ベクトル $\vec{a} = (a_1, a_2), \vec{b} = (b_1, b_2)$ とする。

- (1) ベクトルの内積とノルム: $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2$, $\vec{a} \cdot \vec{a} = |\vec{a}|^2 = a_1^2 + a_2^2$
- (2) 配分法則: $(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$
- (3) 結合法則: k はスカラーとするとき、 $(k\vec{a})\cdot\vec{b}=\vec{a}\cdot(k\vec{b})=k(\vec{a}\cdot\vec{b})$
- (4) 角の余弦:

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{a_1 b_1 + a_2 b_2}{\sqrt{a_1^2 + a_2^2} \sqrt{b_1^2 + b_2^2}}$$

問題 1

つぎの等式を満たす \vec{x} を, \vec{a} , \vec{b} で表せ。

(1)
$$3\vec{x} - 4\vec{a} = \vec{x} - 2\vec{b}$$
 (2) $2(\vec{x} - 3\vec{a}) = 5(\vec{x} + 2\vec{b})$

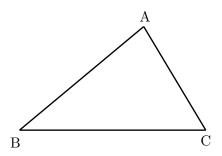
問題 2

 $|\vec{a}| = 1, |\vec{b}| = \sqrt{3}, |\vec{a} - \vec{b}| = \sqrt{7}$ のとき、つぎを求めよ。

問題 3

平面上に $\triangle ABC$ と点 P,Q はそれぞれつぎの関係が成り立っている。このとき、P,Q の位置を図 示せよ。

P:
$$3\overrightarrow{AP} = 2\overrightarrow{AB} + \overrightarrow{AC}$$
 Q: $\overrightarrow{AQ} + 2\overrightarrow{BQ} + \overrightarrow{CQ} = \mathbf{0}$



問題 4

(1) $2 \stackrel{.}{\triangle} A(a_1, a_2), B(b_1, b_2)$ と原点 O のつくる三角形において、 $\triangle OAB$ の面積は

$$S = \frac{1}{2} \sqrt{|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2} = \frac{1}{2} |a_1 b_2 - a_2 b_1|$$

となることを示せ。

(2) 3点 $A(a_1,a_2)$, $B(b_1,b_2)$, $C(c_1,c_2)$ のつくる三角形において、 \triangle ABC の面積はどうな るか?

ヒント:ベクトルのなす角 θ をもちいると、 $S=rac{1}{2}|ec{a}|\,|ec{b}|\sin heta,\,\sin heta=\sqrt{1-\cos^2 heta}$ が成り立つ。