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Abstract In this paper, the uncertain transition matrices for inhomogeneous Markov decision processes are
described by use of fuzzy sets. Introducing a ν-step contractive property, called a minorization condition,
for the average case, we fined a Pareto optimal policy maximizing the average expected fuzzy rewards under
some partial order. The Pareto optimal policies are characterized by maximal solutions of an optimal equation
including efficient set-functions.
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1. Introduction and notation

In modeling of Markov decision processes (MDPs for
short), we often encounter the following case:

(i) The information on the state-transition probabil-
ities include imprecision or ambiguity.

(ii) The state-transition matrix fluctuates at each
step in time and its fluctuation is unknown or
unobservable.

In order to deal with uncertain data and flexible re-
quirements, we can use a fuzzy set representation
([12]). In our previous paper [9], we have developed
a fuzzy treatment for inhomogeneous MDPs with un-
certain transition matrices. The transition matrices
are described by the use of fuzzy sets and a Pareto
optimal policy for the discounted reward problem has
found and characterized by an optimality equation. In
this paper, the average case is considered in the same
framework as that in our previous work [9]. That is,
a Pareto optimal policy maximizing the average ex-
pected fuzzy reward(AEFR) under some partial order
is found. In order to insure the ergodicity of the pro-
cess, we introduce a ν-step contractive property for
the average case([5,7]), called a minorization condition,
which is often used in the study of Markov chains([11]).
Using this property, a Pareto optimal periodic station-
ary policies are characterized as a maximal solution
of optimality equation including efficient set functions.
Recently, applying Hartfiel’s interval method([3,4]) for

Markov chains, Kurano et al. [8] have introduced a
decision model, called a controlled Markov set-chain,
which is robust for rough approximation of transition
matrices in MDPs. Also, under a contractive property
for the average case, Hosaka et al. [6] treated the aver-
age reward problem for a controlled Markov set-chain.
Our fuzzy decision model examined in this paper in-
cludes a controlled Markov set-chain as a special case.
So, the results obtained here can be thought of as a
fuzzy extension of those in [6].

We adopt the notation in [3,4,9]. Let R, R
n and

R
n×n be set of real numbers, real n-dimensional col-

umn vectors and real n×n matrices, respectively. Also
denote by R+, R

n
+ and R

n×n
+ , the subsets of entrywise

non-negative elements in R, R
n and R

n×n, respectively.
We provide R, R

n and R
n×n with the componentwise

relation ≤ and <. For any set X, we will denote a fuzzy
set ã on X by its membership function ã : X → [0, 1].
Denote by F(X) the set of all fuzzy sets on X. For
the theory of fuzzy sets, refer to Zadeh [14]. The α-cut
(α ∈ [0, 1]) of the fuzzy set ã ∈ F(X) is defined as

ãα := {x ∈ X | ã(x) ≥ α} (α > 0),
ã0 := cl{x ∈ X | ã(x) > 0},

where cl denote the closure of the set. For any interval
Y in R, ã ∈ F(Y ) is called a fuzzy number on Y if
ã is normal, fuzzy convex, upper semi-continuous and
has a compact support. Denote by Fc(Y ) the set of all
fuzzy numbers on Y . Let C(Y ) be the set of all closed
and bounded intervals in Y . We note that ã ∈ Fc(Y )
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means ãα ∈ C(Y ) for all α ∈ [0, 1]. Let Fc(Y )n be the
set of all n-dimensional column vectors whose elements
are in Fc(Y ), i.e.,

Fc(Y )n := {ũ = (ũ1, ũ2, . . . , ũn)′ | ũi ∈ Fc(Y ) (∀i)},

where d′ denotes the transpose of a vector d.
Let S := {1, 2, . . . , n} and P(S) the set of all prob-

ability distributions on S, that is,

P(S) := {p = (p1, . . . , pn) | pj ≥ 0 (∀j),
n∑
j=1

pj = 1}.

From any p̃ = (p̃1, p̃2, . . . , p̃n)′ ∈ Fc([0, 1])n, we will
construct the fuzzy set [p̃] = [p̃1, p̃2, . . . , p̃n] on P(S)
by the following:

[p̃](p) = min
1≤j≤n

{p̃j(pj)} (1)

for any p = (p1, p2, . . . , pn) ∈ P(S). The above defini-
tion will be extended to the case of stochastic matrices.
Let P(S/S) be the set of all stochastic matrices on S,
that is,

P(S/S) := {Q = (qij) | qij ≥ 0,
n∑
j=1

qij = 1 (∀i)}.

For any q̃i = (q̃i1, q̃i2, . . . , q̃in) ∈ Fc([0, 1])n (1 ≤
i ≤ n), we define the fuzzy set Q̃ = [q̃1, q̃2, . . . , q̃n]′ on
P(S/S) as follows:

Q̃(Q) := min
1≤i≤n

{[q̃i](qi)}, (2)

where Q = (q1, q2, . . . , qn)′ ∈ P(S/S), qi =
(qi1, qi2, . . . , qin) ∈ P(S) and [q̃i] is the fuzzy set on
P(S) defined by (1).

In order to describe the structural properties on the
fuzzy sets defined in (1) and (2), we need the concept
of intervals of matrices. For the detail, refer to [4,8].
For any nonnegative vector q = (q

1
, q

2
, . . . , q

n
) and

q = (q1, q2, . . . , qn) ∈ R
n
+ with q ≤ q, we define the

interval 〈q, q〉 ⊂ P(S) by

〈q, q〉 := {p = (p1, p2, . . . , pn) ∈ P(S) | q ≤ p ≤ q}.

And, for Q = (q
ij

), Q = (qij) ∈ R
n×n
+ with Q ≤ Q,

〈Q,Q〉 := {Q ∈ P(S/S) | Q ≤ Q ≤ Q}.

For any ã ∈ Fc([0, 1]), noting ãα ∈ C([0, 1]) (0 ≤ α ≤
1), it will be denoted by ãα = [min ãα,max ãα].

Lemma 1 ([4,9]).

(i) For any Q,Q ∈ R
n×n
+ with Q ≤ Q and 〈Q,Q〉 6=

∅, 〈Q,Q〉 is a polyhedral convex set in the vector
space R

n×n.

(ii) For any q̃i ∈ Fc([0, 1])n (1 ≤ i ≤ n), let Q̃ =
[q̃1, q̃2, . . . , q̃n]′ be a fuzzy set on P(S/S) defined

by (2). Then, the α-cut of Q̃ (0 ≤ α ≤ 1) is a
polyhedral convex subset of P(S/S) and given by

Q̃α = 〈Q
α
, Qα〉,

where

Q
α

=
(

min(q̃ij)α
)

and Qα =
(

max(q̃ij)α
)
.

If u = ([a1, b1], [a2, b2], . . . , [an, bn])′ ∈ C(R+)n,
u will be denoted by u = [a, b], where a =
(a1, a2, . . . , an)′, b = (b1, b2, . . . , bn)′ and [a, b] = {x ∈
R
n
+ | a ≤ x ≤ b}. For any u ∈ C(R+)n and

Q,Q ∈ R
n×n
+ with Q ≤ Q and 〈Q,Q〉 6= ∅, we define

their product by

〈Q,Q〉u = {Qu | Q ∈ 〈Q,Q〉, u ∈ u}.

The following arithmetical notation is used in the se-
quel. Let Q̃ = [q̃1, q̃2, . . . , q̃n]′ be a fuzzy set on
P(S/S) with q̃i ∈ F([0, 1])n (1 ≤ i ≤ n). Then, for
ũ = (ũ1, ũ2, . . . , ũn)′ ∈ Fc(R+)n, Q̃ũ ∈ F(Rn+) is de-
fined as follows:

(Q̃ũ)(x) = max
x=Qu,Q∈P(S/S),u∈R

n
+

{Q̃(Q) ∧ ũ(u)} (3)

for x ∈ R
n
+, where ũ(u) = min1≤i≤n{ũi(ui)} with

u = (u1, u2, . . . , un) ∈ R
n
+.

Lemma 2 ([9]). For any ũ = (ũ1, ũ2, . . . , ũn)′ ∈
Fc(R+)n, the following (i) and (ii) hold:

(i) (Q̃ũ)α = Q̃αũα for α ∈ [0, 1];

(ii) Q̃ũ ∈ Fc(R+)n.

The addition and the scalar multiplication on Fc(R)
are defined as follows: For ã, b̃ ∈ Fc(R) and λ ∈ R+,
define

(ã+ b̃)(x) := sup
x1,x2∈R+:x1+x2=x

{ã(x1) ∧ b̃(x2)},

λã(x) :=
{
ã(x/λ) if λ > 0
I{0}(x) if λ = 0 (x ∈ R+),

where IA is the indicator of a set A. It is easily shown
that, for α ∈ [0, 1],

(ã+ b̃)α = ãα + b̃α and (λã)α = λãα,

where the operation on sets is defined ordinary as
A+B := {x+y | x ∈ A, y ∈ B} and λA = {λx | x ∈ A}
for A,B ⊂ R. The above operations are extended to
those on Fc(R)n as follows: For ũ = (ũ1, ũ2, . . . , ũn)′,
ṽ = (ṽ1, ṽ2, . . . , ṽn)′ ∈ Fc(R)n,

ũ + ṽ = (ũ1 + ṽ1, ũ2 + ṽ2, . . . , ũn + ṽn)′,
λũ = (λũ1, λũ2, . . . , λũn)′.
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The Hausdorff metric on C(R) is denoted by δ, i.e.,

δ([a, b], [c, d]) := |a− c| ∨ |b− d|

for [a, b], [c, d] ∈ C(R), where x ∨ y = max{x, y} for
x, y ∈ R. This metric can be extended to Fc(R)n by

δ(ũ, ṽ) = max
1≤i≤n

sup
α∈[0,1]

δ((ũi)α, (ṽi)α)

for ũ = (ũ1, ũ2, . . . , ũn)′, ṽ = (ṽ1, ṽ2, . . . , ṽn)′ ∈
Fc(R)n. Then, it is known that the metric space
(Fc(R)n, δ) is complete.

In Section 2, we describe a nonhomogeneous MDPs
by the use of fuzzy sets and specify the optimization
problem under average reward criteria. In Section 3,
the AEFR from a periodic stationary policy is char-
acterized by a fixed point of a corresponding operator,
whose results are applied to derive the optimality equa-
tion in Section 4.

2. The model with fuzziness

In this section, we formulate a fuzzy model for nonho-
mogenuous MDPs with uncertain transition matrices.
Let finite sets S = {1, 2, . . . , n} and A = {1, 2, . . . , k}.
Our sequential decision model consists of four objects:

(S,A, {q̃ij(a) ∈ Fc([0, 1]), i, j ∈ S, a ∈ A}, r),

where r = r(i, a) is a function on S×A with r ≥ 0. We
interpret S as the set of states of some system and A as
the set of actions available at each state. We denote by
F the set of all functions from S to A. For any f ∈ F ,
we define the fuzzy set Q̃(f) on P(S/S) as follows:

Q̃(f) := [q̃1(f), q̃2(f), . . . , q̃n(f)]′, (4)

where for 1 ≤ i ≤ n,

q̃i(f) :=
(
q̃i1(f(i)), q̃i2(f(i)), . . . , q̃in(f(i))

)
. (5)

The structural property of the fuzzy sets defined in (4)
and (5) is given by Lemma 1.

A policy π is a sequence (f1, f2, . . . ) of functions
with ft ∈ F (t = 1, 2, . . . ). Let Π denote the class
of policies. For an integer ν(ν ≥ 1), a policy π =
(f1, f2, . . . ) is called ν-periodic stationary or simply ν-
periodic([7]) if fνt+k = fk for each t = 1, 2, . . . and
k(1 ≤ k ≤ ν − 1). Such a policy will be denote by
f∞ simply by f , where f = (f1, f2, . . . , fν) ∈ F ν .
Let Πν denote the class of ν-periodic policies. Any
π = (f, f, . . . ) ∈ Π1 is called stationary.

For any f ∈ F , let r(f) be an n-dimensional col-
umn vector whose i-th element is r(i, f(i)). Applying
Zadeh’s extension principle([14]), the fuzzy expected
total discounted reward up to time T from a policy π
is a element of F(R+)n and defined as follows:

φ̃T (π) := (φ̃T (1, π), φ̃T (2, π), . . . , φ̃T (n, π))′

with φ̃T (i, π)(x) := max{ min
1≤t≤T

Q̃(ft)(Qt)} for all x ∈
R+, 1 ≤ i ≤ n, where the maximum is taken over

{Q1, Q2, . . . , QT | Qt ∈ P(S/S) (1 ≤ t ≤ T ),
x = (r(f1) +Q1r(f2) + · · ·+Q1Q2 · · ·QT r(fT+1))i} .

Then, for any policy π ∈ Π, it holds from [9,Lemma
3.1] that φ̃T (π) ∈ Fc(R+)n for all T ≥ 1.

Here, applying the definition of the supremum of
fuzzy numbers in Congxin and Cong [1], we will define
the average expected reward for the decision process
operating over a long time horizon. For each α ∈ [0, 1]
and i ∈ S, let

φα(i, π) = lim inf
T→∞

1
T
φ̃T,α(i, π), (6)

where φ̃T,α(i, π) is the α-cut of φ̃T (i, π) and for a se-
quence {Dk} ⊂ C(R+), lim infk→∞Dk = {x ∈ R+ |
lim supl→∞ δ(x,Dl) = 0} and δ(x,Dl) = infy∈D |x− y|
for D ∈ C(R+).

Now, let φα(i, π) =
⋂

0≤α′<α φα′(i, π) for each α ∈
(0, 1]. Then, since φα(i, π) ∈ C(R+) and φα(i, π) ⊂
φα′(i, π) for α′ < α, using the representative theo-
rem([14]), we can define a fuzzy number

φ̃(i, π)(x) := sup
α∈[0,1]

{α ∧ Iφα(i,π)(x)}, x ∈ R+.

Note that φ̃(π) := (φ̃(1, π), φ̃(2, π), . . . , ψ̃(n, π)) ∈
Fc(R+)n. We call φ̃(π) an AEFR vector from a policy
π.

Here, we will give a partial order 4 on C(R+) by
the definition: For [a, b], [c, d] ∈ C(R+),

[a, b] 4 [c, d] if a ≤ c and b ≤ d,
[a, b] ≺ [c, d] if [a, b] 4 [c, d] and [a, b] 6= [c, d].

This partial order 4 on C(R+), called a fuzzy max or-
der, is defined as follows: For ũ, ṽ ∈ Fc(R+),

ũ 4 ṽ if ũα 4 ṽα for all α ∈ [0, 1],
ũ ≺ ṽ if ũ 4 ṽ and ũ 6= ṽ.

Also, the partial order on Fc(R+)n is given by
the definition: For ũ = (ũ1, ũ2, . . . , ũn)′, ṽ =
(ṽ1, ṽ2, . . . , ṽn)′ ∈ Fc(R+)n,

ũ 4 ṽ if ũi 4 ṽi for all i = 1, 2, . . . , n,
ũ ≺ ṽ if ũ 4 ṽ and ũ 6= ṽ.

In order to insure the ergodicity of the process, we
introduce the minorization condition (Lν) which is as-
sumed to remain operative throughout this paper.

Minorization Condition (Lν)([5,7]). There exists
an integer ν(ν ≥ 1) and ε > 0 such that

Q(f1) · · ·Q(fν) ≥ εE for all f1, f2, · · · , fν ∈ F,
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where Q(f) := (min(q̃ij(f))0), Q(f) = (q̃ij(f)) for
f ∈ F and E = (eij) with eij = 1(1 ≤ i, j ≤ n).

Our problem is to maximize the φ̃(π) over all π ∈ Π
with respect to the partial order 4 under the mi-
norization condition (Lν).

3. Periodic policies and operators

In this section, under the minorization condition (Lν)
the AEFR vector from a ν-periodic policy will be char-
acterized by the use of a unique fixed point of a corre-
sponding operator.

Associated with each function f ∈ F is a corre-
sponding operator U(f) : Fc(R+)n → Fc(R+)n defined
as follows: For ũ ∈ Fc(R+)n and f ∈ F ,

U(f)ũ = r(f) + Q̃(f)ũ, (7)

where the arithmetics in (7) are defined in (3).

Lemma 3. For ũ ∈ Fc(R+)n and ṽ ∈ Fc(R+), it
holds

U(f)(ũ + ṽe) = U(f)ũ + ṽe,

where e = (1, 1, . . . , 1)′ ∈ R
n
+.

For any policy π = (f1, f2, . . . ), let π−l =
(fl+1, fl+2, . . . ) for each l ≥ 1. The sequence
{φ̃T (π)}∞T=1 is recursively described.

Lemma 4. For any policy π = (f1, f2, . . . ) and each
l ≥ 1, it holds that

φ̃T (π) = U(f1)U(f2) · · ·U(fl)φ̃T−l(π−l).

From Lemma 4, for f = (f1, f2, . . . , fν) ∈ F ν ,

φ̃νk(f) = U(f)kI{0} (k ≥ 1),

where I{0} ∈ Fc(R+)n is the crisp set of zero vector
0 ∈ R

n
+ and U(f) = U(f1) · · ·U(fν). Applying the mi-

norization condition (Lν), for each ν-periodic policy
f = (f1, f2, . . . , fν) ∈ F ν we introduce the correspond-
ing operator V (f) : Fc(R+)n → Fc(R+)n defined as
follows: For ũ = (ũ1, ũ2, . . . , ũn)′ ∈ Fc(R+)n,

V (f)ũ(x) = max{ min
1≤t≤ν

Q̃(ft)(Qt) ∧ ũ(u)}

for x ∈ R
n
+, where the maximum is taken over

{Q1, Q2, . . . QT , u | Qt ∈ P(S/S) (1 ≤ t ≤ ν),
x = r(f1) +Q1r(f2) + · · ·+Q1 · · ·Qν−1r(fν−1)

+(Q1 · · ·Qν − εE)u, u ∈ R
n
+

}
and ũ(u) = min

1≤i≤n
ũi(ui) for u = (u1, u2, . . . , un)′ ∈

R
n
+. Here are some basic properties of U(f).

Lemma 5. Let f ∈ F ν . Then we have:

(i) V (f) is a contraction with modulus 1− nε;

(ii) V (f) is monotone, i.e., ũ 4 ṽ implies
V (f)ũ 4 V (f)ṽ.

For any f ∈ F ν , let h̃(f) ∈ Fc(R+)n be a unique
fixed point of V (f), that is,

h̃(f) = V (f)h̃(f). (8)

Then, we observe that

(V (f)h̃(f))α =[min(U(f)h̃(f))α −min(εEh̃(f))α,

max(U(f)h̃(f))α −max(εEh̃(f))α].

Noting [a− c, b− d] + [c, d] = [a, b], we get from (8)

h̃(f) + εEh̃(f) = U(f)h̃(f). (9)

Theorem 1. For any ν-periodic policy f =
(f1, f2, . . . , fν) ∈ F ν ,

φ̃(f) =
ε

ν
Eh̃(f) =

ε

ν
(
n∑
j=1

h̃j(f))e, (10)

where h̃(f) = (h̃1(f), h̃2(f), . . . , h̃n(f))′ is a unique
fixed point of V (f).

4. Pareto optimal policy

Here, we confine our attention to the class of ν-periodic
stationary policies, which simplifies our discussion un-
der the minorization condition (Lν). A policy f∗ ∈ Πν

is called Pareto optimal if there is no f ∈ Πν such
that φ̃(f∗) ≺ φ̃(f). In this section, we derive the opti-
mality equation, by which Pareto optimal policies are
characterized.

Let D be an arbitrary subset of Fc(R+)n. A point
ũ ∈ D is called an efficient element of D with respect
to 4 on Fc(R+)n if and only if it holds that there
does not exist ṽ ∈ D such that ũ ≺ ṽ. We denote
by eff(D) the set of all elements of D efficient with
respect to 4 on Fc(R+)n. For any ũ ∈ Fc(R+)n,
let V (ũ) := eff({V (f)ũ | f ∈ F ν}). Note that
V (ũ) ⊂ Fc(R+)n.

Here, we consider the following fuzzy equation in-
cluding efficient set-functions V (·) on Fc(R+)n:

ũ ∈ V (ũ), ũ ∈ Fc(R+)n. (11)

The equation (11) is called an optimality equation, by
which Pareto optimal policies are characterized. A so-
lution of (11), ũ, is called maximal if there does not
exist any solution ũ′ of (11) such that Eũ ≺ Eũ′.
Pareto optimal policies are characterized by maximal
solutions of the optimality equation (11).
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Theorem 2. A policy f ∈ Πν is Pareto optimal if
and only if the fixed point of the corresponding V (f),
h̃(f), is a maximal solution to the optimal equation
(11).

The form of the optimal equation (11) is correspond-
ing to a fuzzy extension of the average case of MDPs
([2,13]).

As a simple example, we consider a fuzzy treat-
ment for a machine maintenance problem dealt with in
[10,p.1,pp.17–18].

Example 1. (a machine maintenance problem). A
machine can be operated synchronously, say, once an
hour. At each period there are two states; one is oper-
ating(state 1), and the other is in failure(state 2). If the
machine fails, it can be restored to perfect functioning
by repair. At each period, if the machine is running,
we earn the return of $ 3.00 per period; the fuzzy set of
probability of being in state 1 at the next step is (0.6,
0.7, 0.8) and that of the probability of moving to state
2 is (0.2, 0.3, 0.4), where for any 0 ≤ a < b < c ≤ 1,
the fuzzy number (a, b, c) on [0, 1] is defined by

(a, b, c)(x) =
{

(x− a)/(b− a) ∨ 0 if 0 ≤ x ≤ b
(x− c)/(b− c) ∨ 0 if b ≤ x ≤ 1.

If the machine is in failure, we have two actions to re-
pair the failed machine; one is a rapid repair, denoted
by 1, that yields the cost of $ 2.00(that is, a return of
−$2.00) with the fuzzy set (0.5, 0.6, 0.7) of the prob-
ability moving in state 1 and the fuzzy set (0.3, 0.4,
0.5) of the probability being in state 2; another is a
usual repair, denoted by 2, that requires the cost of
$1.00(that is, a return of −$1.00) with the fuzzy set
(0.3, 0.4, 0.5) of the probability moving in state 1 and
the fuzzy set (0.5, 0.6, 0.7) of the probability being in
state 2.

For the model considered, S = {1, 2} and there ex-
ists two stationary policies, F = {f1, f2} with f1(2) =
1 and f2(2) = 2, where f1 denotes a policy of the usual
repair and f2 a policy of the rapid repair. We easily
observe that r(f1) = (3,−2)′ and

Q̃(f1) =
(

(0.6, 0.7, 0.8) (0.2, 0.3, 0.4)
(0.5, 0.6, 0.7) (0.3, 0.4, 0.5)

)
,

Now, applying Theorem 1, we can obtain the AEFR
φ̃(f1). Here, we observe that the minorizaton condi-
tion (Lν) holds for ν = 1 and ε = 0.2. After a simple
calculation, we find h̃(f1) and φ̃(f1) are

((85/18, 110/18, 135/18), (−17/18, 8/18, 32/18))′,
((7/9, 12/9, 17/9), (7/9, 12/9, 17/9))′.

Next, we find that V (f2)h̃(f1) and V (f1)h̃(f1) are

((85/18, 110/18, 135/18), (−17/18, 8/18, 32/18))′,
((85/18, 110/18, 135/18), (−15/18, 10/18, 35/18))′,

which satisfies V (f2)h̃(f1) ≺ h̃(f1). Thus, h̃(f1) ∈
V (h̃(f1)), so that from Theorem 2 f1 is Pareto opti-
mal in Π1. In fact, we can find, by solving (8) for f2,
that φ̃(f2) = ((5/7, 9/7, 13/7), (5/7, 9/7, 13/7))′, and
φ̃(f2) ≺ φ̃(f1).
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