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ABSTRACT

We consider a maximization of the expected utility of the total discounted rewards
in countable state Markov decision processes. Specifying the class of distribution
functions for the present value and using its weak compactness, we established the
optimality equation under a general utility. Also a g-optimal policy is constructed.
As an ap?lication of g-optimality, we discuss the moment optimality introduced by

Jaquette’.

1. Introduction

Arutility optimization of Markov decision processes(MDP’s) with countable state
and compact action spaces is considered. As for utility functions, an exponential one
has many attractive properties. For example, it has a constant local risk aversion and
an nvariant risk premium with respect to the wealth(Fishburn®, Pratt!!). Several
authors analyzed MDP’s with exponential utility functions. Howard and Matheson®
studied the case of finite states and actions in N horizon times. Letting NV tend
to infinity, they gave the policy improvement to find the policy that maximizes the
time-average equivalent returns of MDP’s. Chung and Sobel? considered the maxi-
mization of the expected utility of the total discount return random variable (called
the present value) for finite MDP’s and derived the optimality equations, by which an
optimal policy was constructed. Porteus'® and Denardo and Rothblum?® dealt with
the problem from the other points of view.

In this paper, we consider the same problems as those treated in Chung and Sobel”
when the utility function is a general, in particular, continuous function, by which
the practical applications will be enlarged. The method of analysis employed here
1s closely related to the one in Sobel'®, White!*, where the distribution function of
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the present value is characterized by iterative formula and the fixed pomt theory.
Specifying the class of distribution functions of the present value as a weak-compact
space, we derive the optimality equation under a continuous utility function g, from
which a g-optimal policy is constructed. In the case of the exponential utility, the
optimal equation derived here is the same as that in Chung and Sobel®. As ap
application of our results, we treat the moment optimality introduced by Jaquette”
and show that there exists a stationary policy which is moment optimal for countable
state MDP’s.

- In Section 2, we shall prepare the several notations and define the problem to be
examuined. Also, the weak-compactness of distribution functions of the present value
1s described referring to Borkar’s excellent book!.

2. Preliminaries

We consider standard Markov decision processes specified by (S, {A(2)}ies, g, r),
where S = {1,2,...} denotes the set of the states of the processes, A(7) is the set
of actions available at each state ;: € § y ¢ = (gij(a)) is the matrix of transitjon
probabilities satisfying that 2jesgij{a) =1forallie Sand a e A(z), and r(i, a, 5)
s an immediate reward function defined on {(¢,0,5)li € S,a € A(x),j € S}.

Throughout this paper, the following assumptions will be remained operative:

(1) For each i € S, A(7) is a closed set of a compact metric space.
1) For each 7,5 € S, both ¢;;(-) and r t,+,7) is continuous on A(:).
9is _

(iii) The function r is uniformly bounded, j.e., 0 < r(z,a,7) < M for all 2,7 € S and
a € A(z). '

The sample space is the product space 2 = (S x A)* such that the projection X, A,
on the ¢-th factors S, A describe the state and the action of ¢-time of the process(¢->
0). A policy 7 = (mo,m1,-++) is a sequence of conditional probabilities 7, such that
T(A(7¢)]20, ag, - - -, t:) = 1 for all histories (20,80, -,4;) € (S x A)* x S. The set of all
policies is denoted by II. A policy m = (7o, 7y, ---) is calied stationary if there exists
a function f with f(i) € A(2) for all 1 € S such that me({f(2)}|20,a0, -, 1, = 1) = 1
for all # > 0 and (20, @0, +,%;) € (S X A)* x S. Such a policy is denoted by f*. Let
H, = (Xo, Ay, - - ©y A1, X;) for t > 0. We assume that for each ™ = (mg, 7y, - - ) € II,

Pr(Xepr = jlHq, A1, Xy = 4, A, = a) = gij(a)

forall t > 0,4, ¢ S,a € A(z). For any Borel measurable set X , P(X) denotes the
Set of all probability measures on X. Then, any initial probability measure v € P(S)
and policy 7 € II determine the probability measure P” ¢ P(§2) by a usual way:.

Lemma 2.1.(e.g. see Borkar!) For each v € P, @(v) == {P¥ € P(Q)|r € I} is
COmpact in the weak topology.
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The discounted present value of the state-action process {X,;, Ayt = 0,1,2, .. )
1s defined by

o0

B = Zﬁtr(XhAt:Xt+l)a (21)

t=0
where (0 < B < 1) is a discount factor. Let u := M/(1 — ). Then, for each
v € P(S)and 7 €I, B is a random variable from the probability space (£, P¥) into
the interval [0,u]. We denote by C[0, u] the set of all bounded continuous functions
on [0,u]. Let g € C[0,u] be arbitrary. Then, interpreting this g as a utility function,
our problem is to maximize the expected utility E¥(g(B)) over all policies = € I,
where E7 is the expectation with respect to PY.

In order to analyze the above problem, it is convenient to rewrite E¥(g(B)) by
using the distribution function of B corresponding to P¥. Let, for each v € P(S) and
7w € Il,

F¥() = P(B < 2), 2.2)

Q(v) == {F;(-)|r € II}. (2.3)

Noting that we can identify ®(v) with B(v), the next results follows from Lemma 2.1.
Corollary 2.1. For any v € P(S), ®(v) is weak-compact.

For any g € C[0,u] and v € P(S), we say that #* € II is (v, g)-optimal if
Er.(g9(B)) = E}(g(B)) for all # € II. When 7* is (v, ¢)-optimal for all v € P(S), =*
1s simply called g-optimal.

3. g-optimality

In this section we derive the optimality equation under arbitrary continuous func-
tion g, which construct a g-optimal policy. By weak-compactness of ®(v) given in
Corollary 2.1. the following existence theorem holds.

Theorem 3.1. For any v € P(S) and g € C[0,u), there exists a (v, g)-optimal policy.
Proef. By Corollary 2.1 it follows that

sup E2(9(B)) = sup [ g(2)F(dz) = [ g(2)F"(d2)
TE Fed(v)

for some F* € ®(v). Corresponding to F*, let 7* be its associated policy. Then,
clearly 7* is (v, g)-optimal. ' ]

In order to describe the optimal equation in Theorem 3.2 below, the following
lemma is useful. The proof of it is easily done from the uniform continuity of ¢ on

[0, u] and Corollary 2.1. - |

Lemma 3.1. For any g € C[0,u], /g(.s + Bz)F(dz) is continuous as a function of
(s, F') on [0, M] x ®(v). '
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For simplicity of the notation, let

U} (s,4,0,9) := max [g(s+B'7(i,0,5) + B2 F(dz)  (3.1)

fort 20,9 € C[0,u),s € [0,M],7,j € S and a € A(3), where if v € P(S) is degenerate
at {7}, v is simply denoted by j and ®(v) by ®(;). Note that by Lemma 3.1 the
maximum 1n Eq.(3.1) is attained. Now, we can state one of our main results, which
gives a necessary condition for (v, g)-optimality.

Theorem 3.2. For any v € P(S) and g € C[0,u], let 7* € II be (v, g)-optimal. Then
for each t > 0, the following optimal equation holds.

Ex.(9(B)) = E;.{ max Zqx,,-(a)Ut{g}(B,_l,Xt,a,j)}, . (3.2)

where B_; := 0 and B, := 3} _, B*r(X,, Agy Xpy1) for t 2> 0.
Proof. For simplicity, we denote EY. by E. For any w := (49, ag,%1,ay,- - ) € Q,
let 0;(w) := (2, a¢, 2441, -+) be a shift operator for ¢ > 1. From the Markov property
of the transition probabilities,

E(9(B)) = E{E{g(Bi-s + B'r(Xe, Ay, Xe41) + BHB(8,41 (w)) | Hopr }}
S E {E{Ut{g}(Bt-"laXtaAt1Xt+l)IHt}}

<E { MaXq,eA(X,) Zj’es QX,j(a) {Ut{g}(Bt-hXtv aaj)}} .

Since 7* is (v, g)-optimal, the above inequalities can be all replaced by equalities. O

In order to give a sufficient condition for g-optimality, we define the sequence
{A; }i2o by | . .
A;(s,1) := argmax,c 45 Y 4i5(a) {Ui{g}(s,3,a,7)}, (3.3)

JES -

where for any function h(z) on X,

arg max,, x (arg min,. y ) h(z)
= { 2’ € X | 2’ maximizes (minimizes) h(z) in all z € X}.

Theorem 3.3. For any v € P(S) and g € C[0, u], the foHowing (1) and (ii) hold.
(i) Let 7* = (n3,73,---) be any (v, g)-optimal, then

P.(Ay € AJ(Bier, X)) =1 forall t>0.
(ii) Let 7* = (ng,7%,-- ) be any policy satisfying
m; (A} (Bi-1, X:)|H;) =1 for all H, and t > 0.

Then, n* is g-optimal.
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Proof. By observing the proof of Theorem 3.2, we see that (i) holds. To prove
(ii), let #* := (7§, 73, -+, ®F, Wiy, Tiagy - - +), for 7* given in the statement of Theorem
3.3(11), where (7, ;, Tt ,, - ) is a policy corresponding to F’ € ®(X,,,) which satisfies
the relation such that

/Q(Bt-—l + ﬂ‘r(Xt,At, Xt+1) + ﬁtHz)F'(dz) = Ut{g}(st'_'laXt:Ata Xt+1)

for ¢ > 0. The policy (7441> Tty2,-+-) only depends on H;. Now we shall show
inductively that #* is g-optimal for all ¢t > 0. Let 7 = (7rg,7r1, -) be any policy.
Then, we have

E;(Q(B)) = E, [E‘ {9(r(Xo, Do, X1) + BB(01(w))|H}]
< E: [ma.x}:-eq,(x,) ]g(r(Xo, Do, X1) + ﬁz)F(dz)]
< E4(g9(B)) forall i€ 8.

Therefore, 7° is (¢, g)-optimal for all 7 € S, that is, g-optimal. Moreover, E’,[g(B)] <

L IEX (g(B))], by applying the case of t =20 to g(r(Xo, Ao, X1) + Bz), where
m = (WI(HI) T3, T3, -+ ). Since 7° is g-optimal, 7! is also so. Repeating the above
argument, we can prove that #* is g-optimal for all ¢ > 1. Since g is uniformly
continuous in [0, u] for any € > 0, there exists T' > 1 satisfying

9(z + BT21) — g(z + BT2,)| < ¢

for any z, 2, z; such that z + 7z; € [0,u] for j = 1,2. For this T, clearly it holds
that

|E;2(9(B)) — E' (9(B))| < Ei.[sup |g(Br + 8%21) —g(Br + 8¥2,)]| < ¢

£1,22

where the sup is taken over the range : Br+872; € [0,u] for = 1,2. For any T"' > 1,
n! is optimal, so that by T — oo and € — 0 in the above, we observe 7* is g-optimal.
]

IRemark 1. Consider the case when a decision maker has a linear utility function,
i.e., g(z) = z. Then, Eq.(3.1) becomes '

Ut{a:}(s,z,a 1) =s + B{r(i,a,7) + B m§‘("§)

/ 2F(dz)},
and so A;(s,?) in Eq.(3.3) reduces

Ai(s,1) = argmax,e 4(;) Y gii(a){r(i, a, ) +  max /zF(dz)}, (3.4)
jES Fed(;)

which is independent of s. This gives the set of optimal actions for usual MDP’s
under the expected total discounted reward criterion(e.g. see Ross!?).
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Remark 2. Consider the exponential utility case, i.e., g(z) = —exp(—?/\a:). Then,
Eq.(3.1) becomes

U{—e"*}(s,%,a,]) = —e~ 0= (i,0,5) min /exp{—-/\ﬁt“z}F(dz).
m | Fed(s)

Thus, by Eq.(3.3), we have

Ai(s,1) = arg MiN,e () Xjes ¢ij(a) exp{—AB'r(i, a, j)) . '

><minpeq,(j)/exp{-—-/\ﬂt“z}F(dz). ( ' )
Observing Eq.(3.5), we note that the policy 7* constructed by Theorem 3.3 is the
same as that obtained in Theorem 4 of Chung and Sobel?, which is called A-optimal.

4. Moment optimality

Jaquette” introduced the moment optimality and proved the existence of moment
optimal stationary policy for finite MDP’s by analyzing the negative of the Laplace
transtormation of B, which is corresponding to the case of the exponential utility
g(z) = —exp(—Az). Here, we shall prove the existence theorem by applying the
results in the proceeding section to the restricced MDP’s iteratively, whose ideas
were appearing in Kurano®, Mandel®.

First let us give several notations necessary mn our discussion. For any i € S and
7 € II, let '

N, (i, 7) = (=1)"*EX(B™) for n>1.

Let v = (uj,uy,--+) and v = (v1,vg,---)t be two vectors, where u! denotes the
transpose of w. Then we write w > v ifu; > v for all ; = 1,2,---. Let N(i,7) :=
(Na(Z,7);m = 1,2,--.) be a row vector and N(r) = (N(i,7);: = 1,2,---)¢ be an
infinite matrix. For any integer | > 1 and 7,7’ € II, we write N(z,7) = N(i,7'),
if there is an integer k(1 < k < 1) such that N,(s, m) = Nu(i,7') for 1 < n < k
and Ni(7,7) > Ni(i,7'). we also write N(r) = N{x') if NG, =) =, N(z,7') for any
t=1,2,--.,1. We say that 7* is l-moment optimal if N(7*) =, N(z') for all =’ € II
and that 7* is moment optimal if it is l-moment optimal for all | = 1,2,-.. (see
Jaquette” for details).
Let Ny (7) := maXrer N1(2, 7). Then, applying Eq.(3.2) for t = 0, we obtain

Ni(t) = max 3 qi;(a) (r(i,a,5) + BN; () (4.1)
*€A() jes

forall; ¢ §. Also, noting Remark 1 in section 3, let

Ai(i) = argmaxeca) 3 gii(a) (i, 0,5) + BNG(5)). (42)

It is easily verified that Ai(2) is compact for each 7 € S. So we denote by MDP

(S, A1(),q,7) the MDP’s specified by S, {A;(z);: € S},q and r. And define ®,(z) for
MDP (S,A,(2), q,7) similar as ®(z) for MDP (S, A(:), q,7).
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By Theorem 3.3(ii), it holds that
N2 () = / 2F(dz) for all F € &,(5). (4.3)

Next we define N3 (1) := mingee, () [ 22F(dz). The following theorem concerning
with the second moment will be established.

Theorem 4.1. (i) N;(7) satisfies

Ni() = min, 3 ai(a) (Ga(ira.) + B°N3(4) (44)
JE

where 03(i, a,7) :=r(i,a,§)? + 28r(i,a, /) N3(5).
(i1) Let

Az(2) := arg MiN,e 4, (i) qu;j(a) (Gg(i, a,j)+ ﬁzN;(j)) (4.5)
j€ -

and f* be any stationary policy with f(i) € Ay(3) for all ¢ € S. Then, f® is
2-moment optimal. .

Proof. Letting g(x) = —2?, we apply Eq.(3.2) for ¢t = 0 to MDP (S, Ai1(2), q,1).
The assertion (i) could be proved immediately. To prove (ii), we apply the results
of Theorem 3.3, in which A!(s,1) in Eq.(3.3) is given as follows: Let F ¢ ®,(7),
a € A;(2) and h(z) = 22. We have '

[ h(s + Br(i,a,5) + B+12) F(dz)
= 5% + 253" (r(z', a,j) + ,5/ zF(dz)) + ,th/ (r(¢,a,7) + Bz)* F(dz)
= s?+ 254 (r(i, a, 1) + BN?(j)) + B (92(5,(;, i)+8 [ zzF(dz)) .
So,‘by Eq.(4.1) and Eq.(4.2) we get -
minaEA;(i) Zj Q£j(a)Ut{$2'}(3= 1,a,])
= "+ 25B'N{ (i) + f* mingea, ) T; gi5(a) (6206, a, 5) + BN (5)).

Thus, we see by Eq.(3.3) that A¥(s,i) = Az(2) for all t > 0. From Theorem 3.3, the
stationary policy f* given in (ii) is shown to be 2-moment optimal. O

Applying the idea of Theorem 4.1, we can get the further results.

Theorem 4.2. There exists a moment optimal stationary policy.
Proof. Using ®,, N7, N;, A, given in Eq.(4.1) - Eq.(4.6), define 6,,, ®,,_,, N*
and A,, inductively for m > 3 as follows:

- (1) Define ®,,_;(z) for MDP (S, Am-1(2),¢,7) as similar as ®(z) for MDP (S, A(2),q,7)-
(i) N, (7) := (=1)™t! MaXFed,,_, (i) /(——1)”‘“3:"‘F(da:).
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) miv,) 1= 53 ( 7 ) B¥7(i 0,37 ANE ), where N3(3) = 1 for all € 5.

(iv) Am(1) := argmaxyeq,, (1) [T, 6i5(a) (O (3, a,5) + BmN3 ()]
Let f°° be any stationary policy such that f(i) € N>°_, Am(?) forall ¢ € S. Then,
it is shown analogous to the proof of Theorem 4.1 that f* is I-moment optimal for

all [ > 3. -
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Abstract

We consider the maximization of the expected utility of the present
value which is a random variable of the total discounted rewards. The
utility ¢ is a general, in particular, arbitrary continuous function. The
rewards are generated by Markov decision processes(MDP's) with a
countable state space and with bounded reward functious.

Specifying the class of distribution functions of the present value as
a weak-compact space, we show that there exists a g-optimal policy
for any initial distribution. We also derive the optimality equation
which constructs the g-optimal policy. If ¢ is reduced to an exponen-
tial function, the similar results are found by Chung and Sobel[SIAM
J. Ctrl. and Opt. 25(1987), p49-62] for finite MDP’s. As an applica-
tion of the equation, we treat the moment optimality introduced by
Jaquette[Ann. Statist. 1(1973), p572-583], showing that there exists
a stationary policy which is moment optimal for our case.
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