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0. Abstract

We shall be concerned with the optimization problem of semi-Markov decision
processes with countable state space and compact action space. Defined is the
generalized reward function associated with the semi-Markov decision processes
which include the ordinary discounted Markov decision processes of discrete time
parameter and also the continuous time Markov decision processes. Main results are
(a) the existence of an optimal stationary policy and (b) the relation between the
maximal expected reward and the optimality equation. Also (c) some properties of
the optimal staionary policy and the principle of optimality are obtained.

1. Introduction and summary of results

Semi-Markov decision processes with countable state space S and compact action
space A are considered. A policy z is defined as a sequence of mappings f, from S”
into A(nz1). For each policy =, X*(f) denotes a state of the system generated by
the policy and A”(f) denotes a stochastic process which signifies the utilizing mapping
of the policy at time #. These stochastic processes are constructed exactly in section 2.
In section 3, 4 and 5, we study the problem of maximizing

[4¢D)
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with respect to =, where E denotes an expection operator and, £ () is a killing time
in the process,  a given function on SA and G a measure on [0, ). The maximal
expected reward I* means sup /(w) where the supremum is taken over all policies.
An optimal and an e-optimal policies are defined. We show in section 4 that both of
the families of optimal and of e-optimal policies can be reduced those of Markov or

stationary ones.
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Under some conditions we get the following results :

(a) there exists an optimal stationary policy f*, that is, I*=I(f");

(b) the optimal reward which is a function of the initial state satisfies a non-linear
functional equation called the optimality equation, and conversely the solution of
the optimality equation is the optimal reward ; ,

(¢) the optimal stationary policy maximizes, in the family of stationary policies,
a conditional reward

E[[*7r(xm®), 4@) 60 Ed

8

and an expected reward

m:qa:.xas, A7) E&L.

8

These results are discussed in section 5 and 6.

A simple type of Markov decision process was introduced by Bellman [1]. After-
ward, Howard [11], Blackwell [2], [3], [4], Maitra [17], [18], Strauch [22], Veinott
[237, [24], Hinderer [9] studied more general types of Markov decision processes with
discrete time parameter extensively. Analogously Markov decision processes with
continuous time parameter are developed by Howard [117, [12], de Leve [6], Martinl6f
[19], Miller [20], Veinott [24], Kakumanu [247]. Since semi-Markov processes include
discrete time Markov processes and continuous time Markov jump processes, if we
formulate semi-Markov decision processes, the deductive argument implies the both
study of discrete and continuous time Markov decision processes. The possibility is
due to the reward structure, particularly the property of a measure G, and it is similar
to an additive functional in the potentional theory refers to Blumenthal and Getoor
[5]. Howard [12], Miller [20], Ross [217, Lippman [16] considered average reward
semi-Markov decision processes but we do not discuss the average case here.

9. Formulation, construction of stochastic processes

In this section we shall develop the construction of stochastic processes X*(#)
and A7(Y) underlying the optimization problem of a semi-Markov decision process.

First we give notations frequently used in the subsequent sections. A notation
.— means a definition distinguished from an equality. Let B(X) be the Borel field
of a topological space X. P(X) denotes the set of all probability measures defined
on B(X). For any X, Y, P(Y|X) is the set of all conditional probability measures
on Y given X, whose element ¢ is written by g(dylx) or g(x;dy). M(X) denotes
the set of all bounded Borel measurable functions, where X is a topological space.
If u, veM(X), u=v, u=v means, respectively, u(x)=v(x), u(x)=v(x) for all xeX.
For any peP(X), ueM(X), vﬁH@ASHHr:Q;E&. For any ¢€P(Y]X) and

any ueM(XY), queM(X) whose value at x€X is
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qu(x) :=ulx, g(x)) = MM\:CP ¥)q(dy|x).

Obviously the above notations are extended to a finite or countable sequence. Every
function ueM(X) has a norm |lu|:=sup{/u(x)|; xX}. Note that we shall not

distinguish between the notation of a distribution function and that of the measure
deduced from it, and vice versa.

DEFINITION 2. 1. A semi-Markov decision process consists of seven objects (S, A,
bos D, 7, F, G) of the following properties :

(i) the state space S is a non-empty countable set with a discrete topology,

(ii) the action space A is a compact metric topological space,

“(iii) the initial distribution p,=P(S),

(iv) the transition law p=P(S|SA),

(v) the reward function re M(SA),

(vi) FeP(R|SR), where R:=(—o00, o) and

(vii) G is a distribution function with G(0)=0.
Moreover we shall require Assumption 1(1) for p, Assumption 2(1) for », Assumption
1(2) and 2(2) for F and Assumption 2(3) for G.

DEFINITION 2. 2. We define a policy, a Markov policy and a stationary policy.

(i) A policy = is a sequence of mappings (f,;n=1):=(f1, fs, **) where each
component f, is a mapping of a product space S™ into A for n=1.

(ii) A Markov policy m:=(f,;n=1) is a policy in which each f, is a mapping
of S into A for n=1.

(iii) A stationary policy m:=(f,;n=1) is a Markov policy in which each f,
does not depend on n. If f,=f for all n, we denote the stationary policy by

\SUIA.\.‘\.V...V.

Let II be the set of all policies and for n=(f,) €I, *= or (n)m is defined by
=) 7= (Fns1, fare =) (n=1). If p is a transition law and r is a reward func-
tion, then we define p,=P(S[S™*Y), p,=P(SIS), r(f) eM(S*™") as follows;

(i) psr(xo, v, x5 dx):=p(xp, f (%o, -, xx); dx) for a mapping f from S"*

into 4, ,

(ii)  pa(xe;dx):=p(xo, a; dx) for a€ A,

(i) 7 (f)(xo, =+, xn) =7 (xn, [ (Xo, =+, Xn)) Where xo, =+, X, ES.

We now give an intuitive description of a process and reward to be constructed
in the model (S, A4, po, b, v, F, G). An object or some amount of our investment
starting from a state x,=S at time 0 remains there for a holding time z;. The distri-
bution of x, is p, and that of 7, is F(x,,0;.). At that time it jumps to a new
position x; according to our decision which we choose on the basis of an information
of the previous state x,. The decision means the selection of a mapping f;; S— A.
The transition from x, to x, occurs according to the probability distribution py, (x,;.).
The object remains at x; untill time 7, whose distribution is F(x,, z,;.) but con-
ditionary independent of 7,. Then it jumps to x, according to our decision, that is,
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the selection of a mapping f»; S?— A, which we choose on the basis of the first two
state ¥, x;. Generally it jumps to Xgpi1 according to the transition distribution
Drpes(Zor = %n;.), where f,4; is choosen on the basis of the previous segquence
(%o, X1, -+, Xz). It remains at x,4, untill a time .., whose distribution is F(Xn41, Traa; )
but conditionary independent of z,.;. Each change of state and each decision generate
immediate reward 7(f1)(xo), 7(fo)(xo, x1), +. Also combining each holding duration
of costs G(z.1) —G(z,), the total reward is set up by the policy n= (fa), the sequence
of each decision f,. Our purpose is to select a policy r=(f,) so that we can make
the expected total reward I(z) as high as possible.
This section is devoted to a rigorous construction of such a process and reward.
Let (S, 4, po, p, 7, F, G) be a semi-Markov decision process. Let N:={1,2, -}
and a product space £2,:=(SR,)?, a product g-algebra &,:= (B(S)B(R,))Y where
. :=[0,00] as usual. Thus (2o, G») is the usual infinite product measurable space
over (SR,, 8(S)38(R,)). A point weR, is a sequence {(x,,1,); n=0}. Let Y. (o) :
= (%, tn), Zn(w):=x, and t,(®) =t Thus Y, is the n-th coordinate map and
Y,=(Z,, ). We invoke a theorem of Ionescue Tulcea which states the following in
the present situation: for a policy n=(f,) €ll, there exists a probability measure
P~ on (£, @,) such that

(a) P (Van€CIYo - Y =] prnesZo s Zus d0) F(Zny 205 A1)
for Ce B(S) B(R4), n=0,
(b) ?Sméur?@g for DeB(S) and
(¢) Pr(r,=0)=L
Next we shall consider an infinite product space (2, @) =Xrep (97, G7) where
m.—=0,, gF:=g, for all zll. It holds, by the same theorem, that
LEMMA 2. 1. For a policy = (fn), there exists a probability measure P on (2,9

and random variables YE=(Z%, %) such that
(a) PY7,eCIYT, M\uvn%a?i;mﬁ v, ZE; dx) F(Z7, <575 db)
for CeB(S)B(R,), n=0,
(b) P(zseD)={ p(dx) for DES(S) and
(¢) P(F=0)=L

Throughout the paper the expectation E means the integral operator by the pro-

bability measure P.
The following assumption is needed for Definition 2.3.

AssUMPTION 1. For any a€ A4, x€S, tER,
(1) palx; {x})=0,
(2) F(x,t;By=0 if BC(—o0,1]

LEMMA 2. 2. Under Assumption 1,
(a) .NUANmi”va =0,
(b) P(tf,=t7)=0 for all n.
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Proor. (a) From Assumption 1(1), it follows that P(Z%,,=Z%|ZF, -, 25 =
P (Zy11=2Z, _Ns <ty Zy) ”ﬁ\aimN? oy Zn; {Z,})=0. Hence P(Z7.,=ZF) =E[P(Z5,,=
72\ Z5, -+, Z5)1=0. (b) is proved similarly from Assumption 1(2).

Consequently, for each n1l, let 24 :={Z7,,#7Z% and 77,,><7 for all n and z7=0},
then £2;=¢ and P(£2,)=1 under Assumption 1. Neglecting a set of the measure zero,
S.m can assume that, for each wIl, 2F be the set of all sequences {(xy, t,); n=0}
with 0=#,<f;< -» and x,.,#x, for all n=0. Let 2:=X,ep@2% and let ¢ be the
o-algebra in {2 generated by the coordinate mappings {V7;n=0} for each zn<ll.
Hg measure P is regarded as a probability measure on this (£2, €). Hence the follow-
ing is well defined for all we{ under Assumption 1.

DEFINITION 2. 3. Let {"(w):=lim 7, (w) and then define for =0

Zi(w) if (w) =t<in (o),

X7 () ”nﬁ
ds if {"(w) =t

AF (o) .Hﬁ\aiAN%ASVV wo Z0(w)) if 7 (w) =<t (W),
44 if ()<t

where /s, 44 is an artificial point added to S, A respectively in the usual convention.

We use the notations X~(¥), A*(t) or XF, AF dropping out the variable w<=£.
Random variables Y7, X7 generate c-algebras;

ari=c{Y7;0=m=n},
7i=0{XT; 0=s=t}.

DEFINITION 2. 4. Let, for a policy mw=Il, a stochastic process {R.(s);s=0} be
defined by

f28)

?@“nm F(X=(8), A*(®)) G (dD)

s

where { () :=(".

This process means the total reward starting at time s and its expectation
E[R.(s)], called an expected total reward, will be considered in the next section.

AsSsuMPTION 2. (1) r(4s, @)=0 for all'ac AU{4.}. (2) There exists a distri-
bution function F, with a parameter x<S such that

ms u(s)F(x,t; ds) HMM:@.IV F.(ds)

—00

for all t€R, and usM(R.,).

Let X be the set of zero and increasing points of Fg* -+ *F,, with x,€S(0=m=n)
for each n=0, where * is a convolution. A point ¢ is an increasing point of a distri-
bution F iff F{I}>0 for every open interval I containing ¢. We designate the set of
all increasing points of F by Inc{F}. Hence
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Y = UnenUses ** Usyes INC{F* - ¥Fe U {0}.
(3) There exists a function 7 on R4 which satisfies ;
GU+s)=G(E)+r©G®) s, te 2.
Note. (a) If Fy(x&S) are unit distributions concentrated at 1, then the decision
process becomes a discrete time parameter case; the above Y and G(¥) are
>={0,1,2 1,

[e1-1

G =U—a) Wo a*, tER,

where a:=yQ) <L
() If F, (x€5) are expotential distributions with a parameter A(x), then the
decision process becomes a continuous time parameter case; the above 2 and G

are
M”.m.r

Gt)=1—e%, tER,
where «:=—logy(1)>0.

We can derive the following lemmas in a simple mann

and assumptions.

er by using the definitions

LEMMA 2. 3. For a policy z=(fa),
(a) Re(9)={ r(x=®,4®)Gn, s=ky,
(b) Re(en) =7 (Z8 Fara(Z5,  ZD) (G (e =G} +Re(eh)  for n20.

LEMMA 2. 4. (a) Fi(G) ”HmHOSFA&VHmwﬁlﬁﬁzmﬁa

(b) mwn@ivm;&vlm@nimvm,;@ for s 3.

(¢c) risa nonincreasing function with for r () =1, (>0 for 0<s<o0 and

tends to 0 as s oo in 2.
(d) If s,te2, then s+ted and y(s+0) =7y ).
(e) yO)=1=G() for tel.
(f) For each n, x€1l, random variables 7=; 2 — X for almost everywhere.
Associated with F, in Assumption 2(2), we use the following notations for a
transition law p and a reward function 7:
(i) 7(x, a):=r(x, @) Fz(G) EM(SA)
(i) Pa(x, dy):=po(x; dy) Fo(y) EP(S|S) for a4 .
(i) 7)) (xo ooy Xn s AY) =7 (f) (%0, -+, *2) Far, (G) eM(S :WH
(V) By (o, = Xn; dy) =Py (e, -0y Xn; d9) Fa, (1) €P(SIS )

for a mapping f :S*'— A, where po, r(f), py are defined in the paragraph below

Definition 2 3.
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3. Definition of an optimal policy

For a policy w=/l in the semi-Markov decision process (S, 4, po, p, 7, F, G),
processes X~(f), A™(t), R.(t), teR, are defined in section 2, which designate the
state of the system, the utilizing mapping of the policy and the total reward res-
pectively. In this section we shall consider the expectation of the total reward R.(0)
which called the expected total reward for the policy =.:

Let, for m<1l,

I(z):=E[R:(0)],

I* :=sup el (x).

That is, I(z) is the expected total reward starting at time O and I* is the maximal
expected reward.

DEFINITION 3. 1. An optimal policy and an e-optimal policy are defined as
follows ;

(i) a policy =*ell is an optimal policy iff I(x*)=I*%,

(ii) a policy =zn*ell is an s-optimal policy iff I(z*)=I*—e for &>0.

This section deals with the existence of an e-optimal and an equivalent version
of the optimality. The existence of an e-optimal Markov policy and an e-optimal
stationary policy for any e>0 are argued in section 4 and that of an optimal
stationary policy is in section 5. In section 6 we shall show the properties of the
optimal stationary policy.

THEOREM 3. 1. For any €>0, there exists an e-optimal policy.

PrROOF. Since r is bounded and G is a measure on [0, co], I(z)=Z|r| for any
nell. Hence I*=sup I(z) <co. This follows immediately, for any &>0, there is a
policy w1l such that I(z) =I*—e, that is, an e-optimal policy.

In order to state the equivalent version of the optimality, we prepare some
notations and lemmas of which subsequent sections are in need.

For a policy n#=(f,;n=1), set R.(f), t=0 be the total reward and random
variables 7, o-algebras &%, notations 7(f,), pr, are defined for the reward function 7
and the transition law p in section 2. Let define I,(n), J,» such that

I (n) :=E[R(<}) |7] (n=0),
Jnr (o, ey Xpo1) u”ﬂCﬂb (x0, ***, Xn-1)

+ 3 Brn e Brai? Fae i)} (o, o, 2ar) (21).

Clearly I,(z) is a random variable which is ¢7-measurable and has a finite expecta-
tion for each 7. Since » is bounded, J,.€M(S®) for all z. Moreover let
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Jn(xo, =, Xp-1) =SUP velt Jax(Xo, o, Xn-1)s
To:=Tor = {2,ES; pofxo} =P(X7(0) =x,) >0},
Tor i =1{(x0, =+, Xn) ES™; (%0, ***, Xn-1) ETnoz,= and
by, (Xoy ooy Xnoy; {xa}) >0 for n=l
If a policy = is Markov or stationary, we write [ instead of Jix.
LEMMA 3. 2. Let vy be bounded functions with Vi  €EM(SEY), k=0. For a policy
r=(f,; n=1), it holds that
(2) EWin(ZE, -, ZD{G(th) —G (=D} |G =7 () Dps: (ZF, -+, ZF)  (k20),
(b) for k=zn+1, n20, ,

Elvpas (ZE, -, Z0) {G (1) =G (&)} | GE1=7 (D) Brpuy -+ D1y P21 (LT, 2 Z7)
S}\&N\N mw+uﬂ.ﬁo« Ty va : ”€w+HAR9 ) vamﬂﬂws\.v.

PrOOF. (a) From the definition of o-algebra &z, T e, Z%, T are gp-measur-

able. Hence
Elvnii(ZE, =, ZD{G(he) —G(zR) } |47 ]
=0p11(Z8, -, ZD{ELG (th41) | G7]1—G (D) }.

The conditional expectation equals
LG 1051= " COF(Z3, «%; d) = Glt-+eD) Fag (an)
by lemma 2.1 and Assumption 1. Using lemma 2. 4 (b) and (f), (a) is proved easily.
(b) At first we show that (b) holds for k=n+1. We have
E[vn4+:(ZF, -, uiv Aﬂﬂdnﬁv |Qn~.m+pvw _bv“._t.n._ ‘
HﬁﬁﬂuivmiwAva:c L)

replacing & with n in the equality (a). Since &7.,047%, lemma 2.1 (a), Assumption 2 (2)
and lemma 2.4 (d) follow that

Elonea(ZE, - 25 (G (ehe) —G (eE0)} 195
— B (68 D (25, Z8) 1951
(7 | P @8a (28, 25 90 1y (25, 285 A F (25,53 D)
=1 (F) DrpiPnee(Z5, -+ ZD) Fzz (1)
=7 DBy sTuse 2, - Z0).

So we have proved (b) for k=n-+1
For a general k=n-+1, the fact @ DGF D - DGr leads to similar calculations.

The details are omitted.
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LemMA 3. 3. (@) Jpx(xo, =+, Xp-r) =F(fn) (Xoy =+, Xny)
+r?+§Qs 0y Xnesy D) Dry (Ko o0, Xpoy; dy)

(b) L@ =]z (X7(0)),
In (@) =7 (e J e, = (X70), -+, X7(20))  (n=1)
(¢) I@=po)ix

Proor. (a) It is clear because of the definition of J,..
(b) Lemma 2.3 yields that

I,(m) : =E[R-(<}) | 47]

= Mw_mmlww: Jenr(Z8, =, ZD){G (7%41) =G (eD)} | 4%

for n=0. If we apply Lemma 3.2 for bounded functions ;

Vier(Xop o0, X2) “”»\Cﬂ.»iv (X0, =+, X4,

(a) and (b) imply that

ETr (fasd (ZF, -+, ZD) {G(274) =G (D) } | 47]

=y (D) F(fas) (ZF, -, Z7)
and

Elr (feed (Z, -+, ZD{G (F40) =G (D) } 1 G7]
=7 (@) Bty Drif fard)} (ZF, -, 20 (kZn+1)

respectively. Hence
Nﬁ‘ Qﬂv ”V\ AN.MV muA.\.s.+uv ANm«\. Tty Nwmv

F7GD S ABroey - Bry P (faa) } (ZF, -, ZT).

k=n+1
Noting that X*(z%)=Z7%, k=0, we obtain
L(m) =7 (e Jns1,=(X7(0), -, X7 (7))  (n=0).

Particularly, if we set n=0, I,(x) =/1=(X7(0)) follows from zf=0 and y(0)=1. For
(c), observe that I(z) =E[R.(0)]=ELE[R:(0) |Gf1]=E[li(m)]=E[]:z(X*(0))1=po/1x
and so the proof of the lemma is complete.

Now we prove that

THEOREM 3. 4. The following three statement ave equivalent under Assumption 1—2
(a) =* is optimal,

(b) Juw(x)=J1(x) for any x€T,,

(€) Jnw(xo, -y xno) =T (X0, 2, Xo) for any (xo, =+ Xno1) €Tpogyme =1,

PrOOF. (a) — (b): Assume z*=(f}) to be optimal, but J& <J,(® for some
XeT,, i.e. for some X such that p,(%) >0. Then there is some policy =n’=(f,) €Il for
which Jix (£) > /[ (%). Define a policy #=(f) by :
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( ) Fa@ xyy ey 2pey) A x0=1,
.\a Xyttt Xp-1 ”|Aﬂ

¥ (xe, X1y oee, Xpoy)  If xeFEXL
Obviously == (f,) is a policy with
Jiw (%) if y=%,

.\.:qc\v”ﬁ.\bic\v ——

We get
=1 < [ T poldy) =1 <1+

which is a contradiction.

(b) — (c): The proof goes by induction on . Statement (c¢) is true for n=1,
because this is exactly statement (b). Now we assume m*=(f}) to be

\.s‘ﬂ*ARS ) R:\luv H.\Q«AR? ) RwTuv
for any (xo, -+, Xp-1) ETpoy, = but
.\§+H.ﬁ* A&? ) &ﬁv A.\.§+H A.moy T uzma\v

for some (%, -+, X,) ET prr.
It follows that

.\:i‘n* Cme ) wav A.\ni.i C«? T, w:v ]

for some policy n’=(f,). Now we construct a policy #=(f,) by

Fe(Xo, o0y Xaon) i =FF (Ko, o, xp-)  for any  (xo, -+, x4-)  (1=k=n),

ﬁ.\w@? ©tty Zp-1) if (xo, ) Xp-1) =Ko, -+, i)

f¥(xe, -+, xp-1)  otherwise
(k=zn+1).
Obviously = is a policy with

Jniy,w Fop oy &n) 3L (o, oy 20) = Fo, o, Bn)
.\§+§AAR3 T R§v”ﬁ

Jas1,w(xo, =, X5)  otherwise.
From lemma 3.3 (a) we obtain

.\: Aw? Tt .mm:uuu ”.\.ﬁa» Q)m? Y &aluv

”WA.\..MAV A&c‘. ) &ﬂ«luv +Mm‘\§+fﬁ,ﬁw? ) &ﬁluw Evm\v Qw\ou ) Wﬂ«lum &u\v

A»uA.\.L Qm? ) wsluv +mm.\§+rac7m3 ] &?T %v%&@@d? ) mﬁluw &u\v

=Jpz o, vy Xnot) ST Ko, o0, Zsi)

which contradicts our assumption that (c) is true for =.
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() — (a): The definition of J,(x) yields boJiZpoJiz for any #. Hence (¢) implies
I(z*) Hﬁobiﬂvo.\HW?.\EH;wv

for any #. Since there is an e-optimal policy, say, #=(f,) for any ¢>0 by Theorem
3.1,

I(z*) 21(z) Z*—e.

Therefore I(z*)=I*—¢ holds for arbitrary ¢>0. Thus we obtain I(z*)=I*. The as-

sertion (a) is now immediate because the alternative inequality holds trivially. This
completes the proof of Theorem 3. 2.

4. Policy reduction

In this section we are going to show that an e-optimal Markov policy exists and
moreover an ¢-optimal stationary policy exists for any e>0. These results are con-
tained by the following Theorem 5. 6 which states that an optimal stationary policy
exists, but these are useful to prove the theorem.

ASSUMPTION 3. Assume that

B:=sup ses F,(7) <1.

This behaves as the so-called discounted factor in the ordinary Markov decision
process.

LEMMA 4. 1. For policies n*:=(fh;n=1) and =*:=(f%;n=1) with =13
(1=E=ZN), it holds that

161G | <2171

PROOF. Indeed lemma 3. 3 (c) follows
I = (£ + 2 pobr, = Bry7(Fusd)

for any policy 7= (f,; n=1) and so
I(@Y) —I(x?

”,\Vom\w Nw\m m\?mi\w’wix )=+ (L)

+ 3 BB, PO

n=N+2

co

= 2 APy, B FURI()I.

n=N+2
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Observe that, for any x, %o, -, X, €S and a policy 7= (f),
PO =| Fuldn=1,

|7 (fa) (X0, *+*, Xn-2) | =7l
[7(f) (X0, % Xnt) | SIPIFap,- (G =7,
Bro- 71} (o, 0, %noo) NPl Fop, (D Sl (n22),
Bryer - Bra-dPl} (xo, -, x3) S NIrl (n2N+2).

Hence we obtain the result;

I —I@) | < popst— pA}2 3 A rl]

n=N+1
_®~<
1—-8"°
Firstly we improve Theorem 3.1 by showing that g-optimal Markov policy
exists in Theorem 4.4. The assumptions for a transition law p and a reward function

=2|7ll

7 are necessary.
AssuMPTION 4. (1) The function
pu(x, a) “nmmi\s@? a;dy)

is upper semi-continuous in a€A for each x=S and usM(S).

(2) The reward function r=r(x,a) is also upper semi-continuous in a€A4 for
each x<S.

Let 7=(f,) €Il be an arbitrary Markov policy. For a€ 4, let (a, @) :=(a, f1, for =**)
and so (g, ) €Il is Markov. Using the Markov policy (a, ) let

Ko (x,0) :i=]1c,m(x), xES, a€A.
Then K. is a function defined on SA with a Markov policy z.

Since

Kx(t, ) =7(x, )+ 3 (BaBs, ~ BraT (i)} (1)

and it converge uniformly by Assumption 3.

LEMMA 4. 2. The function Ki(x,.) is upper semi-continuous for each x and a
Markov policy .

The next lemma is a policy improvement by a Markov policy.

LEMMA 4. 3. Suppose that a policy m={fn;n=1) itself is not necessary Markov
but ¥z :=(fn; n=N+1) is Markov for some N<oco. Then we can construct a Markov
policy m* such that I(z*)=I1(x).

Semi-Markov Decision Processes with Countable State Space 47

ProoF. For a policy m#=(f,;n=1) which *"'z is Markov, we shall construct a
policy m*=(f%) with properties ;

(a) ™z* is Markov,

(b) I@®=I(x).
This shows lemma 4.3. Indeed, repeating this procedure from n=N—1 to 0, finally

we attain the seeking Markov policy.
We now expose the above construction. Let f¥; be a mapping S into A with

K (x, (X)) =max Kepane(x, @)

for all y&S where (n41)7: ="'z :=(fns1, fass, --). The maximum is taken all a
in the action space A and it exists because of lemma 4.2. If we set z*:=( Fiy o s
Sas1, fo4e, ) for a given policy w=(fy, -, fn, f¥1, f¥1a, --), this policy n* satisfies
the required properties (a) and (b). Because ™*'z*=""z and that f¥, is a mapping
from S into A and so "m*=(f}, f¥,, ---) is Markov. (b) is proved since

Kenvvm (far1) (n) :=Keninme (X, e (x2))
=Knsvr (Xn, far1(x2)) ZKintron (Xn, frse1 (Ko, =, X4))
= Kniox Fnir) (xo, =+, X5) for x,, -, x,€S and
I(z*) —I(x)
=Dobry* PralKensne (Fhe) () = Kenee (Foe) ()} 20.

THEOREM 4. 4. For any ¢>0, there exists an e-optimal Markov policy under
Assumption 1—4.

&

Proor. Let z=(f,) be an 5

optimal policy, that is, ?M?IW\ which exists

by Theorem 3. 1. Let N represents an integer which satisfies 27| H_W 5 AW. As <1

by Assumption 3, it is sufficient to select N so that BY is small.

Define a policy #=(f,), using the Wlobaam_ policy = and N, as follows:

for any x,, -+, x,_,ES,

ﬁ.\.ﬁ.ﬁ.ﬁ? oy .ﬁw«lpv mm ﬁmzy
%.:C?THV if n=N+1

where (g,; n=N+1) is an arbitrary sequence of mappings from S into A.

Tn(xg, o0y Xpog) 1=

Since ¥7=(g,; n=N+1) is a Markov policy, there is a Markov policy =* with
I(z*) ZI(z) by lemma 4. 3. Also it holds I(x)<I Amv+m. because that lemma 4.1
follows

L e

|1(m) —1(%) _Mm__w__ﬂWAM.
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Hence I(n) <I Gﬂ*v._uw. It now follows immediately

:m:in:ﬁIp

The proof of Theorem 4.4 is complete.

Secondarily we improve Theorem 4.4 by showing in Theorem 4.10 that an
s-optimal stationary policy exists. Two operators L, U are defined for the preparation.

DEFINITION 4. 1. Let f;S— A be a mapping. For ueM(S), let Lyu be an ele-
ment of M(S) whose value at xS is

Lyu(x) :=7(f) (x) +pru(x).
If f(x) equals a for all xS then we write L,:=L;.

Let U be an operator on M(S) whose value at xS is
Uu(x) :=max geslou(x)

for u=M(S). Note that, for each xS and usM(S), Lu(x) is upper semi-continu-
ous in a= A and so the operator is well defined.

Associated with each mapping f; S— A is a corresponding operator L;, mapping
M(S) into M(S). L;u is our expected income, as a function of the initial state, if
we start using decision f but are terminated at the beginning of the second jump
with a final reward u(x), where x is the state at termination. L% : =L;(L}™*) has a
similar interpretation, replacing “second” by “n-+1°”. The following interpretation of
U will be justified later. U™u, a function of the initial state, is our optimal expected
retern over all Markov policies if we start using an optimal policy but are ter-
minated at the beginning of the n+1%¢ jump with a final reward u(x) where x is
the state at termination.

Here are some properties of Ly and U as the following two lemmas.

LEMMA 4. 5. Let f be a mapping from S into A.

(a) LyJiz=Jis,= for n€ll (z may not be Markov)

(b) Ly(ute)(x)=Lsu(x)+cF,(y) where ¢ is.a constant and usM(S)
(¢) Ly is monotone, that is, if u=v, then Lyu=<L;v

(d) For any Markov policy n=(f,) and usM(S),

Ly - Lyu(x) “”H\?Ahxmﬁ...nhs;:vaAkv

converge to J.(x) uniformly in x as n— co.

PrOOF. We shall prove only (d). If we set u,(x) :=Jcny=(x), Jo=Ly, -+ Lsu, and
Il

luall = i-p from (a). Since

| Lyv(x) l?sg | Zllv—w|F. () =Blv—wl

for a mapping f:S— A and v, weM(S), it now follows as
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sups| Ly, -+ Lyu(x) —J=(x) |
Mmﬁﬁahb h\§_§l§§_ ARV

<l 87l +4 g}

that Ly, -+ Lyu(x) — J=(x) uniformly in x&S.

LEMMA 4. 6. (a) U is monotone.

(b) Uu+te)(x)=Uu(x)+cF.(y) where c is constant and ue M(S).

(¢) Lyau(x)SUu(x) for any mapping f.S— A.

(d) U is a contraction with modulus B, that is,
1Uu—UvlZBllu—vll for u,veM(S).

(e) U has a unique fixed point w* in M(S), that is,
Uu*=u* and |Uru—u*|<p lu—u*

for any ueM(S), n=1 where Ur.=UU"Y) iteratively.

PrROOF. (d) ||Uu—Uv|=sup,|Uu—Uv| (x) Z|u—vlsup.Fs () =lu—vl. (&) M(S)
is a complete metric space. Hence, from the fixed point theorem of Banach, the con-
traction mapping U has a unique fixed point.

A relation between the operator Ly and U is that
LEMMA 4. 7. For each ucM(S), there is a mapping f: S— A such that Lyu=Uu.

PROOF. L,u(x) is upper semi-continuous in a€A for each x€S. The fact that
the action space A is compact yields that it attains its maximum. Let f(x) be one of
the point in A which attains the maximum. Then f is a mapping from S into A and
satisfies the property.

DEFINITION 4. 2. We say that u*€M(S) satisfies the optimality equation (abbrev.
OE) if it is a fixed point of U, that is, w*(x) =Uu*(x) for each x&S.

LEMMA 4. 8. If u*eM(S) satisfies the OE, then there is a stationary policy f=
such that Jr(x)=u*(x) for each x<S. Hence I(f™)=pou*.

PROOF. Indeed lemma 4.7 follows that there is a mapping f:S— A which
satisfies L,u*(x) =Uu*(x) for each x<S. The fact that Lju*=u* and Lju*— Jr as
n—co by lemma 4.5 (d), implies Jy~=u*. The later equality is immediate because

I(f*)=po .

LEMMA 4. 9. If w*eM(S) satisfies the OF, then, for any Markov policy =,
(a) w*(x)2Je(x), xES, , ,
(b) pu*=I(x).

PrROOF. (a) Let m=(f,) be any Markov policy. For each element f, of =,
Ly u*(x) SUw*(x) =u*(x), xS by lemma 4.6 () and so Ly - Lyu*(x) =u*(x),
x€S. Letting n — co we obtain the assertion (a). (b) is clear if we integrate the both
side of (a) by the distribution p,.

Now we state the following theorem -but will be improved in Theorem 5. 6.
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THEOREM 4. 10. For any e>0, there exists an e~o
Assumption 1—4,

PROOF. Since there is u*
that there exists an stationary policy f* with I( ) =p,
Let #* be the e-optimal Markov policy in Theorem 4. 4. Then

I(f<) ZI(n*) = [*—e.
This completes the proof.

5. Optimality equation and optimal stationary policy

We shall state the existance of an optimal stationary policy and the relation

between the optimality equation and the optimal reward in Theorem 5.6 and 5.7

LEMMA 5. 1. Let ¢>0 and ueM(S).
(a) If Liu(x)—e=u(x), xS for some mapping f, then

&
Jr(x)— 15 su(x), x€S and so I(f*)— HM_m =pou
(b) IF Lyu(x)+ezulx), xS Sor some mapping f, then
€

.\\snxvl_.H!_meQv‘ x€S and so I(f~)+

me =pou
(¢) If Lou(x)—e=u(x), xS for all ac A, then

&€
J=(x)— -4 =u(x), x&S for any Markov and so I(z) — Hm_m = pol.
(d) If Lau(x)+e=u(x), x=S for all ag A. then
&
J=(x)+ 13 =u(x), x€S for any Markov and so I(x) + HM_Q = poli.
wwoom.. Only (¢) is proved and others are omitted. Let z=(f,) be an arbitraly
H,.\_mwwg policy. The condition yields that Ly u(x)—e=u(x), xS for all n. By induc-
ﬁob.ob n &6 obtain Ly - Lyu(x) =u(x) +e(l+B+ - + 471, Letting n -0 and
the integration of both side by p, completes the proof.

The following lemma is useful as the policy improvement.

LEMMA 5. 2. If L;J.=J. on T for some boli
z=Jx olicy =, th 00>
I(F*) = I(x). 0 policy =, then Jrz=]. on T, and so

LEMMA 5. 3. If a Markov policy =* )
Yy #* satisfies LoJuw=]n for all acA, that i
UJw=Jw, then Ju=],. for any Markov . P

PRrROOF. It is clear from lemm 5. 1 (o) with letting u(x) =J~(x), xS and e=0.

LEMMmA 5. 4. A function ueM(S) satisfies Lyu(x)= S .
FES= AU UT () with £ 2oy FES SO mapbing

ptimal stationary policy under

satisfying the OE, we have from lemma 4.8 and 4.9
u*=I(r) for any Markov z.
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Proor. If Lsau(x)=u(x), x<S then [Lmu(x)—u(x)|=e, x&S for any &>0.

Lemma 5.1 (a), (b) imply that |Js~(x)—u(x)|= x€S for any ¢>0. Letting

P
v 1-g’
e—0, it must be that Jp(x)=u(x), x=S. The converse is immediate because
u(x) =] (x)=LsJr(x) =Lsu(x).

LEMMA 5. 5. If w*(x), xS satisfies the OF, then I*=peu*, that is pou* equals
the maximum expected reward.

Proor. 1) First we show peu*=I*. Theorem 4.4 implies that for any ¢>0,
there is an Markov policy =* with J(z*) =I*—e. Since u* satisfles the OE and #* is
Markov, it follows peu*=I(z*) by lemma 4.9 (b). Therefore pu*=I*—e. Letting
e — 0, we obtain pu*=TI*.

2) By lemma 4.8, there is a stationary policy f* such that I(f*)=peu*. It is
immediate that pou*=I* because

pou*=sup;I(f*) =sup.l(x) =TI*%,

where the supremum of f is taken over those mapping f:S— A and that of = is
over all policies.
Combining 1) and 2) completes the proof.

Now we asgert our main results. The first is the existence of an optimal stationary
policy and the second is the relation between the OE and the optimal reward.

THEOREM 5. 6. There exists an optimal stationary policy under Assumption 1—A4.

PrOOF. Let u*(x), xS be the solution of the OE. Since there is a stationary
policy f such that I(f*)=pw* by lemma 4.8 and peu* is the maximum expected
reward by lemma 5.5, consequently I(f<)=JI*. This is nothing but to say that /= is
the optimal stationary policy. Hence the theorem is proved.

THEOREM 5. 7. (a) If Ji=(x), xS with some policy =* satisfies the OF, then
the policy m* is optimal. .

(b) Conversely if n* is the optimal policy and if T,=S, then Ji(x), xES satis-
fies the OE.

ProOOF. (a) is immediate consequence of lemma 5.5. (b) Let u*(x), x&S be the
solution of the OE. There is a stationary policy f~ such that w*=js by lemma 4.8
and the proof of Theorem 5.6 implies that the stationary policy f* is optimal. Hence
J(x)=J,(x) and so u*(x)=J=(x) for x<S. This completes the proof.

6. Properties of optimal stationary policy

Suppose the following Assumption 5 holds with Assumption 1—4. Then the
optimal stationary policy in section 5 has the properties stated in Theorem 6. 2.
Specially the implication (a) of Theorem 6.2 represents the principle of optimality in
the semi-Markov decision process.
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M NU.Q. a H—.mwﬁ OOHHﬁHHHﬁOEw ..mﬁbﬂﬂHOHH m%.s WCOH‘H HHHNH |

Amv Mﬂ&AMITNv“%SANvm‘&AmV|T.TJ8QV‘ S, NmM&»
(ii) for each =0, ¢ =¢,(ty), xS where t,: —inf {sed;; t<s}

Under Assumption 5 the next lemma holds, which is the basic recursive relation
LEMMA 6. 1. If a policy = is stationary, then

ElR-D) | FF]=r (1) ]-(X) for t=R,.
PrOOF. If A=97, then for each n there is a set A, €67 such that

ANA{GSt<elgl =4, N {{<5y)

Therefore it is sufficient to calculate

. m_HNN:.QV ; \H: N QA N.M.:vﬂ_
in place of E[R.(?); A].

First we show three assertions;

oo

t—

(2 BLL h>tami= | Fag @9 =gsz (—,

t

() E[[™ r (X9, 4506 d0); 4y <50 |

=E[r@s 1.z 0 [\ Clter—0Pas; 4], d,eaz

Em:%:?iééa%;S%%HL
HmTA&v M?ﬂui@ﬁnmga Q?m?t:.msmcy:A.qu“ \NL

f = i i .
or k=n+1, where a policy z=(f,) is stationary with f,=f for all"n

Ind . . ..
ndeed (a) is from Assumption 5 (ii). (b) follows according to the calculation;
1 |
E[[7 a0, 40069 4 tr<eta ]

=ELr(Z5, o ZID{C(EE) =GB} ; AN {t<era)]

| =E[r(zz, f.zD) Ji o Fap(a; 4,]

~COE[r(z5, £,E0) |, Gltei—Fag(as; 4,].
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For (c), noting ,
\Ns N T,A ﬂM+L SH

lemma 3.2 (b) and lemma 2.1 (a) imply that
m_U\ nﬂmiv Q.V.?i N_m?lp ﬂCJ«: ANmiv H \H: N{t< ﬁmi“ﬁ_
B[y |7 7O Pag@ (prbrues = Prans U} 203 4a)-

It is now immediate because of the definition J. and above (a), (b) and (c) that

E[R-(®); An N{t<7isa}]
=E[7 (1) gzz(t—tD F(Z7, [ (Z7)

O Gant—cD) 2 By Bra T} ED5 4]

k=n+1
= V\Smmﬂunalﬁwﬂv?@& ; Al
=y ELJ(XD); AN <t ]
This proves the lemma.

THEOREM 6. 2. Let =n* be the optimal stationary policy obtained in section 5.

Then we have
(a) for any stationary rell and t=0,

P(E[R-®) | FTIZELR-() || XF=X7) =1
(b) If XF, XF have the same distribution and To=S, then for any stationary

it

policy = and t=0,
E[R~(®J=ZELR.®)].

PRrROOF. Both of (a) and (b) are proved by applying lemma 6.1 and the results
of Thorem 3. 4 (a), (b).
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