = S{{gr} fort =0,1,2,---.

(ii) Suppose Assumption C holds. If S*{gx} # 0, there exists an integer I% € S such
that

(4.2) S*{ga}={i€Si> 5}

(iii) Let I}, and I} be the numbers which satisfy (4.2) for A; <0 and Az > 0, respec- -
tively. Then it holds that I3 2> 13, .

PRrROOF. Observing (3.2), we have
(4.3) Si{gp}={i€e S| sign(—X)e™*" > sign(—\)e*“ ZQ,,;J- exp{—Ar;} },
. | | jES
which shows that S{g»} is independent of t. If A > 0, (4.3) implies S*{g\} = {7 €
S| (3) > exp(—=Ac) }. Let I3 be the smallest integer in $*{gx}. Then (4.2) follows irom

Assumption C. The case for A < 0 is proved as similarly as the above. Also, (iii) follows
clearly from Theorem 3.4. This completes the proot. -

Here we give a specific example to illustrate the theoretical results. Let 5 =
{1,2,3,---} and o '
(p/)? " exp{—p/i}

Qij = (5 —9)!
0 if j<i,

it 1<:<7,

for £ > 0. Let r; =4 forallz € S.
In case of a linear utility g(z) = x, S* is given by

S*:{?;ES‘?:Z“”/C.‘}:

where [z] is the smallest integer which is greater than or equal to z. By (4.1), it becomes

(1) = ZQZ-J- exp{A(r; —r;)} = exp{-l-:-(e_}‘ - 1)}.
J
So ny(+) satisfies Assumption C. After a simple calculation, the integer I5 of (4.2) is
given by
o I e~
A le A '

Since (1—e~*)/A > 1if A < 0and (1—e™*)/XA < 1if A > O respectively, I, < [u/c| <13,
for any A; < 0 and A2 >0 which is noted in Proposition 4.1(iii).

Acknowledgements

The authors would like to thank the referee for his valuable comments.



Utility-Optimal Stopping in a Denumerable Markov Chain 21

References

[1] Y.S. Chow, H. Robbins and D. Siegmund, The Theory of Optimal Stopping : Great
Expectations, Houghton Mifflin Company, 1971.

2] K.J. Chung and M.J. Sobel, Discounted MDP’s: Distribution functions and expo-
nential utility maximization, SIAM J. Control and Optimization, 25(1987), 49-62.

3] E.V. Denardo and U.G. Rothblum, Optimal stopping, exponential utility and linear
programming, Math. Prog., 16 (1979), pp.228-244.

[ 4] P.C. Fishburn, Utility Theory for Decision Making, John Wiley & Sons, New York,
1970.

[5] R.S. Howard and J.E. Matheson, Risk-sensitive Markov decision processes, Manag.
Sci., 8 (1972), pp.356-369. '

[ 6] Y. Kadota, M. Kurano and M. Yasuda, Discounted Markov decision processes with
general utility functions, Proceedings of APORS’ 94, World Scientific, pp330-337,
1995.

[ 7] U. Rieder, Non-cooperative dynamic games with general utility functions, T. E.
S. Raghavan et al.(eds). Stochastic Games and Related Topics, Klumer Academic
publishers. 161-174, 1991.

[8] J.W. Pratt, Risk aversion in the small and in the large, Econometrica, 32 (1964)
122-136. '

[9] S.M. Ross, Applied Probability Models with Optimization Applications, Holden-
Day, 1970.

Received May 18, 1995
Revised December 15, 1995



	Acr3CC4.tmp
	Acr3CCC.tmp
	Acr3CB4.tmp
	Acr3CAC.tmp
	Acr3CBC.tmp
	Acr3CD4.tmp
	Acr3CA4.tmp

