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1. Introduction

A connection between Markov Decision Process (MDP) and Markov potential
theory has two sides. One is the potential theoritic development of MDP and the
other is the alternative proof of the results in MDP owing to Markov potential
theory. Shaufele [127 belongs to the later, but it seems interesting from the standpoint
of the mathematical programming to establish the development of MDP by using certain
potential notion. Several approaches have been tried. Watanabe [16] interpreted the
monotonicity of Howard’s iteration [8] in the relation to the a dual problem of Linear
Programming. By the property of a potential kernel, Furukawa [6] and Aso and
Kimura [1] proved a policy improvement. A formulation of MDP by potential
theoretic notion has been tried by Hordijk [7].

In many cases it is restricted to a transient potential theory because its analysis
is simpler. In this paper we shall define a new potential in order to serve a general
policy improvement. Our aim is to expose theorems which are available to several
cases of MDP.

By the potential theoretic terms, we can interpret policy improvements of MDP as
follows; The increase of rewards in MDP consists of the potential with a charge of
an increment of the policy improvement and a regular function. If it is transient, then
the potential is reduced to the ordinary one and the regular function equals zero. Hence
this consists with that of Watanabe [16]. The merit of the potential is that it connects
the policy improvement with the increment of rewards.

We shall consider the following cost criteria of MDP; (1) discounted case,
(2) average case, (3) mearly optimal case and (4) sensitive discounted case. Case (1)
and (2) are representitive and discussed by many authors. Especially we list up
Howard [7] and Blackwell [2], [3] for (1) and Howard [8] and Derman [4], [5] for
(2). Case (8) is due to Blackwell [2]. Extending case (3), case (4) is studied by
Miller and Veinott [11] and Veinott [14], [15].
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2. Potential theory
Let S be a denumerable set and P={P, i> 1, JES} be a Markov matrix. A sequence

of powers of P has a Cesaro sum;

2.1) w*H:BWtJrE. e PR

koo

éwoao I is a unit matirix and lim means a pointwise convergence. A function f on
S is a colum vector. If

limk & pr

k 1=0 .\.

exist and finite, then we say {P*f} is Cesaro summable to P* /. It is known that
(2.2) 0=P*=P*P=pPpP*=p*p* p*1<]

éw@d 1 is a column vector whose elements equal 1 and the inequality between ma-
trices or vectors means that it holds for each element. A function f on S such that
Pf=f is called regular for P. See Kemeny, Snell and Knapp [9] for terminology of
Markov chains.

DEFINITION 1. Let

ANWV m§” MMUH Ahle.w*v‘ n=>1

and a function f on S for which H,f are well defined and finite. If the sequence
{H,f} is Cesaro summable to a function g, then f is called a charge with respect to
the Markov matrix P. We denote the Cesaro sum by Hf. 1t is called a called a
potential with a charge f. That is,

2.4) —Hf—limL ¥
g=Hf :ﬂwﬂswhm@\.

é@ note that .m pointwise limit H does not necessarily exist in denumerable states.
If P is a non-cyclic strong ergodic chain, lim H, exists and finite (Kemeny, Snell and
Knapp [9]). If S is a finite state, then J— P-4 P* ig non-singular and

(2.5) H=[I—P+P¥]1—p*,
If S is a single transient chain with a denumerable state, then P* is zero matrix and
2.6) H=[I—P],

Hence this kernel consists with a ordinary one and equals
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THEOREM 1. If f and g are functions for which
2.7 f=I—-P)g
and P*g is finite-valued, then Hf is finite-valued and
@.9 | g=Hf+h
where h is regular and h=_P*g.
PrOOF. From the definition (2.3) of H,, (2.7) implies
2.9 H,f=g—P"'g, nzl
Since P*g is finite-valued, the sequence of {P"g} is Cesaro summable. Hence {H,f}
is Cesaro summable and Hf is finite valued. Thus
(2.10) Hf=g—P*g.
Set h=P*g. Then the function & is regular by (2.2). This proves the theorem.

From this theorem, the Riesz decomposition—a super regular function is uniquely
decomposed into a non-negative charge and a regular function—is obtained but it is

not refered later.
(a) If a function f is non negative charge with P*¥f=0, then the

THEOREM 2.
potential is non negative;
(2.11) Hf=0.
(b) If f is regular, then
(2.12) Hf=0.

PrOOF. (a) Since P*f=0,
n—1
J— k
H,f= Ww% f.

Hence H,f=0 for all n=1. .
(b) H,f=0, n=1 are obtained by P"f=P*f=f. So (2.12) is immediate.

A potential of a non negative charge is called a pure potential. So, by (2.11), a
pure potential with P*f=0 is non negative. In a transient chain, it holds P*f=0.
Hence the pure potential is always non negative. But in our case the pure potential

is not always non negative.

3. Theorems

In this section we will expose fundamental theorems which show how are policy
improvements of MDP connected with the increment of rewards. The potential which
is defined at the previous section links the two into closer relation with each other.
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DEFINITION 2. For each n=1, r,(P) is a given function on S and is defined for
a Markov matrix P.

(a) Let sequences of functions {w,=w,(P); n=0} and ?:_H:aﬁmvh n=0}, for
Markov matrices P and P respectively, satisfy the following iteration:

wo=u,=0 and for n=0

3.1 (I=P)Wnp1+Pwo=r,., (P),

3.2) U=PY s tPuy=r,., (P).
(b) Let functions f, and g, for n=0 be

3.3) Jo=10(P)—(—P)ttn— Py,

3.4) En=Wn—Up

for which {u,} and {w,} satisfy (3.1) and (3.2) respectively.

It will become clear the meaning of these functions in the next section, so we
take a slight look here. For a sequence {w,} or {u,}, it represents reward of MDP
corresponding a stationary policy. One of the functions among the sequence is our
objective reward and others are complemental. The index =z is not a time parameter
but denotes like an order of the reward underlying MDP. The function g, is an
increment of rewards. It is comparing two stationary policies. The function frn is an
increment of a policy improvement for fixed rewards {u,}. The form of f, is obtained
from a perturbation of a policy. Or we associate it with the recursive property of
Dynamic Programming and also with Linear Programming.

Our aim is to maximize the reward in MDP and select a policy which reward is
greater than others, that is, an optimal policy. Thus the policy improvement among
stationary policies is to select a policy so that g, in (3.4) is positive for a fixed
policy P. The policy improvement contemplates seeking a routine which implies the
positiveness of g,. Routins for cases of MDP (Howard [8], Derman [4], [5], Blackwell
[2], Miller and Veinott [11], Veinott [14], [15], Furukawa [6] and Aso and Kimura
[11) are summarized certain positivity of {f,}. We postpone to argue the detail until
the next section.

hng.? 1. (a) Let {w,} satisfy (3.1). For any sequence {u,} (not necessary to
satisfy (3.2)), {fa} and {g.} defined by (3.3) and (8.4) have the Jollowing

relation ;
(3.5) Ja=U—P)gntPguy, nzl, g,=0.
(b) If P*g, is finite-valued for n(=1), then so is H(f,—Pg,-.) and
3.6) gn=H(fn—Pgn-1) +P*g,.

Further if P*gn,, is finite-valued, then so is P*f,., and

3.7 &n=H(fn—=Pgn-1) +P*fnus,
Aw mv Nu*m.uluumv*\.:
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Proor. For (a), it is sufficient to eliminate {u,} from Definition 2(a). Since {w,}
satisfies (3.1), we have (3.5). It is trivial for n=0. For (b), let f=f,—Pgp,-, and
g=gn. Applying Theorem 1, we can prove (3.6). The later parts follows from (3.5).
This completes the proof.

Suppose that g,-, is regular with respect to P for n=1. Since Pg,., is also
regular, Theorem 2 (b) implies H (Pgn-,) =0. Hence we obtain

(3.9 .m.ﬁu‘m.\§+»~.u*\a+p

from (3.7). Thus we insist on (3.9) that the increment of reward gu consists of the
potential Hf, with the charge f,, the increment of a policy improvement, and the
regular function P*f,.,. If P is transient, then P*=0 and so

(3.10) gn=Hfy

where H=[I—P]™. Therefore, g, is the potential with the charge of the increment
in a policy improvement (Watanabe [14]). In this case since the pure potential is
non-negative so f,=0 implies g,=0. This is the policy improvement of Howard £8]l
in the discounted case (1). For a general chain, the positivity of f,-; and f, among
{fa} determines that of g,-, and g,-;,. This is a principle for average case (2) and
sensitive discounted case (4), which will be discussed later in detail. For nearly
optimal case (3), it require further conditions so as to deduce the positivity of g,.

ASSUMPTION 1. For a Markov matrix P, the state space S consists of

(3.11) mHMEcﬂ

such that R, is a finite recurrent class for each v and T is a transient one.

This assumption holds for a finite state space. It may be replaced that S contains
only strong ergodic classes and a transient one. Therefore, a point-wise limit of {H,}
exists in the Ceraso summability, so H;j;, i, j€S are defined and

CHf 1= 2 Hy; f ()

JES
for a bounded function f.

For functions f, g, -+, h are column vectors, so (f, g, =+, h) isa matrix. We say that
it is lexicographically non-negative if the first nonvanishing element of each row of
the matrix is positive, written by (f, g, -+, #)=;0. From this definition, if (f, g, -, k)
>,0, then f=0, that is, (i) =0 for each iES.

Let {f,} and {g.} are defined by (3.3) for given Markov matrix P with As-
sumption 1 and sequence {r,}.

THEOREM 3. Suppose that {w,} satisfies (3.1) and P*gy, k=1,2,--,n—1 are finite-
valued for n=4. If
AW. HNV A.\.uu .\.mv ety \wﬁlwv ”O‘
A.‘w. HWV A.\s]f .\.§v W«O»
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then
Aw H%v AWC 82 " m§|mv ”Ov
(3.15) (gn-2 &n-1) =0

. Wwoom. Firstly we prove (3.14) from (3.12) by induction on n. For n=4, (3.12)
implies A.\C.\mvuo and so f;=0 and f,=0. By 3.7, anm\plTNU*\w Hence WH“O
For n=4, it is sufficient to prove g,-,=0 under (3.12). By (3.7),

En- =H(fs- s—Pgn- »vlTNU*.\.: N

Since g,.,=0 by the assumption of induction and f,_s=f,-,=0 by (3.12), thus we
obtain g,.s=0. This proves (3.14). Nextly we determine the forms of g,-, and gn-:
in (3.15). By (3.12) and (3.14),

(3.16) Gn-2=P*fn_y
and so it is regular function by (2.2). Hence we have
(3.17) %:L”m\al\_lmu*\s

from Theorem 2 (b). In order to prove (3.15), we must show that

(a) gn-2=0 and

(b) if gn,_,(i))=0 for some i, then g,-;(1)=0.
The former (a) is immediate from (3.16) because f,_,=0 by (3.13). To prove (b),
we need the assumption (3.11). Suppose the state i belong to some recurrent class

R, (abbr. by R). For jeR, any P}, which is (i, j) element of P*, are strict positive
and so

8n-~ ()= 2 P§ \: 1()=0

JER
implies f,-,(j) =0, jER. Hence f,(j)=0 for j€R by (3.13). Thus
W:LQvlhmw.m:\..\_ HCvl_l&m \nﬂ%&v

R

- M wﬁ 3A.Nv WO.

JER

Suppose that ¢ belongs to a transient class 7. From f,-,=0 and

Gu-2(D= 2 P fr1()=0

JjES
by (3.16), we have
(3.18) M H;jfni(j) 20

JjES
applying Theorem 2 (a). Since i€T, so Pi=0 for jeT and P%H=0 for jER.
Therefore if a state j is such that P} >0, then f,-;(j)=0 and so f,(;) =0 by (3.13).
Hence P¥%f,(j)=0. If a state j is mcor that P}%=0, cleary P%f.(j)=0. Thus we
have

(3.19) ; P} fn () =0.

,“mm
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For 1T,
gn- HCVI. :.ﬂ: HCV,._\\WWM_M\.:CV

Thus (3.18) and (3.19) imply gn-1(1) =0 and this completes the proof.

COROLLARY 1. If (fy, f2) 2.0, then g,=0.
PROOF. Since P*f,=0, g,=Hf,+P*f, by . 7) and (3.8). Hence we can prove

it similarly.

COROLLARY 2. Without Assumption 1 on a Markov matrix P but assume P*g
and P*f, are finite-valued. Then f1=0 and £, =0 imply g,=0.

ProoF. It is immediate from the relation which is in the proof of Corollary 1
and Theorem 2 (a).

THEOREM 4. Added in Theorem 3, suppose that a state i such as fn-1(1)=fr({@)=0
satisfies Py=0P;; for all j€S. Then gn-.=0 implies (gn-1, &n) Z10-

PROOF. Since g,-,=0, we have

(3.20) P*fy-1=0,
(3.21) Gn-1=Hfn s +P*fn,

by (3.7) and (3.8). Further, g,-,=0 by the result (3.15) in Theorem 3. Hence we
will prove that g,-,()=0 for a state i implies g, (1) =0. Previously note that

(3.23) faes (D=0, JEUR

by (3.30).
(a) Suppose that a state iR, for some v (abbr. by R in the proof). For any
kER,

Zns(B) =3 Hisfars D+ 2 P2 (D)

JER JER

= 3 §Cv

.‘mm

by (3.23). The assumption that gn-110) =0 implies
8.24) - fa(D=0, jER
because P¥ >0, jER. Also
(Pgn-11;= 2 Pjsgn-1(R)= mev\g@v

kEER kRE
is regular with respect to {P;;; 1, J eR}. Thus, by Theorem 2 (b),
.m:cvlgmang,cvlmwmﬁ 1] Tﬁm Hg.(J)

R

=3 P5g.(h).

JjER



62 Masami YAsuDA

From (3.23) and (3.24), the assumption implies P;,=F,, for all j, k€R. Hence
U, (J) =w,(j) for all j€R because corresponding Markov matrix are same. Thus we
have g,() =u,(j) —w, (j)=0 for all jER.

(b) Suppose i€T. By (3.23), (3.21) implies

%«Tva”.‘m :.\§ Hcvl_l M € w_cv

T

where R=\U,R,. Let T, R, be subsets of T and F respectively such that H;;=0,
J€Ty and P} =0, jeR,. Noting H;;>0 for i, jET, g,-.(i) =0 implies

(8.25) SN =0,  jET\T,,

(3.26) _ Fa () =0, JER\R..

From (3.23) and (3.25), we have f,-;(j)=0 for j€R\U(T\T,). Hence Hy;fn ,(j)=0
for each 2T and j&S because one of factors equals zero. Similarly P¥ f,(7) =0 for
each k€T and jS. Thus we obtained that

(3.27) P—
From (3.27) and the result of (a), g,(;)=0 for j=R. Hence, for ieT,

JjES

= :.Nw«cVnT :.\.:A\v

J m.ao . &m?so
and
_H.ﬁ*%.:.n._s &%SANV O

by (3.27) and (3.26). Thus
%.§Qv[. &.\scvl_l :.ﬁ.cv

J mﬁ/w.o

Applying Theorem 2 (a), the assertions
I M & §A\v O

JE€Rg

and f,(j)=0, jeR,\J(T\T,), which derived by (3. wmv and (3.13), implies g,(z) =0.
This completes the proof.

THEOREM 5. Suppose that a Markov matrix P is transient. If (f1, fa, -, fn-1) =0
and f,=0 for n=2, then g,-,=0 and g,=0.

Proor. This is clear from (3.10).
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4. Policy improvements of MDP

In this section we will formulate MDP of (1)—(4) in section 1 and then expose a

principle of policy improvements.
Let S a denumerable state space. A policy P is a sequence of Markov matrices,

that is,
4.1 P= (P, Py, ).
I7 denotes the set of all policies. Let 7» is a column vector defined by Markov matrix
P and
4.2) P®y=P P, Pyrp ., n=l,
POr=yp,

where P= (P, P, ---)elIl. P™r is the n-th expected reward. MDP is to maximize
the total sum of the sequence of the n-th expected reward and several criteria are
considered as follows.

4. 1. Discounted case
Let PeIl and
4.3) vp (P)=1im M Py,

A policy P is preferable to a policy Pif
(4.4) vy (P) Zvp (P).
It is called optimal if (4.4) holds for all P<1I.
THEOREM 6. Suppose vp(P)<oo. If a Markov matrix P is
(4.5) 7p+Pup (P) —vp (P) 20,
then the stationary policy P=(P, P, ---) is preferable to P

PROOF. Let 7,(P)=rp for n=2 and zero othewise. Consider only two terms in
(8.1) and (3.2) respectively such as u;=w,=0, uy=vp(P), wy,=vp(P). By (3.3), we
have f,=0 mbm fo=rp+Pvp qulcu (P). The condition (4.5) means f,=0. So Theorem
5 implies mplo and g,=vp(P)—vp (P)=0. Hence (4.4) holds.

4. 2. Average case
Let
(4. 6) v (P) l:BEmA:\TC i T;:\.

n

4.7 v (P) =liminf (n-+1) Mo (P®r—yp , (P)).
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~

A policy P is preferable to P if
4.8) va(P)Zv4(P).
If (4.8) holds for all Pell, then P is average optimal.
THEOREM 7. Suppose v, (P), v (P) < oo, 17

(4.9) Pv(P)—v,(P) =0
or (4.9) holds with equality and
(4.10) rptPuP (P) —v 4 (P) —v@ (P) 20.

~

then a stationary policy P=(P, P, ---) is preferable to P.

PROOF. Set r,(P)=7p for n=2 and zero otherwise. Consider u,=v ,(P), u,=vP(P)
and w,=v{ (P). They satisfy (3.1) and (3.2). By (3.3),

&. HC g1=Vy qu lemﬁwv»
412 fi=Pv(P)—v,(P),
(4.13) fo=rp+PvP (P) —Puv,(P)—v (P).

If (4.9) holds with equality, then the left hand side of (4.10) equals the right of
(4.13). Hence Theorem 3 or Corollary 1 imply g,=0 and so we have (4.8).

Conditions (4.9) and (4.10) are a denumerable version of Derman [5]. It is also

possible to extend that (fy, ;) =,0 as Corollary 1. From Corollary 2, if both (4.9)
and (4.10) hold then g,=0. This result dues to Aso and Kimura [1].

4. 3. Nearly optimal case

Let
(4.14) vo (B, P)=lim M%%g;

for a scaler § (0<f<1) which is called a discount factor and a policy P<Il. A policy

~

P is preferable to a policy P if

(4.15) _mmw {vo (B, P)—vp (B, P)} =0.

A policy P is nearly optimal if

(4.16) wmw {vo (B, P)—U(P)} =0
where
U(B)=sup {vp(8, P); P<IT}.

~

Suppose that a Markov matrix P satisfies Assumption 1. Hence m*ﬁzu and @\m

are finite-valued where ,mﬁ H are defined by the matrix P. Let

4.17) :HHW*J@ ﬁmﬂmﬁw.
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They satisfy (3.2). We consider the following inequalities ;
(4.18) Pu,zu,,
(4.19) 7p+Pus= Pus+us,.

For a fixed va let QQwv be the set of Markov matrices P such that (4.18) holds;
(4.18) holds with equality and (4.19) holds; or for each i for which (4.18) and (4.19)

~

holds with equality, P;;=FP;; for all j&S.

THEOREM 8. If a Markov matrix Nquwa then the stationary policy P=(P, P, )
is preferable to P= (P, P, ). P is nearly optimal if G(P)=¢.

PROOF. Let w, and w, be vectors determined for P similarly as (4.17). Since

vp (B, P)=(1—p) witw,to(1—p),

the former assertion is equivalent to (gi, g.)=;0. Hence the results are immediate
from Theorem 4.

This extends Veinott [14] to a denumerable state with Assumption 1.

4. 4. Sensitive discounted case

As a beginning of the case (3) due to Blackwell [2], Miller, Veinott [11] considered
the behaviour of vp(8, P) as f tends to 1 and obtained a Laurant expansion about
f=1. We show here that an approximate form of the expansion and discuss the
policy improvement. As additional results, an average version are obtained.

~

A stationary policy P is preferable to P under n-th (n=1) sensitive discount
case if

(4.20) lim (1—) ™ {vn (8, P) —0» (B, P)} 20.

If (4.20) holds for all P<1l, then P is optimal. We consider Markov matrices P and
P under Assumption 1. Suppose that 7,(P)=rp for n=2 and zero otherwise. Let
{w,} be

4.21) w,=P*rp,

(4. 22) wy=(=1)"H""P* %yp, n=2

and {u,} are defined in (4.21) and (4.22) which replaced P by P. Then we see that
{us}, {w,} satisfy (3.1) and (3.2). Because ([—P)H=I—P* and HP=PH. If we
define {f,} and {g.} by (3.3) and (3.4) respectively, the policy improvement of this
case is as follows.

THEOREM 9. If (f1, for =" Fn-2)=0, (fa-1, fn)=:0, then a stationary policy P is

~

preferable to P under n-th sensitive discount case.
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Proor. It is sufficient show that

(4.23) vp (8, P)=(1—B) " witwyt (1= wyt -
+ (A=Y wyto(l—p).

This is an approximate form of a Laurant expansion. From the itration (3. 1),
ﬁaiAﬁv =({I—-P) Woayt Pw,= le.v Q\t:i[:\ﬁv +ws.

Multiplying (1—8)""%, then we are summing up and hence

re=[I—pP1 3 (1—p)"*wnt A—~H¥*U—P) ...

Since 0< <1,

vp (B, P)=[I—BP] rs.
Thus we have

N
vp (B, P)= p2) A=) " 2wt 1= [[—BPI * (I~P) Wy
That is, (4.23) holds and so this completes the proof.

Additionally we introduce an average overtaking MDP. Let for
P=(P, P, ) ell, v9(P)=P™r
for n=0,
W (P)= 5 v (P)
for n=1 and
WP (P)= 3 o> (P)
m=1
for n=l1, k=2. If, for fixed k=2,

(4. 24) liminf 77 {u® (P) —v® (P)} =0,

>0

~

then P is preferable to P under %-fold average overtaking case. The special case of
k=2 is given by Veinott [14]. We can prove that, extending Lippman [10],

THEOREM 10. For k=1, k-th sensitive discount case is equivalent to k-fold average
overtaking case.

Hence the same policy improvement as Theorem 9 holds.
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