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Abstract

As the same framework of Fuzzy decision processes with the dis-
counted case we will specify an average fuzzy criterion model and
develop its optimization by “fuzzy max order” under appropriate con-
ditions. The average reward is characterized, by introducing a relative
value function, as a unique solution of the associated equation. Also
we derive the optimality equation using the “vanishing discount fac-
tor” approach.
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1 Introduction and notations

In the previous paper [6], Markov-type fuzzy decision processes (FDP’s, for
short) with a bounded fuzzy reward are defined. We have developed its
optimization under the discount reward criterion. Also, the long-run average
reward of some dynamic fuzzy system has been specified in our another paper
[7]. However, the optimization was not considered there. In this paper,
we will specify the long-run average fuzzy reward from a fuzzy policy and
develop its optimization by the so-called “fuzzy max order” on the convex
fuzzy numbers under the ergodicity (contraction) condition for the fuzzy state
transition and the continuity condition for the fuzzy reward relation.

By introducing the relative value functions, the average reward from any
admissible stationary policy is characterized as a unique solution of the asso-
ciated equation. It will be useful in the policy improvement. Moreover, using
the “vanishing discount factor” approach which is well-known in the theory
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of Markov decision processes (for example, see [12, 14]), we derive the opti-
mality equation under the average fuzzy reward criterion. In the reminder
of this section, we will give notations and some mathematical facts.

Let E, E1, E2 be convex compact subsets of a given Banach space.
Throughout the paper we will denote a fuzzy set and a fuzzy relation by
their membership functions. For the theory of fuzzy sets, refer to Zadeh [20]
and Novàk [11].

A fuzzy set ũ : E → [0, 1] on E is called convex if

ũ(λx+ (1− λ)y) ≥ ũ(x) ∧ ũ(y), x, y ∈ E, λ ∈ [0, 1],

where a ∧ b := min{a, b} (c.f. [15, 16]). Also, a fuzzy relation h̃ : E1 ×E2 →
[0, 1] between E1 and E2 is called convex if

h̃(λx1 + (1− λ)x2, λy1 + (1− λ)y2) ≥ h̃(x1, y1) ∧ h̃(x2, y2)

for x1, x2 ∈ E1, y1, y2 ∈ E2 and λ ∈ [0, 1].
The α-cut (α ∈ [0, 1]) of the fuzzy set ũ is defined by

ũα := {x ∈ E | ũ(x) ≥ α} (α > 0) and ũ0 := cl {x ∈ E | ũ(x) > 0},

where cl denotes the closure of a set.
Let F(E) be the set of all convex fuzzy sets, ũ, on E whose membership

functions are upper semi-continuous and have compact supports and the
normality condition : sup

x∈E
ũ(x) = 1. We denote by C(E) the collection of all

compact convex subsets of E and ρE the Hausdorff metric on C(E). Clearly,
ũ ∈ F(E) means ũα ∈ C(E) for all α ∈ [0, 1].

Let R be the set of real numbers. We see from the definition that C(R)
and F(R) are the set of all bounded closed intervals in R and all upper
semi-continuous and convex fuzzy numbers on R with compact supports,
respectively.

For the interval [0,M ] with a fixed positive number M ,

F([0,M ]) = {ũ ∈ F(R) | ũ0 ⊂ [0,M ]},

and C([0,M ]) be the set of all closed convex subsets of [0,M ]. For non-empty
closed intervals, the Hausdorff metric on C([0,M ]) is represented by δ, i.e.,

δ([a, b], [c, d]) :=| a− c | ∨ | b− d | for [a, b], [c, d] ∈ C([0,M ]),
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where a ∨ b = max{a, b} for real numbers a, b.
The definitions of addition and scalar multiplication on F(R) are as fol-

lows: For m̃, ñ ∈ F(R) and λ ≥ 0,

(m̃+ ñ)(x) := sup
x1,x2∈R: x1+x2=x

{m̃(x1) ∧ ñ(x2)}

and, for the scalar multiplication, let us define

(λm̂)(x) :=

{
m̂(x/λ) if λ > 0
I{0}(x) if λ = 0,

(x ∈ R)

where I{·}(·) is an indicator. By using the set operation A + B := {x +
y | x ∈ A, y ∈ B}, A + ∅ = A for any non-empty sets A,B ⊂ R, and
λA := {λx | x ∈ A} for A ⊂ R, the following holds immediately.

(m̃+ ñ)α = m̃α + ñα and (λm̃)α = λm̃α (α ∈ [0, 1])

Lemma 1.1 ([15, Theorem 2.3]).

(i) For any ñ, m̃ ∈ F(R) and λ ∈ R, ñ+ m̃ ∈ F(R) and λñ ∈ F(R).

(ii) For any s̃ ∈ F(E1) and p̃ ∈ F(E1 × E2), then supx∈E1
s̃(x) ∧ p̃(x, ·) ∈

F(E2).

In the next section 2, we give the basic definition of FDP’s and describe
the optimization problem by specifying the average fuzzy reward from any
fuzzy policy. In Section 3, referring [6] we give several results for the dis-
counted case which will be also used to derive the optimality equation by the
“vanishing discount factor” method in Section 5. In Section 4, the average
fuzzy reward from any stationary fuzzy policy satisfying some reasonable
condition is characterized as a unique solution of the associated relational
equation. The numerical example is given to illustrate the theoretical re-
sults.

2 Fuzzy Decision Processes

In this section, we will formulate FDP’s. By introducing the fuzzy max order
on the convex fuzzy numbers the optimization problem could be described.

A fuzzy decision process, in this paper, is a controlled dynamic fuzzy
system defined by four objects (S,A, q̃, r̃) as follows:
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(i) Let S and A be a state space and an action space, which are given
as convex compact subsets of some Banach space respectively. The
decision process is assumed to be fuzzy itself, so that both the state
of the system and the action taken at each stage are denoted by the
element of F(S) and F(A), called the fuzzy state and the fuzzy action
respectively.

(ii) The law of motion for the system and the fuzzy reward can be char-
acterized by time invariant fuzzy relations q̃ ∈ F(S × A × S) and
r̃ ∈ F(S × A × [0,M ]), where M is a given positive number. Explic-
itly, if the system is in a fuzzy state s̃ ∈ F(S) and the fuzzy action
ã ∈ F(A) is chosen, then it transfers to a new fuzzy state Q(s̃, ã) and a
fuzzy reward R(s̃, ã) is earned, where Q,R are defined by the following:

Q(s̃, ã)(y) := sup
(x,a)∈S×A

s̃(x) ∧ ã(a) ∧ q̃(x, a, y) (y ∈ S) (2.1)

and

R(s̃, ã)(u) := sup
(x,a)∈S×A

s̃(x) ∧ ã(a) ∧ r̃(x, a, u) (0 ≤ u ≤M). (2.2)

Note that, by Lemma 1.1, it holds that Q(s̃, ã)(·) ∈ F(S) and R(s̃, ã)(·) ∈
F([0,M ]) for all s̃ ∈ F(S), ã ∈ F(A).

Firstly we will define a policy based on the fuzzy state and fuzzy action as
follows. Let Π := {π|π : F(S) 7→ F(A)} be the set of all maps from F(S) to
F(A). Any element π ∈ Π is called a strategy. A policy, π̌ = (π1, π2, π3, · · ·),
is a sequence of strategies such that πt ∈ Π for each t. Especially, the policy
(π, π, π, · · ·) is a stationary policy and is denoted by π∞.

A fuzzy strategy π ∈ Π is called admissible if the α-cut π(s̃)α of π depends
only on the scalar α and the sets s̃α, that is, it would be written as

π(s̃)α = π(α, s̃α) for s̃ ∈ F(S). (2.3)

For the admissible fuzzy strategy π = {π(·, ·)}, if π(α,D) is continuous in
(α,D) ∈ [0, 1]× C(S), π is called continuous. We denote by ΠA and ΠC , re-
spectively, the collections of all admissible and continuous fuzzy strategies. A
policy π̌ = (π1, π2, · · ·) is called admissible (continuous resp.) if πt ∈ ΠA (ΠC)
for all t ≥ 0. To specify a performance index (or an objective function) and
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describe an optimal decision problem, let us consider the convergence of a
sequence of fuzzy numbers and a partial order.

Definition 2.1 (c.f. [5, 10]). For ũt, ũ ∈ F(E),

lim
t→∞

ũt = ũ

iff limt→∞ supα∈[0,1] ρ(ũt,α, ũα) = 0, where ũt,α and ũα are respectively the
α-cut of ũt and ũ.

For any closed interval D ∈ C([0,M ]), we put D = [D,D], where D and
D are the left and right end points of D respectively.

The partial order ¹ on C([0,M ]) is defined as follows : For any D1, D2 ∈
C([0,M ]). D1 º D2 means that D1 ≥ D2 and D1 ≥ D2. Then, (C([0,M ]),º)
becomes a complete lattice (see [2]) and the following lemma holds obviously.

Lemma 2.1. For any sequence {Dn}∞n=1 ⊂ C([0,M ]), it holds that

(i) supn≥1 Dn = [supn≥1 Dn, supn≥1 Dn], and

(ii) if
∑∞
n≥1 Dn converges,

∑∞
n≥1 Dn = [

∑∞
n≥1 Dn,

∑∞
n≥1 Dn].

Using the order on C([0,M ]), let us define the partial orderº on F([0,M ])
which is called a max fuzzy order.

Definition 2.2. For any ñ, m̃ ∈ F([0,M ]), ñ º m̃ iff ñα º m̃α for all
α ∈ [0, 1].

For any admissible policy π̌ = (π1, π2, · · ·) and an initial fuzzy state s̃ ∈
F(S), we can define a sequence of fuzzy rewards on [0,M ],

{R(s̃t, πt(s̃t))}∞t=1,

where
s̃1 = s̃ and s̃t+1 = Q(s̃t, πt(s̃t)) for t ≥ 1. (2.4)

Here we are concerned with two performance criteria. The first one is the
total discounted fuzzy reward with a discount factor β (0 < β < 1);

ψβ(π̌, s̃) :=
∞∑
t=1

βt−1R(s̃t, πt(s̃t)) ∈ F([0,M/(1− β)]) (2.5)
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for s̃ ∈ F(S) and π̌ = (π1, π2, · · ·).
The problem in the discounted case is to maximize ψβ(π̌, s̃) over all ad-

missible policy π̌ with respect to the order º on F([0,M ]), which has been
investigated in [6]. The second performance criteria is the long-run average
fuzzy reward per unit time, which is formally defined by

Ψ(s̃, π̌) := lim
T→∞

RT

T
, (2.6)

where

RT :=
T∑
t=1

R(s̃t, πt(s̃t)) (T ≥ 1). (2.7)

Our problem in this paper is to show the convergence property of Ψ(s̃, π̌)
and maximize Ψ(s̃, π̌) over some class of continuous policies π̌ with respect
to the order º on F([0,M ]), which is given in Sections 4 and 5.

3 Assumptions and preliminary results

In this section, we introduce some assumptions for the fuzzy relation q̃ and
fuzzy reward r̃. And several preliminary results are given for the discounted
case, which guarantee the validity of the “vanishing discount factor” ap-
proach. In order to discuss the structure of the fuzzy state transition and
fuzzy reward, let us introduce some notations.

A map Qα : C(S)× C(A) 7→ C(S) (α ∈ [0, 1]) is defined by

Qα(D×B) :=

{
{y ∈ S | q̃(x, a, y) ≥ α for some (x, a) ∈ D ×B}, α > 0,
cl{y ∈ S | q̃(x, a, y) > 0 for some (x, a) ∈ D ×B}, α = 0,

and a map Rα : C(S)× C(A) 7→ C([0,M ]) (α ∈ [0, 1]) by

Rα(D×B) :=

{
{u ∈ R+ | r̃(x, a, u) ≥ α for some (x, a) ∈ D ×B}, α > 0,
cl{u ∈ R+ | r̃(x, a, u) > 0 for some (x, a) ∈ D ×B}, α = 0.

Since Rα(D ×B) is a closed interval for each α ∈ [0, 1], we can write it as

Rα(D ×B) := [Rα(D ×B), Rα(D ×B)].

In this paper, we need the following two assumptions.
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Assumption A (Ergodicity or contraction). There exits γ1 (0 < γ1 < 1)
such that

ρ(Qα(D ×B), Qα(D′ ×B)) ≤ γ1ρ(D,D′) for all B ∈ C(A).

Assumption B (Lipschitz condition). There exists a constant C such that

|Rα(D ×B)−Rα(D′ ×B)| ∨ |Rα(D ×B)−Rα(D′ ×B)| ≤ Cρ(D,D′)

for any D,D′ ∈ C(S) and B ∈ C(A).

We note that Assumption A has been given in [5, 17], under which several
limit theorems for the sequence of fuzzy states have bee obtained.

We now derive the optimality equation for the discounted case. Let

V := {v : C(S) 7→ C([0,M ])}.

Define a metric dV on V by

dV (v, w) := sup
D∈C(S)

δ(v(D), w(D)) for v, w ∈ V.

Then, (V, dV ) becomes a complete metric space. Define a map Uβ
α : V 7→

V (α ≥ 0) by

Uβ
αv(D) := sup

B∈C(A)
{Rα(D ×B) + βv(Qα(D ×B))} (3.1)

for v ∈ V and D ∈ C(S), where β is a discount factor and 0 < β < 1.
If we write v(D) and Uβ

αv(D) respectively by v(D) = [v(D), v(D)] and

Uβ
αv(D) = [Uβ

αv(D), U
β
αv(D)], (3.1) becomes, from Lemma 2.1,

Uβ
αv(D) = sup

B∈C(A)

{Rα(D ×B) + βv(Qα(D ×B))}, (3.2)

U
β
αv(D) = sup

B∈C(A)

{Rα(D ×B) + βv(Qα(D ×B))}. (3.3)

In [6], it is shown that the operator Uβ
α is a contraction with modulus β.

Thus, there exists a unique map vα,β ∈ V such that

vα,β = Uβ
αvα,β. (3.4)
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Let vα,β(D) := [vα,β(D), vα,β(D)] for all D ∈ C(S). The property of vα,β
is given in the following lemma.

Lemma 3.1. Suppose that Assumptions A and B hold. Then, we have

|vα,β(D)− vα,β(D′)| ∨ |vα,β(D)− vα,β(D′)| ≤ C

1− βγ1

ρ(D,D′) (3.5)

for all D,D′ ∈ C(S).

Proof. Putting v0
α,β ≡ {0} ∈ V , we define the iterates vtα,β by

vt+1
α,β = Uβ

αv
t
α,β, (t ≥ 0) (3.6)

Then, by the contractive property of Uβ
α, vtα,β(D) → vα,β(D) uniformly for

D ∈ C(S) as n→∞. Now, we show by induction on t that

|vtα,β(D)− vtα,β(D′)| ≤ C
t−1∑
l=0

(βγ1)lρ(D,D′) (3.7)

for all D,D′ ∈ C(S) and t ≥ 1. It holds, from Assumption B, that

|v1
α,β(D)− v1

α,β(D′)| ≤ sup
B∈C(A)

|Rα(D ×B)−Rα(D′ ×B)| ≤ Cρ(D,D′),

which implies that (3.7) holds for t = 1. Suppose that (3.7) holds for t.
Then, we have

|vt+1
α,β (D)− vt+1

α,β (D′)|
≤ sup

B∈C(A)
|Rα(D ×B)−Rα(D′ ×B)|

+ β sup
B∈C(A)

|vtα,β(Qα(D ×B))− vtα,β(Qα(D′ ×B))|

≤ Cρ(D,D′) + β
t−1∑
l=0

(γ1β)l sup
B∈C(A)

ρ(Qα(D ×B), Qα(D′ ×B))

, from Assumption B and the hypothesis of induction

≤
t∑
l=0

(γ1β)lρ(D,D′)

, from Assumption A.
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This shows that (3.6) holds for t+ 1. Letting t→∞ in (3.7), we get

|vα,β(D)− vα,β(D′)| ≤ C

1− βγ1

ρ(D,D′). (3.8)

Similarly as the case of vα,β, we obtain that

|vα,β(D)− vα,β(D′)| ≤ C

1− βγ1

ρ(D,D′). (3.9)

These inequalities (3.8) and (3.9) implies (3.5). 2

4 Characterization of the average fuzzy re-

ward

This section concerns the convergence and characterization of the average
fuzzy reward Ψ(s̃, π∞), which formally given in (2.6).

Let π ∈ ΠC . For simplicity, we put

RT (s̃, π∞) :=
T∑
t=1

R(s̃t, π(s̃t)), (4.1)

where
s̃1 := s̃ and s̃t+1 = Q(s̃t, π(s̃t)) (t ≥ 1)

By using q̃ and r̃, we define maps Qπ
α : C(S) 7→ C(S) and Rπ

α : C(S) 7→
C([0,M ]) (π ∈ ΠA, α ∈ [0, 1]) by

Qπ
α(D) := Qα(D × π(α,D))

Rπ
α(D) := Rα(D × π(α,D))

for D ∈ C(S). For any admissible fuzzy policy π ∈ ΠA, Qπ
t,α (t ≥ 1) is defined

inductively by using the composition of maps as follows :

Qπ
1,α(D) := Qπ

α(D)

and
Qπ
t+1,α(D) := Qπ

t,αQ
π
α(D)
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for t ≥ 1 and D ∈ C(S).

The following lemma can be proved analogously to those of [7, Lemma
2.1].

Lemma 4.1. Let π ∈ ΠC . Then :

(i) s̃t+1,α = Qπ
t,α(s̃α) for t ≥ 1,

(ii) RT (s̃, π∞) ∈ F([0, TM ]) for T ≥ 1,

(iii) (RT (s̃, π∞))α =
∑T
t=1 Rα(s̃t,α, π(α, s̃t,α)) for T ≥ 1.

In order to insure the ergodicity of the process and the uniform continuity
of the fuzzy reward, we introduce the condition L(π) depending on π ∈ ΠC .

For any continuous strategy π ∈ ΠC , we shall say that L(π) holds if there
exist constant γ (0 < γ < 1), C > 0 and a positive integer t0 satisfying the
following (i) and (ii) :

(i) ρ(Qπ
t0,α

(D), Qπ
t0,α

(D′)) ≤ γρ(D,D′),

(ii) δ(Rπ
α(D), Rπ

α(D′)) ≤ Cρ(D,D′).

Note that the conditions (i) and (ii) are corresponding to Assumption A and
B in Section 3 respectively.

Let us denote by Π∗SC the set of all continuous strategies π ∈ ΠC satis-
fying the above condition L(π). The convergence of Ψ(s̃, π∞) is given in the
following theorem. The proof is analogous to those of [7].

Theorem 4.1. For any π ∈ Π∗SC , Ψ(s̃, π∞) in (2.6) converges and satisfies
the following :

Ψ(s̃, π∞) = R(p̃π, π(p̃π)),

where p̃π ∈ F(S) is a limiting fuzzy state satisfying that

(i) limt→∞ s̃t = p̃π, and Qπ
α(p̃πα) = p̃πα for all α ∈ [0, 1],

(ii) p̃π is independent of the initial fuzzy state s̃, and

(iii) ρ(s̃t,α, p̃
π
α) ≤ C∗γt with γ in Assumption L(π) and some C∗ > 0.
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Recently, Yoshida [19] has given the notion of α-recurrent set for the fuzzy
relation and shown that the α-cut of the limiting fuzzy set p̃π in the above
lemma is characterized as the maximum α-recurrent set. Theorem 4.1 says
that for any π ∈ Π∗SC , Ψ(s̃, π∞) is independent of s̃, so we write it by Ψ(π∞).

For simplicity, let, for each π ∈ Π∗SC and D ∈ C(S),

Rπ∞
T,α(D) =

T∑
t=1

Rπ
α(Qπ

t,α(D)).

Note from Lemma 4.1 that RT (s̃, π∞)α = Rπ∞
T,α(s̃α) for all T ≥ 1 and α ∈

[0, 1]. Let Rπ∞
T,α(D) := [Rπ∞

T,α(D), R
π∞

T,α(D)]. Then, by Lemma 2.1, we have

Rπ∞
T,α(D) =

T∑
t=1

Rπ
α(Qπ

t,α(D)) (4.2)

and

R
π∞

T,α(D) =
T∑
t=1

R
π
α(Qπ

t,α(D)), (4.3)

where
Rπ
α(D′) := [Rπ

α(D′), R
π
α(D′)]

for all D′ ∈ C(S). By Theorem 4.1 and Assumption B, we observe that
Rπ
α(s̃t,α)→ Rπ

α(p̃πα) exponentially first as t→∞. Thus, by (4.2) and (4.3),

hπα(D) := lim
T→∞

(Rπ∞
T,α(D)− T ×Rπ

α(p̃πα)) (4.4)

and
h
π

α(D) := lim
T→∞

(R
π∞

T,α(D)− T ×Rπ
α(p̃πα)) (4.5)

converge for all D ∈ C(S). The function hα (hα resp.) is called lower (upper)
relative value function, whose basic ideas are appearing in the theory of
Markov processes (c.f. [12]).

Let us denote the α-cut of the discounted fuzzy reward :

ψβ(π∞, s̃)α := [ψ
β
(π∞, s̃)α, ψβ(π∞, s̃)α], α ∈ [0, 1]. (4.6)
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Then, for any π ∈ Π∗SC , the extremal points

Ψ(π∞)α := [Ψα(π∞),Ψα(π∞)]

are characterized in the following theorem, whose description is popular in
the theory of Markov decision processes (cf. [1, 3, 12]).

Theorem 4.2. For any π ∈ Π∗SC , we have

ψ
β
(π∞, s̃)α = Ψα(π∞)/(1− β) + hπα(s̃α) + ε(β, α), (4.7)

ψβ(π∞, s̃)α = Ψα(π∞)/(1− β) + h
π

α(s̃α) + ε(β, α), (4.8)

where
|ε(β, α)| ∨ |ε(β, α)| → 0

uniformly for α ∈ [0, 1] as β → 1.

Proof. From Lemma 2.1, we have

ψ
β
(π∞, s̃)α =

∑∞
t=1 β

t−1Rπ
α(Qπ

t,α(s̃α))

=
∑∞
t=1 β

t−1Ψα(π∞) +
∑∞
t=1 β

t−1(Rπ
α(Qπ

t,α(s̃α))−Ψα(π∞))
= Ψα(π∞)/(1− β) + hπα(s̃α) + ε(β, α),

where ε(β, α) =
∑∞
t=1 β

t−1(Rπ
α(Qπ

t,α(s̃α))−Ψα(π∞))− hπα(s̃α).
As Ψα(π∞) = Rπ

α(p̃α), by (4.4) and Abel theorem, it holds that ε(β, α)→ 0
uniformly for α ∈ [0, 1] as β ↑ 1, which proves (4.7). By arguments similar
to the above, we can prove (4.8). This completes the proof. 2

The proof of the following theorem is analogous to that of [7, Theorem
3.1].

Theorem 4.3. For any π ∈ Π∗SC , let hπα and h
π

α be defined as (4.4) and
(4.5). Then, the following equations hold :

hπα(D) + Ψα(π∞) = Rπ
α(D) + hπα(Qπ

α(D)) (4.9)

and
h
π

α(D) + Ψα(π∞) = R
π
α(D) + h

π

α(Qπ
α(D)) (4.10)

for all D ∈ C(S).
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The following theorem is useful in policy improvement.

Theorem 4.4. For any π ∈ Π∗SC , let hπα and h
π

α be defined as in (4.4) and
(4.5). Let π′ ∈ Π∗SC be such that

hπα(D) + Ψα(π∞) ≤ Rπ′
α (D) + hπα(Qπ′

α (D)) (4.11)

and
h
π

α(D) + Ψα(π∞) ≤ R
π′

α (D) + h
π

α(Qπ′
α (D)) (4.12)

for all D ∈ C(S) and α ∈ [0, 1]. Then Ψ(π∞) ¹ Ψ(π′∞).

Proof. Let π′ ∈ Π∗SC be such that (4.11) and (4.12) hold. Then, we have

hπα(Qπ′
t,α(s̃α)) + Ψα(π∞) ≤ Rπ′

α (Qπ′
t,α(s̃α)) + hπα(Qπ′

t+1,α(s̃α)) for all t ≥ 1.

Summing up the above inequality for 1 ≤ t ≤ T , we get

hπα(s̃α) + T ×Ψα(π∞) ≤ Rπ′∞

T,α (s̃α) + hπα(Qπ′
T+1,α(s̃α)) for all t ≥ 1.

Thus, since

Ψα(π′
∞

) = lim
T→∞

1

T
Rπ′∞

T,α (s̃α),

it holds that
Ψα(π∞) ≤ Ψα(π′

∞
).

Similarly
Ψα(π∞) ≤ Ψα(π′

∞
).

Therefore,
[Ψα(π∞),Ψα(π∞)] ¹ [Ψα(π′

∞
),Ψα(π′

∞
)],

which shows
Ψ(π∞) ¹ Ψ(π′

∞
).

Thus we get this theorem. 2

Applying the method of the proof in Theorem 4.4, we can easily prove
the following corollary.

Corollary 4.1. For any π ∈ Π∗SC , let hπα and h
π

α be defined as in (4.4) and
(4.5). Suppose that the following inequalities hold :

hπα(D) + Ψα(π∞) ≥ Rπ′
α (D) + hπα(Qπ′

α (D))
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and
h
π

α(D) + Ψα(π∞) ≥ R
π′

α (D) + h
π

α(Qπ′
α (D))

for all π′ ∈ Π∗SC , D ∈ C(S) and α ∈ [0, 1]. Then π∞ is absolutely optimal in
Π∗SC , i.e.,

Ψ(π∞) º Ψ(π′
∞

) for all π′ ∈ Π∗SC .

5 The optimality equation

In this section, we derive the optimality equation and consider its validity
for optimization. The proof is done by the “vanishing discounted factor”
method, using Ascoli-Arzela theorem (c.f. [4, 8, 13]).

Theorem 5.1. Suppose that Assumptions A and B in Section 3 hold. Then,
for any α ∈ [0, 1], there exist constants Ψα,Ψα and vα, vα : C(S) 7→ C([0,M ])
such that

(i) [Ψα′ ,Ψα′ ] ⊃ [Ψα,Ψα] (5.1)

for any α, α′ (α′ < α) belonging to some countable subset dense in [0, 1], and

(ii) vα(D) + Ψα = supB∈C(A){Rα(D ×B) + vα(Qα(D ×B))} (5.2)

(iii) vα(D) + Ψα = supB∈C(A){Rα(D ×B) + vα(Qα(D ×B))} (5.3)

for all D ∈ C(S) and α ∈ [0, 1].

Proof. Select D0 ∈ C(S) arbitrary. For vα,β in Lemma 3.1, let

g
α,β

(D) := vα,β(D)− vα,β(D0) for D ∈ C(S).

Then, noting (3.4), it holds that

g
α,β

(D) + (1− β)vα,β(D0)

= supB∈C(A){Rα(D ×B) + βg
α,β

(Qα(D ×B))}. (5.4)

Since 0 ≤ (1 − β)vα,β(D0) ≤ M for all β ∈ (0, 1), there exists a sequence
{βn}∞n=0 such that βn ↑ 1 and (1 − βn)vα,βn(D0) → Ψα. By Lemma 3.1,

14



g
α,βn

(·), n ≥ 1, are equi-continuous and uniformly bounded, so that, applying

the Ascoli-Arzela theorem ([13]), g
α,βn

(·) → vα(·) uniformly along a subse-

quence (also called {βn} by abuse of notation). Thus, letting n→∞ in (5.4)
for β = βn, we get (5.2). Also, putting gα,β(D) := vα,β(D) − vα,β(D0), the
proof of (5.3) is given as same as the above. Note that we can assume, without
loss of generality, that (1− βn)vα,βn(D0)→ Ψα and (1− βn)vα,βn(D0)→ Ψα

for any rational number α in [0, 1]. Since

[vα′,β(D0), vα′,β(D0)] ⊃ [vα,β(D0), vα,β(D0)]

for all α, α′ (α′ < α) and β ∈ [0, 1] (c.f. [6]), (i) holds obviously. This
completes the proof. 2

It will be shown in Theorem 5.2 below that [Ψα,Ψα] given in Theorem 5.1
is corresponding to the α-cut of the maximum average fuzzy reward, so that
(5.2) and (5.3) are interpreted as the optimality equations for our average
fuzzy decision model. For this purpose, we need the following lemmas.

Lemma 5.1. For any ñ, m̃ ∈ F([0,M ]), if ñα º (=)m̃α on some subset F
dense in [0, 1], then ñ º (=)m̃.

Proof. From the denseness of F , we observe that for any α ∈ [0, 1]

ñα = lim
α′↑αwithα′∈F

ñα′ º (=) lim
α′↑αwithα′∈F

m̃α′ = m̃α,

which implies ñ º (=)m̃. 2

Lemma 5.2 (c.f. [5, 11]). Suppose that a family of subsets {Dα, α ∈ [0, 1]}
satisfies the following (i) and (ii) :

(i) Dα′ ⊂ Dα for all α, α′(0 ≤ α′ ≤ α ≤ 1),

(ii) limα′↑αDα′ = Dα for all α ∈ [0, 1].

Then, s̃(x) := supα∈[0,1]{α∧ IDα(x)}, x ∈ S, satisfies s̃ ∈ F(S) and s̃α = Dα

for all α ∈ [0, 1].

Let denote by F a countable subset on which (i) in Theorem 5.1 holds.
For Ψα and Ψα given in Theorem 5.1, let, for any α ∈ [0, 1],

Ψ−α := lim
α′↑αwithα′∈F

Ψα′ , Ψ−0 := Ψ0,
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Ψ+
α := lim

α′↑αwithα′∈F
Ψα′ , Ψ+

0 := Ψ0.

Since the conditions (i) and (ii) in Lemma 5.2 hold for the family {[Ψ−α ,Ψ+
α ];α ∈

[0, 1]}, we can construct the fuzzy set Ψ̃ by

Ψ̃(u) := sup
α∈[0,1]

{α ∧ 1[Ψ−α ,Ψ
+
α ](u)}, u ∈ [0,∞).

Now, we can state the following theorem.

Theorem 5.2.

(i) Ψ̃ º Ψ(π∞) for any π ∈ Π∗SC .

(ii) If there exists a strategy π∗ ∈ Π∗SC such that

vα(D) + Ψα = Rα(D × π∗(α,D)) + vα(Qα(D × π∗(α,D)))

and

vα(D) + Ψα = Rα(D × π∗(α,D)) + vα(Qα(D × π∗(α,D)))

for all D ∈ C(S) and α ∈ [0, 1], then π∗∞ is absolutely optimal in the
family of continuous stationary policies, i.e.,

Ψ(π∗∞) º Ψ(π∞) for all π ∈ Π∗SC .

Proof. Let π ∈ Π∗SC . By the optimality equations (5.2) and (5.3), we have

vα(D) + Ψα ≥ Rπ
α(D) + vα(Qπ

α(D)) (5.5)

and
vα(D) + Ψα ≥ R

π
α(D) + vα(Qπ

α(D)) (5.6)

for all D ∈ C(S). By the same discussion as that in the proof of Theorem
4.4, we can prove from (5.5) and (5.6) that

[Ψα,Ψα] º Ψ(π∞)α for all α ∈ [0, 1]. (5.7)

Since [Ψ−α ,Ψ
+
α ] = [Ψα,Ψα] for all α ∈ F , we obtain (i) of Theorem 5.2 from

(5.7) and Lemma 5.1. For (ii), by the same method as the above, we can
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prove that Ψ̃ = Ψ(π∗∞). Thus, together with (i), (ii) follows. This completes
the proof. 2

Here we give a numerical example to illustrate the theoretical results in
this section. Let S := [0, 1], A := [0, 1/2] and M := 1. Take the fuzzy
relation and the fuzzy reward by

q̃(x, a, y) = (1− 3|y − ax|) ∨ 0, x, y ∈ [0, 1], a ∈ [0, 1/2] (5.8)

and
r̃(x, a, z) = (1− 6|x− z|) ∨ 0, x, z ∈ [0, 1]. (5.9)

r̃ is independent of a ∈ [0, 1/2]. Obviously, they satisfy Assumption A for
t0 = 1 and Assumption B. Let α ∈ [0, 1] and π(a) := I{a} ∈ Π∗SC for a ∈ A.
From (5.8) and (5.9), we get

Qπ(a)
α ({x}) = [(ax− (1− α)/3) ∨ 0, ax+ (1− α)/3]

for x ∈ [0, 1], a ∈ [0, 1/2]. So

Qπ(a)
α ([c, b]) = [T a1 (c), T a2 (b)] (5.10)

for 0 ≤ c ≤ b ≤ 1, where maps T ai : [0, 1] 7→ [0, 1] (i = 1, 2; a ∈ [0, 1/2]) are
given by

T a1 (x) := (ax− (1− α)/3) ∨ 0; T a2 (x) := ax+ (1− α)/3 for x ∈ [0, 1].

Similarly we observe that

Rπ(a)
α ([c, b]) = [(c− (1− α)/6) ∨ 0, (b+ (1− α)/6) ∧ 1] for 0 ≤ c ≤ b ≤ 1.

By (5.10), a unique fixed point p̃π(a)
α of the map Qπ(a)

α : C([0, 1]) 7→ C([0, 1])
can be found to be

p̃π(a)
α = [0, (1− α)/3(1− a)] .

Applying Theorem 4.1, we get

Ψ(s̃, π(a)∞)α = [0, (1− α)(3− a)/6(1− a)] for α ∈ [0, 1]. (5.11)
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In [7], the average fuzzy reward and the relative value functions hα and hα
for π(1/2)∞ have been given as follows :

Ψ(s̃, π(1/2)∞)(x) =

{
1− 6x/5 0 ≤ x ≤ 5/6
0 5/6 < x ≤ 1,

hπ(1/2)
α (c) := hπ(1/2)

α ([c, b])

=

{
2
(
1− (1/2)t

∗)
(c+ 2(1− α)/3)− 5t∗(1− α)/6 α < 1

2c α = 1,

where t∗ is the smallest non-negative integer such that

(1/2)t
∗

(c+ 2(1− α)/3)− 5(1− α)/6 < 0,

and

h
π(1/2)

α (b) := h
π(1/2)

α ([c, b]) =

{
2b− 4(1− α)/3 if 0 ≤ b < (5 + α)/6
b+ (3α− 1)/2 if (5 + α)/6 ≤ b ≤ 1.

The graph of hπ(1/2)
α and h

π(1/2)

α for α = 1/2 is given in Figure 1, from which

we conjecture the monotonicity of hπ(1/2)
α and h

π(1/2)

α .

x

h
π(1/2)

α (x)

hπ(1/2)
α (x)

Fig. 1 : The relative value functions hπ(1/2)
α and h

π(1/2)

α for α = 1/2.

By the definition of Section 3, we see that

Qα([c, b]× [c′, b′]) = [(cc′ − (1− α)/3) ∨ 0, (bb′ + (1 + α)/3)]
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and

Rα([c, b]× [c′, b′]) = [(c− (1− α)/6) ∨ 0, (b+ (1− α)/6) ∧ 1]

for [c, b] ∈ C(S), [c′, b′] ∈ C(A). Noting (5.11) for a = 1/2, let us put Ψα = 0
and Ψα = 5(1 − α)/6. Then, by the monotonicity of Qα, Rα, hπ(1/2)

α and

h
π(1/2)

α , we get the optimality equations described in (5.2) and (5.3) :

hπ(1/2)
α ([c, b]) + Ψα

= sup
[c′,b′]∈C(A)

{Rα([c, b]× [c′, b′]) + hπ(1/2)
α (Qα([c, b]× [c′, b′]))}

= Rα([c, b]× {1/2}) + hπ(1/2)
α (Qα([c, b]× {1/2})) (5.12)

and

h
π(1/2)

α ([c, b]) + Ψα

= sup
[c′,b′]∈C(A)

{Rα([c, b]× [c′, b′]) + h
π(1/2)

α (Qα([c, b]× [c′, b′]))}

= Rα([c, b]× {1/2}) + h
π(1/2)

α (Qα([c, b]× {1/2})) (5.13)

for all [c, b] ∈ C(S). From Theorem 5.2, π(1/2)∞ becomes absolutely optimal.
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