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Abstract

The optimization problem of general utility case is considered for
countable state semi-Markov decision processes. The regret-utility
function is introduced as a function of two variables, one is a target
value and the other is a present value. We consider the expectation of
the regret-utility function incured until the reaching time to a given
absorbing set. In order to characterize the regret optimal policy, we
derive the optimality equation and then prove the uniqueness of solu-
tion. As application, two examples of regret-utility functions are used
to illustrate the analysis for these models.

Keywards: Regret optimal policy, Semi-Markov decision processes, Gen-
eral regret-utility, Optimality equation.

1 Introduction and notation

The optimization problem of general utility case is considered for countable
state semi-Markov decision processes. If a decision maker assesses a random
variable reward Y by use of a general utility function U , the following U -
certainty equivalent may be considered. U -certainty equivalent means a real-
valued quantity E(U, Y ), whose utility U(E(U, Y )) equals to the expectation
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of utility U(Y ), that is, it is defined by

U(E(U, Y )) = E[U(Y )] or E(U, Y ) = U−1(E[U(Y )]).

The above equation means that decision maker would be indifferent about re-
ceiving between the random rewards Y and the non-random amount E(U, Y ).
See Fishburn[9] and Pratt[16] in detail.

In our model, a performance criterion is the U -certainty equivalent of
the total reward until the reaching time to the absorbing set. The study of
Markov decision processes endowed with the risk-sensitive average criterion
and their related works have been developing by many authors [1, 2, 3, 4,
5, 11, 20], in which the utility is exponential function with constant risk
sensitivity λ, i.e., Uλ(y) = sign(λ)eλy if λ 6= 0, = y if λ = 0 . In this case,
the U -certainty equivalent E(Uλ, Y ) is expressed by an explicit formula:

E(Uλ, Y ) =





1
λ

ln(E[eλY ]), λ 6= 0

E[Y ] λ = 0

Our paper does not specify only this kind of utility Uλ but we consider the
case of the U -certainty equivalent E(U, Y ) of a general utility function U
for a random variable Y . However it is too much difficult tp express the U -
certainty equivalent E(U, Y ) explicitly. So we will introduce a regret which
evaluates the difference between the target value and the real payoff.

We assume that the utility of regret is represented by a function of two
variables, one is the target value and the other is the real payoff, called
regret-utility function, and the problem to be solved is to minimize the
expected regret-utility incured until the reaching time to the absorbing set.

In order to characterize the regret optimal policy, we derive the regret
optimality equation. Then the uniqueness of solution will be proved. As
application, two examples of regret-utility function are illustrated and some
analysis are developed. There are many kind of variability-risk analysis
for Markov Decision Processes; variance, percentile, etc, which appeared
in [7, 8, 14, 18, 19, 21, 22]. Also for a general utility of Markov decision
processes, refer to [5, 6, 11, 12, 13].

In the remainder of this section, we define the regret-utility optimization
problem for semi-MDP’s to be examined in the sequel. semi-MDP’s are
specified by

(i) a countable state space: S = {0, 1, 2, · · · },
(ii) a finite action space: A = {1, 2, · · · ,m},m < ∞,
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(iii) transition probability distributions: {(pij(a); j ∈ S)|i ∈ S, a ∈ A},
(iv) distribution functions {Fij(·|a)|i, j ∈ S, a ∈ A} of the time between

transitions,

(v) an immediate reward r and a reward rate d which are functions from
S ×A to R+, where R+ = [0, ∞).

When the system is in state i ∈ S and action a ∈ A is taken, then
it moves to a new state j ∈ S with the sojourn time τ , and the reward
r(i, a) + d(i, a)τ is obtained, where the new state j and the sojourn time τ
are distributed with pi·(a) and Fij(·|a) respectively. This process is repeated
from the new state j ∈ S.

The sample space is the product space Ω = (S × A ×R+)∞. Let Xn,
∆n and τn+1 be random quantities such that Xn(ω) = xn, ∆n(ω) = an

and τn+1(ω) = tn+1 for all ω = (x0, a0, t1, x1, a1, t2, · · · ) ∈ Ω and n =
0, 1, 2, · · · . Let Hn = (X0,∆0, τ1, · · · , Xn) be a history until time n. A
policy π = (π0, π1, · · · ) is a sequence of conditional probabilities πn = πn(· |
Hn) such that πn(A | Hn) = 1 for all histories Hn ∈ (S × A ×R+)n × S.
The set of all policies is denoted by Π. A policy π = (π0, π1, · · · ) is called
stationary if there exists a function f : S → A such that πn({f(Xn)} |
Hn) = 1 for all n ≥ 0 and Hn ∈ (S×A×R+)n×S. Such a policy is denoted
by f∞.

For any π ∈ Π, we assume that
(i) Prob(Xn+1 = j| X0, ∆0, τ1, · · · , Xn = i, ∆n = a ) = pij(a)
(ii) Prob(τn+1 ≤ t| X0, ∆0, τ1, · · · , Xn = i, ∆n = a, Xn+1 = j) = Fij(t|a)

for all n ≥ 0, i, j ∈ S and a ∈ A. Then, any initial state i ∈ S and policy
π ∈ Π determine the probability measure Pπ(· |X0 = i) on Ω by a usual
way. We make the general assumption:
There exists an absorbing set J0 ⊂ S and J0 6= S such that

∑

j∈J0

pij(a) = 1

and r(i, a) = d(i, a) = 0 hold for all i ∈ J0, a ∈ A. Let J = S \ J0 and
N be the reaching time to J0, i.e., N = min{n|Xn ∈ J0, n ≥ 0}, provided
that min ∅ = ∞. The present value and the total lapsed time of the process
{Xn, ∆n, τn+1 : n = 0, 1, 2, · · · } until the `-th time are defined respectively
by

D̃` =
`−1∑

n=0

(r(Xn, ∆n) + τn+1d(Xn, ∆n))

and τ̃` =
∑`

n=1 τn, (` ≥ 1).
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Motivated from the previous discussion, we introduce the following func-
tion G which is used in the evaluation between a target value and a present
value. Let G : R+ ×R+ → R be a Borel-measurable function and call it
as a regret-utility function. For a constant g∗, called as a target value, our
problem is to minimize the expected regret-utility with a target g∗

Eπ

(
G(g∗τ̃N , D̃N )

∣∣∣ X0 = i
)

over all π ∈ Π,

where Eπ(· |X0 = i ) is the expectation with respect to Pπ(· |X0 = i ). For
example, the difference between a target value g∗ and an average of present
value D̃N/τ̃N is evaluated by

G(g∗τ̃N , D̃N ) = − exp{−λ(g∗τ̃N − D̃N )}
which is analyzed in Example 2 in Section 3. This situation have related
to our previous model on the general utility of Markov decision processes
[12, 13]. We say that π∗ ∈ Π is regret optimal with a target g∗ if

Eπ∗
(
G(g∗τ̃N , D̃N )

∣∣∣ X0 = i
)
≤ Eπ

(
G(g∗τ̃N , D̃N )

∣∣∣ X0 = i
)

for all π ∈ Π and i ∈ S.
In Section 2, under some reasonable assumptions concerning the speed

with which the decision process is driven into J0, we give the optimality
equation in order to characterize the regret optimal policy. Also, uniqueness
of solution to the optimality equation is proved. In Section 3, as applications
of our results, a few examples of regret-utility functions are given, under
which some analysis are developed.

2 Regret optimality and related optimality equa-
tions

To develop our discussion, the following assumption is needed. These require
that the process should be natural not pathological and also that reward r
and its rate d are bounded.
Assumption 1. For all i, j ∈ S, a ∈ A,

(i) there exists M1 and M2 such that

0 ≤ r(i, a) ≤ M1 < ∞, 0 ≤ d(i, a) ≤ M2 < ∞,

(ii) there exist L > 0, B > 0 such that L ≤
∫ ∞

0
t Fij(dt| a) ≤ B.
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For each i ∈ J and n ≥ 0, we define ei(n) by

ei(n) = sup
π∈Π

Pπ(Xn ∈ J |X0 = i ),

which means the maximal probability of being not yet absorbed in J0 at
the n-th time. Putting e(n) = supi∈J ei(n), it clearly holds(cf. [10]) that
e(n + 1) ≤ e(n) and e(m + n) ≤ e(m)e(n) for all m, n ≥ 0.

The following assumption is needed.

Assumption 2. δ0 :=
∞∑

n=0

e(n) < ∞.

Assumption 2’. There exist 0 < η0 < 1 and n0 ≥ 1 such that e(n0) < 1−η0.

In stead of Assumption 2, we could assume Assumption 2’. In fact, if
Assumption 2’ holds, we have that

δ0 =
∞∑

n=0

e(n) =
∞∑

k=0

n0−1∑

n=0

e(kn0 + n) ≤
∞∑

k=0

n0e(kn0)

≤ n0

∞∑

k=0

e(n0)k ≤ n0η
−1
0 < ∞,

which shows that Assumption 2 holds. In addition, since Pπ(N > n|X0 =
i ) ≤ e(n) for n ≥ 0, it holds that Eπ(N |X0 = i ) ≤ δ0 and then it implies
lim

n→∞nPπ(N > n|X0 = i ) = 0 for any π ∈ Π. Because kP (N > k|X0 = i) ≤
k

∑
n>k P (N = n|X0 = i) ≤ ∑

n>k nP (N = n|X0 = i) → 0(k →∞).
Now we define an optimal value function starting from the initial state

i and for c1, c2 ∈ R+ by

(2.1) gi(c1, c2) = inf
π∈Π

Eπ

(
G(c1 + g∗τ̃N , c2 + D̃N )

∣∣∣ X0 = i
)

i ∈ S.

By the above definition, we observe that gi(c1, c2) = G(c1, c2) for i ∈ J0 and
gi(0, 0) is the optimal expected regret-utility in our optimization problem.

The following assumption is utilized to characterize the optimal value
function.
Assumption 3. There exists a K > 0 such that

(2.2)
∫ ∞

0

∣∣∣G(c1, c2)−G(c1, c2)
∣∣∣Fij(dt| a) ≤ K

where c1 = c1 + g∗t, c2 = c2 + r(i, a) + d(i, a)t for all c1, c2 ∈ R+, i, j ∈ S
and a ∈ A.
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Remark. If G(c1, c2) is differentiable and
∣∣∣∣
∂G(c1, c2)

∂c1

∣∣∣∣ and
∣∣∣∣
∂G(c1, c2)

∂c2

∣∣∣∣
are uniformly bounded in (c1, c2) ∈ R+ × R+, Assumption 3 holds from
applying the mean value theorem and Assumption 1.

Hereafter, Assumption 1, 2 and 3 will be remained operative.
Lemma 2.1. For any i ∈ J and c1, c2 ∈ R+, it holds that

(2.3) |gi(c1, c2)−G(c1, c2)| ≤ Kδ0.

Proof. By (2.1), for any ε > 0 there exists π ∈ Π such that

(2.4) gi(c1, c2) + ε ≥ Eπ

(
G(c1 + g∗τ̃N , c2 + D̃N )

∣∣∣X0 = i
)

.

For simplicity, put P (·) = Pπ(·|X0 = i), E(·) = Eπ(·|X0 = i) and Hn =
(X0, ∆0, τ1, X1, · · · , Xn). We have the following:

E
[
G(c1 + g∗τ̃N , c2 + D̃N )|N = n

]

= E
[
E

[
G(c1 + g∗τ̃N , c2 + D̃N )

∣∣∣N = n,Hn−1

]
|N = n

]

≥ E
[
E

[
G(c1 + g∗τ̃n−1, c2 + D̃n−1)|N = n,Hn−1

] ∣∣∣N = n
]
−K

( from Assumption 3 )
= E

[
G(c1 + g∗τ̃N−1, c2 + D̃N−1)

∣∣∣N = n
]
−K

... ( repeating the same discussion )

≥ G(c1, c2)− nK.

Thus, it follows that

E
[
G(c1 + g∗τ̃N , c2 + D̃N )

]

=
∞∑

n=0

P (N = n)E
[
G(c1 + g∗τ̃N , c2 + D̃N )

∣∣∣N = n
]

≥ G(c1, c2)−K
∞∑

n=0

nP (N = n)

≥ G(c1, c2)−K

∞∑

n=0

e(n)

= G(c1, c2)−Kδ0.

From (2.4), we find that gi(c1, c2) + ε ≥ G(c1, c2) − Kδ0. As ε → 0 in
the above, we get gi(c1, c2) ≥ G(c1, c2) −Kδ0. Starting from gi(c1, c2) ≤
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Eπ(G(c1 + g∗τ̃N , c2 + D̃N )|X0 = i) for a policy π ∈ Π, apply the same way
as the above discussion. Then, we get gi(c1, c2) ≤ G(c1, c2) + Kδ0. 2

Lemma 2.2. There exists a K > 0 such that

(2.5)
∫ ∞

0

∣∣∣gi(c1, c2)− gi(c1, c2)
∣∣∣Fij(dt| a) ≤ K

where c1 = c1 + g∗t, c2 = c2 + r(i, a) + d(i, a)t for all c1, c2 ∈ R+, i, j ∈ S
and a ∈ A.
Proof. We have that

|gi(c1, c2)− gi(c1, c2) | ≤ |gi(c1, c2)−G(c1, c2) |+ |gi(c1, c2)−G(c1, c2) |
+ |G(c1, c2)−G(c1, c2) | .

So, from Lemma 2.1 and Assumption 3, the inequality (2.5) holds with
K = K(2δ0 + 1). 2

We denote by B(R+ × R+) the set of all bounded Borel measurable
functions on R+×R+. For any set h = (hi : i ∈ J) with hi ∈ B(R+×R+),
we define U{h}(c1, c2| i, a) by

(2.6)

U{h}(c1, c2| i, a) =
∑

j∈J

pij(a)
∫ ∞

0
hj(c1, c2)Fij(dt|a)

+
∑

j∈J0

pij(a)
∫ ∞

0
G(c1, c2)Fij(dt|a)

where c1 = c1 + g∗t, c2 = c2 + r(i, a) + d(i, a)t for c1, c2 ∈ R+, i ∈ J and
a ∈ A. Obviously, for each i ∈ J and a ∈ A, U{h}(·, · | i, a) ∈ B(R+×R+).

Here, we can state one of our main results, which gives the optimality
equation and characterizes the regret optimal policies.

Theorem 2.1. (i) The set of optimal value functions g = (gi : i ∈ J)
satisfies the following optimality equation:

(2.7) gi(c1, c2) = min
a∈A

U{g}(c1, c2| i, a)

for all i ∈ J , and c1, c2 ∈ R+.
(ii) Let π∗ = (π∗0, π∗1, · · · ) ∈ Π be any policy satisfying

(2.8) π∗n
(
A∗(g∗τ̃n, D̃n : Xn)

∣∣∣ Hn

)
= 1 on {Xn ∈ J}

for all n ≥ 0 and Hn, where A∗(c1, c2 : i) = argmina∈AU{g}(c1, c2|i, a) for
c1, c2 ∈ R+ and i ∈ J . Then, π∗ is regret optimal with a target g∗.
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Proof. For (i), for any ε > 0, i, j ∈ S, a ∈ A and t ∈ R+, there exists a
policy π{i, a, t, j} = (π{i, a, t, j}0, π{i, a, t, j}1, · · · · · · ) satisfying that

(2.9) gj(c1, c2) + ε ≥ Eπ{i, a, t, j}
(
G(c1 + g∗τ̃N , c2 + D̃N )

∣∣∣ X0 = j
)

where c1 = c1 + g∗t, c2 = c2 + r(i, a)+ d(i, a)t. Here we define a policy π′ =
(π′0, π′1, · · · ) by π′0(a|H0) = 1, π′n(·|Hn) = π{X0,∆0, τ1, X1}n−1(·|H ′

n−1)
for n ≥ 1, where H ′

n−1 = (X1, ∆1, τ2, X2, · · · , Xn) is shifted from Hn =
(X0, ∆0, τ1, X1, · · · , Xn). Then, we have from (2.1), (2.9) and (2.6) that

gi(c1, c2)
≤ Eπ′

(
G(c1 + g∗τ̃N , c2 + D̃N )

∣∣∣X0 = i
)

=
∑

j∈S

pij(a)
∫ ∞

0
Eπ{i,a,t,j}

(
G(c1 + g∗τ̃N , c2 + D̃N )

∣∣∣X0 = j
)

Fij(dt|a)

≤ ε +
∑

j∈S

pij(a)
∫ ∞

0
gj(c1, c2)Fij(dt|a)

= ε + U{g}(c1, c2| i, a).

Since ε > 0 and a ∈ A are arbitrary, we get

(2.10) gi(c1, c2) ≤ min
a∈A

U{g}(c1, c2| i, a).

On the other hand, for any ε > 0, there exists a π = (π0, π1, · · · ) ∈ Π
such that

gi(c1, c2) + ε

≥ Eπ

(
G(c1 + g∗τ̃N , c2 + D̃N )|X0 = i

)

=
∑

a,j

π0(a|i)pij(a)
∫ ∞

0
Eπ{i,a,t,j}

(
G(c1 + g∗τ̃N , c2 + D̃N )

∣∣∣X0 = j
)

Fij(dt|a)

≥ mina∈A U{g}(c1, c2| i, a).

A conditional policy π{i, a, t, j} = (π{i, a, t, j}k; k = 0, 1, 2, · · · ) means that
π{i, a, t, j}n(·|Hn) = πn+1(·|i, a, t, Hn) where Hn = (X0 = j, ∆0, · · · , Xn)
for n ≥ 0. Combined with (2.10), this last inequailty shows that (2.7) holds.

For (ii), put P (·) = Pπ∗(·|X0 = i) and E(·) = Eπ∗(·|X0 = i) for simplic-
ity. Then, we have from (2.7) that, for n > 0,

(2.11)

E
(
gXn+1(g

∗τ̃n+1, D̃n+1)1N>n

∣∣∣ Hn, ∆n

)

= U{g}(g∗τ̃n, D̃n|Xn, ∆n )1N>n

= gXn(g∗τ̃n, D̃n)1N>n,
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where 1A is the indicator of a set A. So, we get that

E
(
gXn(g∗τ̃n, D̃n)1N>n

)

= E
(
E(gXn(g∗τ̃n, D̃n)1N>n|Hn, ∆n )

)

= E
(
E(gXn+1(g

∗τ̃n+1, D̃n+1)1N>n|Hn, ∆n )
)

= E
(
gXn+1(g

∗τ̃n+1, D̃n+1)1N=n+1

)
+ E

(
gXn+1(g

∗τ̃n+1, D̃n+1)1N>n+1

)
.

Repeating the above discussion, we have that

(2.12)

E
(
gXn(g∗τ̃n, D̃n)1N>n

)

=
∑̀

k=n+1

E
(
gXk

(g∗τ̃k, D̃k)1N=k

)
+ E

(
gX`

(g∗τ̃`, D̃`)1N>`

)
.

Also, we have from Lemma 2.1, 2.2 and Assumption 3 that

E
(
gX`

(g∗τ̃`, D̃`)1N>`

)
= P (N > `)E

(
gX`

(g∗τ̃`, D̃`)
∣∣∣N > `

)

≥ P (N > `)
{

E
(
gX`−1

(g∗τ̃`−1, D̃`−1)
∣∣∣N > `

)
−K

}

≥ P (N > `)
{

E
(
gX1(g

∗τ̃1, D̃1)
∣∣∣N > `

)
− (`− 1)K

}

≥ P (N > `){G(0, 0) + δ0K − `K}.
Since P (N > `) → 0 and `P (N > `) → 0 as ` → ∞, for any ε > 0 there
exists `0 such that E(gX`

(g∗τ̃`, D̃`)1N>`) > −ε for all ` ≥ `0. Also, since
gXk

(g∗τ̃k, D̃k)1N=k = G(g∗τ̃k, D̃k), (2.12) implies that

(2.13) E(gXn(g∗τ̃n, D̃n)1N>n) ≥
∑̀

k=n+1

E
(
G(g∗τ̃k, D̃k)1N=k

)
− ε.

By the above with n = 0, we get that

(2.14) gi(0, 0) ≥ E
(
G(g∗τ̃N , D̃N )1N≤`

)
− ε

for all ` ≥ `0. As ` → ∞ and ε → 0 in (2.14), it holds that gi(0, 0) ≥
E

(
G(g∗τ̃N , D̃N )

)
. Obviously, gi(0, 0) ≤ E

(
G(g∗τ̃N , D̃N )

)
, so that gi(0, 0) =

E
(
G(g∗τ̃N , D̃N )

)
, which shows that π∗ is regret optimal. 2

The following theorem asserts the uniqueness of solution to the optimal-
ity equation (2.7).
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Theorem 2.2. There exists a unique solution to the optimality equation
(2.7) in C, where C = {h = (hi : i ∈ J)|hi ∈ B(R+ ×R+) for all i ∈ J
and h satisfies the statement of Lemma 2.2.
Proof. Let h = (hi : i ∈ J), h′ = (h′i : i ∈ J) be solutions to (2.7) and h,
h′ ∈ C. Then, from (2.6) and (2.7), there is an a ∈ A such that

(2.15)

∣∣hi(c1, c2)− h′i(c1, c2)
∣∣

≤
∑

j∈J

pij(a)
∣∣∣∣
∫ ∞

0
hj(c1, c2)Fij(dt| a)−

∫ ∞

0
h′j(c1, c2)Fij(dt| a)

∣∣∣∣

≤
∑

j∈J

pij(a)
( ∣∣hj(c1, c2)− h′j(c1, c2)

∣∣ + 2K
)
.

Repeating the relation (2.15), we get that

∣∣hi(c1, c2)− h′i(c1, c2)
∣∣ ≤ 2K

∞∑

n=0

e(n) = 2Kδ0 < ∞.

So, if we put ‖hi − h′i‖ = sup
c1, c2∈R+

∣∣hi(c1, c2)− h′i(c1, c2)
∣∣, then ‖hi − h′i ‖ ≤

2Kδ0, and from the first inequality in (2.15), we get

(2.16)
∥∥hi − h′i

∥∥ ≤
∑

j∈J

pij(a)
∥∥hj − h′j

∥∥ for i ∈ J.

Repeating (2.16) again, we obtain

(2.17)
∥∥h− h′

∥∥ ≤ e(n)
∥∥h− h′

∥∥ for all n ≥ 1,

where ‖h− h′‖ = supi∈J ‖hi − h′i‖. Letting n →∞ and noting that e(n) →
0 from Assumption 2, it means

∥∥h− h′
∥∥ = 0. Thus, h = h′, so that unique-

ness of solutions follows. 2

3 Examples

In the following examples, the results in the preceding section are applied
to the cases of some types of regret-utility functions.

Example 1. Consider the case that G(x, y) = x − y. From Remark in
Section 2, we observe that Assumption 3 holds. Putting

gi = inf
π∈Π

Eπ(g∗τ̃N − D̃N |X0 = i),
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we get from (2.1) that

(3.1)
gi(c1, c2) = inf

π∈Π
Eπ(c1 + g∗τ̃N − c2 − D̃N |X0 = i)

= c1 − c2 + gi

for i ∈ J and c1, c2 ∈ R+. Thus, the optimality equation (2.7) becomes:

(3.2) gi = min
a∈A

{
−R( i, a) +

∑

j∈J

pij(a)gj + g∗τ(i, a)
}

for i ∈ J = S \ J0 with some absorbing state J0, where R(i, a) = r(i, a) +

d(i, a)τ(i, a) and τ(i, a) =
∑

j∈S

pij(a)
∫ ∞

0
tFij(dt|a) for i ∈ J and a ∈ A.

Applying Theorem 2.1, we can obtain a regret optimal policy using the
unique solution of (3.2).

Remark. We consider recurrent semi-MDP’s and put:

J0 = {0}, N = min{n|Xn = 0, n ≥ 1} and

g∗ = sup
π∈Π

Eπ(D̃N |X0 = 0)
Eπ(N |X0 = 0)

.

Then, (3.2) with g0 = 0 is corresponding to the optimality equation for the
average case. In fact, it holds (cf. [15],[17]]) that

min
a∈A

{
−R( 0, a) +

∑

j 6=0

p0j(a)gj + g∗τ(0, a)
}

= 0,

so that putting g0 = 0, (3.2) holds for all i ∈ S.

Example 2. Consider the case of the exponential type: G(x, y) =
−e−λ(x−y), (λ > 0). If the target value g∗ is sufficiently large such that
g∗t − r(i, a) − d(i, a)t ≥ 0 is satisfied for all t ≥ 0, i ∈ S and a ∈ A,
Assumption 3 in Section 2 holds obviously. Let

gi = inf
π∈Π

Eπ

[
− e−λ(g∗eτN− eDN )

∣∣∣ X0 = i
]

for i ∈ J . Then, gi(c1, c2) = e−λ(c1−c2)gi, so that the optimality equation
(2.7) becomes

gi = min
a∈A

{∑

j∈J

pij(a)R( i, a, j)gj −
∑

j∈J0

pij(a)R(i, a, j)
}

,

11



where R( i, a, j) =
∫ ∞

0
e−λ(g∗t−r(i, a)−d(i, a)t)Fij(dt|a) for i ∈ J, j ∈ S, a ∈ A.

Applying Theorem 2.1, we get a regret optimal policy for the exponential
regret-utility case.
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