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Abstract

A utility treatment is studied in the framework of discounted Markov
decision processes. We will define a new index called a utility deviation
related to the risk premium, which is characterized by an iterative for-
mula. Examples are given in the quadratic case and the exponential
utility case. - ' '
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1. Introduction

This paper is concerned with the 'r_isk premium in finite Markov decision processes
(MDP’s) with general utility. In the utility theory, the risk premium for an arbitrary
risk is defined as expected monetary value minus the amount for which a decision maker
would exchange the risk, which presents a measure of aversion to the risk.

It is known by Fishburn{3] and Pratt[8] that the greater the risk aversion is, the
larger the risk premium is. Thus, for the utility analysis of a stochastic process, it is
meaningful to examine the risk premium associated with each policy in detail. For a
- utility optimization of MDP’s, see our preceding paper [5] and (1, 2, 4, 7, 10, 11].

Here, in the framework of MDP’s with general utility we introduce a new index,
called a utility deviation, by which the risk premium can be characterized also. Differing
from the risk premium, it is possible to approach the utility deviation by an operator,
which leads us to the analysis of the iterative formula and the fixed point theory. The
method employed here is closely related to the one in Sobel[10], White[11] and Chung
and Sobel[1]. _

Section 2 will define a utility deviation on an arbitrary risk and derive its relations
to the risk premium. Section 3 will prepare several notations and describe the problem
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concerning with a utility deviation in MDP’s. Section 4 will show that an iterative
formula supplied by MDP’s will characterize the utility deviation.

2. Risk premium and utility deviation

In Section 2, we shall define a utility deviation for an arbitrary risk and examine
its relations to the risk premium.

Consider a decision maker with a utility function g, where g is a Borel measurable
function from the set of real numbers to itself. A random variable B is called a risk, if it
is non-degenerate and both E[B] and E[g(B)] are finite. For a risk B, his risk premium
o = o(g, B) is given by ' .

(2.1) g (E[B] — o) = E[g(B)].

The equality (2.1) means that he would be inditterent between receiving the risk B and

receiving the amount E[B] — o (see Fishburn[3] and Pratt[8] in detail).
Now we shall define a new index (g, B) by

(2.2) k(g,B) = E[g9(B)] — g (E[B]),

which will be called a utility deviation.

In the arguments of the present section, we need an assumption that the utility
function g is strictly increasing and continuous. The assumption assures that the risk
premium uniquely exists for B. In the following Lemma 2.1 and Propositions 2.1, 2.2,
we assume this assumption, however it is not spelled out.

Lemma 2.1 shows relations between the risk premium and the utility deviation.

LEMMA 2.1. (a) It holds that

(2.3) o(g,B) = k(g™ 9(B))-

(b) Let By, B2 be the risks such that E[B.] = E[B:]. Then, a(g,B1) 2 o(g,B2).
holds, if and only if k(g,B1) < k(g,B2).

PROOF. Since g is strictly increasing, o is rewritten by

o(g,B) = E[B]-g" (E[g(B)])
= E [g71g(B)] — g7 (Elg(B)]) = s(g™", 9(B)).

(b) can be done similarly. . . Ol

Propositions 2.1 and 2.2 describe the relations among the class of functions for the
risk premium and the utility deviation. Pratt[8] gives several equivalent conditions to
" Proposition 2.2(i) with the C*-class utility function. Proposition 2.1 easily follows from
Jensen’s inequality.
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PROPOSITION 2.1.
(i) If g is (strictly) concave, o(g,B) > (>)0 and x(g,B) < (<)0 for any risk B.
(ii) If g is (strictly) convez, o(g,B) < (<)0 and k(g,B) = (>)0 for any risk B.
(iii) If g is linear, o(g,B) = k(g,B) = 0 for any risk B.

Let g; and g2 be the utility functions. According to Nielsen[6], g, is called less
risk averse than g if go(c) < E [g2(B)] for a risk B and a real number ¢ implies g;(c) <
E[g1(B)]. Notice that g(c) < E[g(B)| implies ¢ < g~ (E[g(B)]), so that o(g,B) <
E[B]—c is equivalent to g(c) < E[g(B)]. This fact will be used in the proof ot Proposition
2.2 bellow.

PROPOSITION 2.2. The following (i)~(iv) are equivalent.
(i) o(g1,B) < a(g2, B) for any risk B;

(i) w(g7t, g1(B)) < k(g7 ", g2(B)) for any risk B;
(iii) g1 is less risk averse than ga;

(iv) g2 97" is concave.

PROOF. Substitute ¢ = E[B]—0o(g2, B) to o(gi, B) < E[B]—cfori = 1,2. Then, (iii)
implies (i) from the equivalence described just before this proposition. (ii) is equivalent
to (iv), since they are equivalent to E[gag;y ' (B)] < 9297 ' (E[B)) for any B. The other
proofs follow easily from (2.1), (2.2) and (2.3). | 0

3. Description of the problem

The previous section has shown the validity of the utility deviation on the risk B.
In this section, we shall define a utility deviation on MDP’s with the general utility.

We consider the standard MDP’s specified by (S, 4, P,r, ), where S = {1,2,--- N}
is a finite state space, A is an action space, P = (p{;) is the matrix of transition
probabilities satisfying that p;; > 0, Zje g¢py; = 1 for all 2 € S,a € A, r(i,a) is an
immediate reward function defined on $ x A and 3(0 < B < 1) is a discount factor.
Assume that A is a Borel set, r is bounded measurable and r(,a) > Oforallz € S,a € A.

The sample space is the product space 2 = (S x A)* such that the projections
X;, A; to the t-th factors S, A describe the state and the action of the process at time
t > 0, respectively. We treat only the randomized stationary policy, which 1s defined by
a conditional probability 7(-|¢) on A for each i € S. The set of all randomized stationary
policies is denoted by II. Let H; = (Xo, Ao, -, A¢—1,Xy) for t > 0. We assume that,
for each m € Il with ¢t > 0,¢,5 € S and a € A,

Prob(A¢ = a|Hp—1,A¢—1, Xy = 1) = m(ali),
Prob(Xiy1 = j|Hi—1,Di—1, Xt = i, At = a) = p;.
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Then, the initial state 4 € S and the policy # € II determine the probability measure

PT on () by a usual way.
The present value of the state-action process (X, A) = {(X;, At) t=20,1,2,---}is
defined by

Bx a = Z Bir( Xy, Ay).
t=0

Let g be a utility function bounded bellow, evaluating the present value. Since g(x)
is equlva,lent to ag(z) + b for any constants a > 0 and b, we may assume without loss of
generality that g is a function from the interval [0, 00 ) to itself.

We define the utility deviation kT of g for any initial state ¢ and policy 7 € H by

(3.1) Ky = E] [Q(BX,A)] — g (E][Bx,Al),

where ET is the expectation with respect to P]. Let the distribution functions of Bx a
for 2 € S be

(3.2) . F(z) =P (Bxa <) forg€0,00)

then, (3.1) is written by

(3.3) = [Cewarr@-g( [ aarr@),

Our problem is to give a characterization for the utility deviation 7, which will be
investigated in the next section.

4. Characterization of utility deviation on MDP’s

In this section, the utility deviation will be characterized by an iterative formula.

The utility deviation T is given by (3.1) or (3.3) for each policy = € II and the
initial state ¢ associated with MDP (S, A, P,r,3) in the previous section. Suppressing
this fixed 7 for the sake of brevity, we shall give several notations. For ¢ € S, let

i 1= Z r(i,a)m(alt),

a€EA

= Zpg’jw(aﬁ) and

aCA
pi = / r dF;(x) where Fi(z) = F]"(z).
0

Note that ¢; represents the expected total discounted reward in case of a linear utility
function. Therefore the following is well known results in the theory of Markov decision

Processes.
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LEMMA 4.1. (Ross[9]) The ezpected total discounted rewand {pi : 1 € S} 1s the
unique bounded solution of the equation:

Pi = Ti +ﬁzqij%‘ for 1€ 3.

JES
The following result is given by Sobel[10] and will be used in the proof of Theorem
4.1 bellow. '

LEMMA 4.2. (Sobel[10]) For any w € Il and i € S, it holds that

(4.1) Fi(z) =) _ai;F; (x—1:)/B)-

JES

In order to characterize the utility deviation kT by an operator on some family of
probability distributions, we prepare the following notations. Let

¥ := { G| G is a probability distribution on [O.’ M3s] },

where Mg := M/(1— ) and M := supy;cs ,ca) T(6;@). Let L:= X;esV be the product
space. Associated with each ¢ € S is an operator T : L — L defined as follows :
For G(z) = (Gj(z); 7€ 5) € L, let

T'(@) = (T(G),; ; j€S) and
T(G)j(z) = G; ((z —1i)/B) -

Since 0 S T S M and Gj ((Mg—’rz)/ﬂ) Z GJ((Mﬁ — M) //B) — GJ(Mg) — 1, 1t
follows (T*(G);;j € S) € L. So the operator T* is well defined. Notice from (4.2) that
T T%... T (G),;(x) means T (T*2- - -T* (G))j (z) where T"2---T*(G) € L.

We extend the domain of k7 to £ component-wise: For G = (Gs; 1 € S) € L, let

(4.2)

k(G):=(k(G;);1€S) and
4.3 ' Mg Mg
(4.3) k(G;) == /0 g(z) dG;(z) — g (/0 T dGz-(a:)).

The policy 7 determines F = (F;; i € S) € £ and k(F) = (k(F;); 1 € S), where
Fi(z) = FF(z) is given by (3.2). It is clear from (3.3) and (4.3) that k(F;) = ki for
1 €S. _ |

Now, the utility deviation x(F) is presented by an iterative formula in the following

theorem.

THEOREM 4.1. For any fized @ € I1, k(F) = (k(F;); 1 € S) satisfies the following
equations:

(4.4) K(F:) = 8 + ) ies Gk (T*(F);) and
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(4.5) R (ThTiz' T (F); ) = &iryizy-ovinsi T Z qij K T“Tzz T Té(F)j)
JES

for any i, i1, 12, -+ ,%n € S, n>1, where
8i = Zjes 9i;9 (ri + 5993’) — g(%) and
Bis iz,winyi = 2 jes B9 (Tin + BT + oo+ Bl B 4+ B ;)
—g(riy +Bri, +---+ 8" 1, + B ;) .

PROOF. We prove (4.5) in case of n = 1. The other cases are proved analogously.
By (4.2) and (4.3), we have

_ Mg | Mg '
(4.6) k (T (F);) 3/0 g(z)dT" (F)i(z) — g (/0 z dT" (F)v:(-’r)) :

Since T (F);(z) = F; ((x — 'rz-l)/,@),‘ it holds from (4.1) that
T (F)i(z) = Y ai;Fj (= iy — Bre)/B%) = D ai (THTH(F);) (2)-

JES JES

Theretore,
Mpg . Mp o
| s@dr (@) = 3 0 [ @ a @ TiE),) @)
Mg
/0 zd (T4 T'(F);) (z) =7, + Bri + B°p; and
Mg |
/o zdT" (F)i(z) =14 + B

Using these facts, we get from (4.6) that

. Mp o ‘
K (TH(F)) = ) a; [/0 g(z)d (TT*(F);) (z)

Mg o |
—9(/0 zd (T"T(F);) (l‘))]

Mpg y
) aijg (/O zd (T"T'(F);) (93))

Mo |
—g (/0 zdl (F)z‘(iv))

Y qijk (TATHF);) + Bivsi
1ES

which implies (4.5) in case of n = 1.

The evaluation of k(F;) could be obtained iteratively using Theorem 4.1.
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COROLLARY 4.1. Let sV := g; and, forn > 1,

ngn-l—l) = ngn) + Z q'i:'f:l q?:l 02 qin-—l:in gi:ilaiZa"'ain *
i11i2a"':ines
If the utility g(x) is differentiable and |g'(z)| < L on [0, Mg] for some L > 0, then we
get from (4.4) and (4.5),

|k(F;) — K;gn)\ < B"MgsL fol'r eachn > 1.
We shall give examples illustrating Theorem 4.1.

ExXAMPLE. 1. Consider the case of g(z) = z*. Since k(F;) = k] = ET (B)?_r, A) —
(ET(B X,A))z, the utility deviation is equal to the variance of the present value. In this

case, we get
k (T"(F);) = B*k(F;) and

g = Zjes qij (i + Bp;) — ;-
So, (4.4) becomes

(47 K(F) =& +5°Y ais(Fy) for i€S.
| | - JES

Denoting g =(g; : © € S), (4.7) is represented in the matrix form by
K(F)' = g" + B°Q K(F),

where t means a transpose of the vector. Therefore,
K(F) =1 -p4°Q"'g,

which is the same expression as that obtained in Theorem 1 of Sobel[10].

ExAMPLE. 2. Consider the exponential utility case, i.e., ga(z) = 1 — exp(—Azx)
for A > 0. The utility deviation will be denoted by k(A F;) = kT with k(gx,Bx.aA) =
(kT;1 € S). After some simple calculations, we get '

k (X, T*(F);) = e~ " k(BA, F})

and _
gi — e_)\‘Pi — Z q‘ije"ﬁ)\‘af’j
JES
where dij = qz-je_"”. S0, (44) becomes
(4.8) kN, Fi) =g+ Y @ijr(BX, Fy)
JES

for each ¢ € S. Using (4.8), we can find the method of successive approximation for
obtaining « (A, F). |
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