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Introduction

In 1982, Joyce [25] introduced a quandle, which is an algebraic object con-

sisting of a non-empty set with a self-distributive binary operation satisfying

three conditions related to the Reidemeister moves I,II, and III respectively

(cf. [11], [31]). At the same time, Matveev [32] independently defined the

same notion, called a distributive groupoid. A rack and rack (co)homology

were introduced in [16], [17]. By modifying rack (co)homology, Carter,

Jelsovsky, Kamada, Langford, and Saito [7], [8] developed the (co)homology

for quandles, called quandle (co)homology. Using the cocycles of quandle

cohomology, they introduced state-sum invariants for classical knots in di-

mension 3 and surface knots in dimension 4, which is called quandle cocycle

invariants. The quandle cocycle invariants have been applied to estimation

of the triple point numbers ([23], [40]) and the detection on non-invertibility

of surface knots ([6], [7]), and so on. The invariants are related to quandle

colorings of classical knots and surface knots, and more precise than their

coloring numbers.

This thesis has two major goals (Theorem 3.20 and Theorem 3.22). The

first goal is to prove that for each non-negative integer g, there is an infi-

nite family of non-invertible surface knots of genus g. Several studies have

been made on the non-invertibility of certain twist-spun knots (cf. [15], [19],

[30], [37]). Furthermore, Gordon showed more general results using more

geometric methods in [21]. However, most of the known methods of proving

the non-invertibility can not be applied directly to knotted surfaces of higher
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genus. On the other hand, the quandle cocycle invariants can detect the non-

invertibility without regard to genus. Theorem 3.20 is proved by calculating

the quandle cocycle invariant of certain surface knot of genus g > 0

The quandle cocycle invariant of a surface knots F takes value in the

group ring Z[G], and in Z ⊂ Z[G] if F admits only trivial colorings or the

triple point number of F is 0, where G is the coefficient group of the quandle

cohomology. For some 2-knots, the quandle cocycle invariants derived from

Mochizuki’s 3-cocycle were calculated concretely in [6], [7] and [24], where

Mochizuki’s 3-cocycle is a Zp-valued cocycle on the dihedral quandle Rp

of order p, where p is an odd prime integer. However, it was not known

whether or not there are any non-ribbon 2-knots which admit a non-trivial

Rp-coloring, and all of whose cocycle invariants derived from Zp-valued 3-

cocycles on Rp take value in Z ⊂ Z[Zp] for any odd prime integer p. The

second goal is to prove that there are such knotted surfaces. This is obtained

by calculating the quandle cocycle invariants of twist-spun pretzel knots.

This thesis is organized as follows.

The main purpose of Chapter 1 is to give the informations, which are

used in the following chapters, on quandle colorings of classical knots. We

discuss dihedral quandle colorings of torus knots and pretzel knots, find all

the colorings. In addition, we consider a conjecture for Alexander quan-

dle colorings. The conjecture is related to the Kauffman-Harary conjecture

which is a conjecture for dihedral quandle colorings. We prove that the new

conjecture is true for twist knots.

Chapter 2 discusses quandle colorings of surface knots. In particular, we

consider the colorings of twist-spun knots which are surface knots constructed

from classical knots.

In Chapter 3, we calculate the quandle cocycle invariants of torus knots

and pretzel knots and their twist-spins using the results in previous chapters.

From these results, we obtain Theorem 3.20 (the first goal) and Theorem 3.22

(the second goal).
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Chapter 1

Quandle Colorings of Classical

Knots

In this chapter, we summarize the definitions of classical knots, quandles, and

quandle colorings of classical knots. We discuss dihedral quandle colorings

of torus knots and pretzel knots. The results are necessary for the later

chapters. In addition, we consider a conjecture derived from the Kauffman-

Harary conjecture.

1.1 Preliminaries

A classical knot, or simply knot, is an oriented simple closed curve embed-

ded in the 3-space R3. Two knots K and K ′ are equivalent if there is an

orientation-preserving homeomorphism h : R3 → R2 such that h(K) = K ′.

A diagram of K is the image of K by a projection R3 → R2 such that the

singularity set of the image consists of isolated double points. Let D,D′ be

diagrams of K,K ′ respectively. Two knots K and K ′ are equivalent if and

only if D can be transformed into D′ by using a finite sequence of the three

Reidemeister moves of types I, II, and III (see Figure 1.1) and ambient iso-

topies of R3. We denote the orientation-reversed knot and the mirror image
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CHAPTER 1. QUANDLE COLORINGS OF CLASSICAL KNOTS 4

of K by −K and K∗ respectively, where the mirror image is the image of K

by orientation-reversing homeomorphism of R3. Refer to [28], [29], and [31]

for more detail.

Figure 1.1: Reidemeister moves

Definition 1.1. A quandle, X, is a set with a binary operation ∗ : X×X →
X satisfying the following conditions:

(Q1) For any x ∈ X, x ∗ x = x.

(Q2) For any x, y ∈ X, there is a unique element z ∈ X such that x = z ∗ y.

(Q3) For any x, y, z ∈ X, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

If the condition (Q1) is removed, X is called a rack. The three conditions

(Q1), (Q2), and (Q3) correspond to the Reidemeister moves of types I, II, and

III respectively (cf. [31]). The condition (Q2) is equivalent to the following

condition:

(Q2’) For any x, y ∈ X, there is a binary operation ∗−1 : X ×X → X such

that (x ∗ y) ∗−1 y = x = (x ∗−1 y) ∗ y.
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We list some typical examples of quandles. See [11, 25, 32] for further

examples of quandles.

Example 1.2. (1) Let T be a set with the operation x ∗ y = x for any

x, y ∈ T . Then T is a quandle, called a trivial quandle.

(2) Let G be a group with the operation given by

x ∗ y = y−1xy

for x, y ∈ G. Then G is a quandle, called the conjugate quandle of G and

denoted by Conj(G). We remark that x ∗−1 y is equal to bab−1.

(3) Let p be a positive integer. We define the binary operation ∗ on the set

{0, 1, . . . , p− 1} by

x ∗ y = 2y − x (mod p).

Then the set {0, 1, . . . , p−1} become a quandle, called the dihedral quan-

dle of order p and denoted by Rp. The operation ∗−1 is identical with

the operation ∗.

(4) Let Λ = Z[t, t−1] be the Laurent polynomial ring over Z, J ⊂ Λ an ideal

of Λ. Then the quotient ring Λ/J with the binary operation defined by

x ∗ y = tx + (1− t)y in Λ/J

for any x, y ∈ Λ/J is a quandle called an Alexander quandle. The op-

eration ∗−1 is given by x ∗−1 y = t−1x + (1 − t−1)y. We remark that

the dihedral quandle Rp is isomorphic to Λ/(m, t + 1). Similarly, for the

Laurent polynomial ring Λp = Zp[t, t
−1] over the cyclic group of order p,

we may define the quandle structure.

Definition 1.3. Let D be a diagram of an oriented classical knot K, and

Σ the set of arcs of D. Given a quandle X, an X-coloring of D is a map

C : Σ → X which satisfies

C(γ) = C(α) ∗ C(β)
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at each crossing, where α, γ ∈ Σ are under-arcs on the right and left of the

over-arc β ∈ Σ, respectively. See Figure 1.2.

Figure 1.2: Coloring relation at a crossing

If an X-coloring uses only one color we say that it is trivial. The coloring

by the dihedral quandle Rp is Fox’s p-coloring, and this is independent of

the orientation of a knot. It is a classical result of knot theory that for any

prime integer p, a knot K has a non-trivial Fox’s p-coloring, that is, a non-

trivial Rp-coloring if and only if p|∆K(−1), where ∆K(t) is the Alexander

polynomial of K (cf. [14]).

We denote the set of all X-colorings of a classical knot diagram D by

ColX(D). The cardinality #ColX(D) of colorings is called the X-coloring

number of D. If a knot K admits the only trivial X-colorings, the X-coloring

number is equal to the cardinality of the quandle X.

Proposition 1.4 ([7]). The X-coloring number of D is an invariant of K.

It is easy to check that the R3-coloring number of the trefoil and the

trivial knot is 9 and 3, respectively. Hence, it is follows from Proposition 1.4

that the trefoil is not trivial.

Definition 1.5. Let D be a knot diagram of an oriented knot K and C :

Σ → X an X-coloring of D. A shadow X-coloring of D extending C is a

map C̃ : Σ̃ → X, where Σ̃ is the union of Σ and the set of the connected

regions of D, satisfying the following conditions:



CHAPTER 1. QUANDLE COLORINGS OF CLASSICAL KNOTS 7

(i) The map C̃ restricted to Σ coincides with C

(ii) If µ and ν are regions separated by an arc α, where µ is on the right of

α (see Figure 1.3), then

C̃(ν) = C̃(µ) ∗ C̃(α).

We denote the set of all shadow X-coloring of D by C̃olX(D).

Figure 1.3: Shadow coloring relation around α

We call the ordered triple

(C̃(µ), C̃(α), C̃(β)) ∈ X3

the quandle triple at a crossing point of the diagram, where α is the under-arc

on the right of the over-arc β, and µ is the region on the right side of both

α and β. We denote the quandle triple at a crossing point x by C̃(x). See

Figure 1.4.

Let T be a one-string tangle diagram on R2
+ of K such that ∂T = T∩∂R2

+,

and Σ(T ) the set of arcs of T .

Definition 1.6. An X-coloring of T is a map C : Σ → X which satisfies

C(γ) = C(α) ∗ C(β)
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Figure 1.4: Quandle triples at a crossing

at each crossing, where α, γ ∈ Σ are under-arcs on the right an left of the

over-arc β ∈ Σ, respectively.

Let Σ∗(T ) be the union of Σ(T ) and the set of regions of R2
+ separated

by the underlying immersed curve of T .

Definition 1.7. A shadow X-coloring of T extending C is a map C∗ :

Σ∗(T ) → X satisfying the following conditions:

(i) The map C∗ restricted to Σ(T ) is coincident with C

(ii) If µ and ν are regions separated by an arc α, where µ is on the right of

α, then

C∗(ν) = C∗(µ) ∗ C∗(α)

(iii) It holds that C∗(α+) = C∗(λ), where α+ is the initial arc of T and λ is

the unbounded region.

We denote the set of all shadow X-colorings of T by Col∗X(D).

In the same way, we may define the quandle triple at a crossing point of

the tangle diagram. We denote the quandle triple at a crossing point x by

C∗(x).
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Using the trick in [34], we may prove the following proposition with some

generality.

Proposition 1.8. Suppose x ∗ y = x ∗ z always implies y = z in a quandle

X. Then for any X-coloring of a one-string tangle diagram T of K, the two

external arcs have the same color.

Proof. Let T1 and T2 be the tangle diagrams obtained from that of T as shown

in Figure 1.5. Fix any coloring of T and trivially extend it to a coloring of

T1. Moving the circle under T , we get a coloring of T2. Then the coloring

of T remains unchanged. The large added circle component of T2 is colored

with two colors x, z ∈ X such that z = x ∗ a+ = x ∗ a−, where a+, a− ∈ X

are the colors of the external arcs. Hence a+ = a− under the assumption of

the quandle X.

Figure 1.5: Przytycki’s trick

Corollary 1.9. Let a+ and a− be the colors of the initial and terminal arcs

of a tangle diagram T , respectively. Then we have x ∗ a+ = x ∗ a− for any

x ∈ X.

Proof. The lemma follows from Proof of Proposition 1.8.
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Corollary 1.10. Let X be a dihedral quandle or an Alexander quandle. For

any X-coloring C, the initial arc and the terminal arc of a tangle diagram T

colored by C have the same color.

Proof. The lemma follows from Proposition 1.8 and the definition of dihedral

quandles and Alexander quandles.

1.2 Examples

In this section, we consider Rp-colorings of torus knots and pretzel knots,

and determine their coloring numbers.

1.2.1 Torus Knots

Let T (m,n) be the (m,n)-torus knot, where m and n are relatively prime

integers with m,n = 2. A diagram DT (m,n) of T (m,n) is obtained by clos-

ing the m fold product of an element ∆ in the n-braid group Bn, where

∆ = σn−1σn−2 · · · σ1 with the standard generators σ1, σ2, . . . , σn−1 of Bn. We

denote the j-th crossing point from the left of the i-th ∆ by xij. See Figure

1.6.

We will explicitly find all Rp-colorings of a diagram DT (m,n) of the (m, n)-

torus knot T (m,n). Beginning with the colors a01, a02, . . . , a0n ∈ Rp of

the top over-arcs of the n strings, the color aij of the j-th over-arc, (j =

1, 2, . . . , n, counting from left to right) after the i applications of ∆ is uniquely

determined. The relation between these colors are described by

ai+1 = Aai

where

ai =




ai1

ai2

...

ain




and A =




0 · · · 0 1

−1 0 2
. . .

...

0 −1 2




.
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Figure 1.6: A diagram DT (m,n) of T (m,n)

Since the diagram DT (m,n) is the closure of ∆m, the color amj is equal to the

color a0j for any j (1 5 j 5 n). Hence we have

a0 = Ama0.

Lemma 1.11 ([6]). For the n× n-matrix A above, we have

Ai = N(I + M + · · ·+ M i−1) + M i, (1.1)
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where

M =




0 · · · 0 1

−1 0 0
. . .

...

0 −1 0




and N =




0 · · · 0 2

0 · · · 0 2
...

...

0 · · · 0 2




.

Proof. It is not difficult to see that

A = M + N, AN = N, and AM i = NM i + M i+1.

The lemma follows from these relations by induction on m

For later calculations, it is convenient to consider the second index j of

color aij modulo n, i.e., j as an element in Zn, and we assume this from now

on. Hence ai0 = ain, ai,−j = ai,n−j, etc.

Proposition 1.12 ([6]). Let DT (m,n) be the diagram of T (m, n) defined above,

where m and n are relatively prime with m,n = 2 and m is odd. Then

the diagram DT (m,n) admits a non-trivial Rp-coloring if and only if m is

divisible by p and n is even. Moreover, a non-trivial Rp-coloring of DT (m,n)

is determined by a01, a02, . . . , a0n, which are satisfying





a01 = a03 = · · · = a0,n−1,

a02 = a04 = · · · = a0n.

Proof. In terms of the components aij, the equation (1.1) is written as

aij = 2
i−1∑

k=0

(−1)ka0,−k + (−1)ia0, j−i for 1 5 j 5 n.

In particular, the consistency condition of the coloring imposed on the colors

a01, a02, . . . , a0n are written as the equations

a0j = f(a0)− a0, j−m for 1 5 j 5 n,
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where

f(a0) = 2
m−1∑

k=0

(−1)ka0,−k.

Note that this equation is equivalent to the equation Ama0 = a0. By replac-

ing j with j −m, we have

a0,j−m = f(a0)− a0, j−2m for 1 5 j 5 n.

Hence, we obtain

a0j = a0, j−2m for 1 5 j 5 n. (1.2)

Assume that n is odd. Since m and n are relatively prime integers, it

follows from the equation (1.2) that

a0j = a01 for 1 5 j 5 n.

Hence, DT (m,n) admits only trivial Rp-colorings.

Assume that n is even. Since (n,−2m) = 2, we have

a0j =





a01 if j is odd,

a02 if j is even.

Since f(a0) = −(m−1)a01+(m+1)a02, the equation Ama0 = a0 is equivalent

to

m(a01 − a02) = 0.

Hence, DT (m,n) admits a non-trivial Rp-coloring if and only if m is divisible

by p and n is even.

Corollary 1.13 ([6]). If m is divisible by p and n is even, then the Rp-

coloring number of T (m,n) is p2. If m is not divisible by p, or n is odd, then

the Rp-coloring number of T (m,n) is p.

Assume that DT (m,n) admits a non-trivial Rp-coloring, that is, m is divis-

ible by p and n is even. Then we have

aij =





ai1 if j is odd,

ai2 if j is even,
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for any i. Hence, the relation ai = Aai−1 reduces to

(
ai1

ai2

)
=

(
0 1

−1 2

)(
ai−1,1

ai−1,2

)
.

By induction, we obtain





ai1 = a− iδ,

ai2 = a− (i + 1)δ,

where a = a01, and δ = a01 − a02. In particular, we have

ai−1,j =





a− (i− 1)δ if j is odd,

a− iδ if j is even,

ai−1,n = a− iδ,

where ai−1,j and ai−1,n are the colors of arcs around the crossing xij. See

Figure 1.7.

Figure 1.7: The quandle triple at xij

We consider the shadow Rp-coloring of DT (m,n) which admits a non-trivial

Rp-coloring. We color the region on the right of xij by sij ∈ Rp. Since the

regions on the right of xi1 are the same region for any 1 = i = n, it holds

that s11 = s21 = · · · = sn1. Put s := s11 = s21 = · · · = sn1. It follows from
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the relation si,j+1 = 2ai−1,j − sij that

sij =





s− (j − 1)δ if j is odd,

2a− s− (2i− j)δ if j is even,

where a = a01, b = a02, and δ = a01 − a02. From what has been discussed

above, we have the following proposition.

Proposition 1.14 ([6]). Assume that m is divisible by p and n is even, then

the quandle triple C̃(xij) at xij is give by

C̃(xij) =





(s− (j − 1)δ, a− (i− 1)δ, a− iδ) if j is odd,

(2a− s− (2i− j)δ, a− iδ, a− iδ) if j is even.

1.2.2 Pretzel Knots

Let m be a non-negative integer, and p1, . . . , pm non-zero integers. We denote

by P (p1, . . . , pm) the pretzel link of type (p1, . . . , pm). A diagram DP of

P (p1, . . . , pm) is obtained as shown in Figure 1.8, that is, m is the number of

columns, pi is the number of half-twists on the i-th column. The pretzel link

P (p1, . . . , pm) is a knot if and only if (i) p1, . . . , pm, m are odd, or (ii) there is

a unique pi in {p1, . . . , pm} such that pi is even. We say that P (p1, . . . , pm)

is odd (or even, resp.) if it is in the case (i) (or (ii), resp.).

We will explicitly find all Rp-colorings of the diagram DP of the pretzel

knot P (p1, . . . , pm), where p is a prime integer. We color the arcs of i-th

column by ai−1,0, ai−1,1,. . . , ai−1,|pi| ∈ Rp from the top (See Figure 1.8). We

note that ai,1 = ai+1,0 if pi > 0, ai,|pi|−1 = ai+1,|pi+1| if pi < 0, and a00 = am0,

b00 = bm0. We use the notations ai, bi instead of ai,0, ai,|pi|, respectively. The

relations between these colors are described by

(
bi−1

bi

)
= Api

(
ai−1

ai

)
, where A =

(
0 1

−1 2

)
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Figure 1.8: A diagram DP of P (p1, . . . , pm)

without regard to the sign of pi (1 5 i 5 m). By induction, we have

(
bi−1

bi

)
=

(
−pi + 1 pi

−pi pi + 1

)(
ai−1

ai

)
. (1.3)

It is known that P (p1, . . . , pm) admits a non-trivial Rp-coloring if and only

if it holds that
m∑

i=1

p1p2 · · · p̂i · · · pm = 0 (mod p).

For example, if there is a unique pi in {p1, . . . , pm} such that pi is divisible

by p, then the colorings of P (p1, . . . , pm) are always trivial. We consider the

following two cases with respect to pi (mod p).
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Case 1. Assume that all pi’s are not divisible by p (1 5 i 5 m). Then

the relation (1.3) induce
(

ai

bi

)
=

(
−qi + 1 qi

−qi qi + 1

)(
ai−1

bi−1

)
,

where qi = 1
pi

. By induction, we have

ai = Qic0 + a0, (1.4)

where Qi =
∑i

k=1 qk and c0 = b0 − a0. By the definition of the Rp-coloring,

the color of each arc of the i-th column is obtained by

ai−1,j = ai−1 ± jdi (0 5 j 5 |pi|), (1.5)

where di = ai − ai−1 = qic0, and the ‘±’ is ‘+’ when pi > 0 and ‘−’ when

pi < 0. Therefore, given the colors a0, b0 ∈ Rp, we may determine a Rp-

coloring of the diagram DP of a pretzel knot P (p1, . . . , pm) by the relations

(1.4) and (1.5).

Case 2. Assume that pi1 , . . . , pin in {p1, . . . , pm} are divisible by p for

some n = 2 (i1 < · · · < in). From the relation (1.3), we have

aik = bik = aik+1 = bik+1 = · · · = aik+1−1 = bik+1−1.

For i such that ik < i < ik+1, since the top arcs of the i-th column have the

same color aik , all arcs of it are colored by aik . The color of each arc of

the jk-th column is obtained from the equation (1.4) by substituting jk for

i. Thus an Rp-coloring of the above diagram DP is determined by the colors

ai1 , . . . , ain .

From what has been discussed above, we have the following proposition

with respect to the Rp-coloring number of the pretzel knot P (p1, . . . , pm).

Proposition 1.15. Assume that the diagram DP of P (p1, . . . , pm) admit

a non-trivial Rp-coloring. Then the Rp-coloring number of P (p1, . . . , pm) is

equal to p2 if all pi’s are not divisible by p, or pn if pi1 , . . . , pin in {p1, . . . , pm}
are divisible by p for some n = 2.
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Let DP be the diagram of a pretzel knot P (p1, . . . , pm) defined above.

We consider the shadow Rp-colorings of the diagram DP colored as shown in

Figure 1.8. The shadow Rp-colorings do not depend on the orientation of a

diagram (but the quandle triples depend on it). Let xij be the j-th crossing

point from the top of the i-th column (1 5 i 5 m, 1 5 j 5 |pi|). We color the

region on the right, left side of xij by si−1, si ∈ Rp, and upper, under side by

si−1,j−1, si−1,j ∈ Rp, respectively (see Figure 1.9). We note that the relations

s0,0 = s1,0 = · · · = sm−1,0, s0,|p1| = s1,|p2| = · · · = sm−1,|pm|, and s0 = sm hold.

By definition, we have the following relations.





si,0 = 2a0 − s0,

si = 2ai − si,0 = 2(ai − a0) + s0,

sij = 2aij − si = 2(aij − ai + a0)− s0.

(1.6)

Therefore, given the colors s ∈ Rp, we may determine a shadow Rp-coloring of

the Rp-colored diagram DP of a pretzel knot P (p1, . . . , pm) by the equations

(1.6).

Figure 1.9: Colors around xij
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1.3 The Kauffman-Harary Conjecture

The Kauffman-Harary conjecture is the following conjecture for dihedral

quandle colorings.

Conjecture 1.16 ([22]). Let D be a reduced alternating knot diagram with

a prime determinant p. Then every non-trivial Rp-coloring of D assigns

different colors to different arcs of D.

In [2], Asaeda, Przytycki and Sikora generalize the conjecture by stating

it in terms of homology of the double cover of the 3-sphere S3 branched along

a link, and prove that the generalized conjecture is true for Montesinos links.

We consider the following conjecture associated with the Alexander quan-

dle which we can regard as a generalization of Rp.

Conjecture 1.17. Let K be an alternating oriented knot, D be a reduced

alternating diagram of K, and ∆K(t) be the Alexander polynomial of K.

If the ring Z[t, t−1]/(∆K(t)) is an integral domain, then every non-trivial

coloring of D by the Alexander quandle Z[t, t−1]/(∆K(t)) assigns different

colors to different arcs of D.

If the Kauffman-Harary conjecture is true then Conjecture 1.17, also,

is true for any alternating knots with prime determinants. But Conjecture

1.17 is not included in the Kauffman-Harary conjecture because there is a

knot with a non-prime determinant whose Alexander polynomial is a prime

element in the Laurent polynomial ring Z[t, t−1].

We consider Alexander quandle colorings of twist knots. A diagram Dn

of an n-twist knot Kn is pictured in the left of Figure 1.10, where |n| is the

number of crossings in the “twist” part. The twists are right-handed if n > 0

and left-handed if n < 0. The left of Figure 1.10 shows the case n > 0. We

orient Kn by the orientation indicated in the left of Figure 1.10.

Let Λ/J be an Alexander quandle. We color the arcs of the “twist” part

in the diagram Dn by a0, b0, b1, . . . , b|n| ∈ Λ/J as shown in Figure 1.10. By
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Figure 1.10: A diagram Dn of Kn

the definition of Alexander quandle colorings, the relations between these

colors are described by

(
bi−1

bi

)
=






0 1

t 1− t





bi−2

bi−1


 if i is even,


 0 1

t−1 1− t−1





bi−2

bi−1


 if i is odd,

without regard to the sign of n, where i = 0, 1, . . . , n and b−1 = a0. By
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induction, we have

(
bi−1

bi

)
=

1

2

(
i(t−1 − 1) + 2 i(1− t−1)

i(t−1 − 1) i(1− t−1) + 2

)(
a0

b0

)
(1.7)

if i is even, and

(
bi−1

bi

)
=

1

2

(
(i− 1)(t−1 − 1) (i− 1)(1− t−1) + 2

(i + 1)(t−1 − 1) + 2 (i + 1)(1− t−1)

)(
a0

b0

)
(1.8)

if i is odd. Furthermore, the colorings a0, b0, b|n|−1, b|n| of the four arcs in the

“clasp” part of Dn have the following relations:

b0 =





t−1a0 + (1− t−1)bn if n is positive, even,

ta0 + (1− t)bn if n is positive, odd,

ta0 + (1− t)b|n|−1 if n is negative, even,

t−1a0 + (1− t−1)b|n|−1 if n is negative, odd,

(1.9)

and

b|n|−1 =





t−1bn + (1− t−1)a0 if n is positive,

tb|n| + (1− t)b0 if n is negative.
(1.10)

Lemma 1.18. Assume that the ring Λ/J is an integral domain. The diagram

Dn admits a non-trivial Λ/J-coloring if and only if it holds that





n(t−1 − 2 + t) = 2 if n is positive, even,

t−1 + 1
2
(n + 1)(t−2 − 2t−1 + 1) = 0 if n is positive, odd,

|n|(t−1 − 2 + t) = −2 if n is negative, even,

t−1 − 1
2
(|n| − 1)(t−2 − 2t−1 + 1) = 0 if n is negative, odd.

Proof. We assume that n is positive, even. From the relations (1.7), (1.9)

and (1.10), we obtain (a0 − b0)(n(t−1 − 2 + t) − 2) = 0. If the color a0 is

equal to the color b0 then Dn has nothing but trivial Λ/J-colorings. Since
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Λ/J is an integral domain, Dn admits a non-trivial Λ/J-coloring if and only

if it holds that n(t−1 − 2 + t) = 2.

In the same way, we can prove this lemma for other cases.

The Alexander polynomial ∆Kn(t) of the twist knot Kn is equal to





n
2
(1− 2t + t2)− t if n is positive, even,

t + 1
2
(n + 1)(1− 2t + t2) if n is positive, odd,

|n|
2

(1− 2t + t2) + t if n is negative, even,

t− 1
2
(|n| − 1)(1− 2t + t2) if n is negative, odd,

(1.11)

up to multiplication by a unit ±t±k. There is an integer n such that, al-

though the determinant |∆Kn(−1)| is not prime, the Alexander polynomial

∆Kn(t) is prime in the Laurent polynomial ring Λ = Z[t, t−1], that is, the

ring Λ/(∆Kn(t)) is an integral domain. For example, if n is odd then ∆Kn(t)

is always prime. We have the following proposition from Lemma 1.18 and

the equations (1.11).

Proposition 1.19. For any integer n the diagram Dn of the twist knot Kn

admits a non-trivial Λ/(∆Kn(t))-coloring.

We consider the case that n is positive, that is, we suppose that the

diagram Dn is alternating. Assume that Dn is colored by a non-trivial

Λ/(∆Kn(t))-coloring. If the color bl is equal to the color bm for integers

l, m (−1 5 l, m 5 n) then from the relations (1.7), (1.8) we obtain l = m. In

other words, different arcs of Dn are colored by different colors. Accordingly,

we have the following theorem.

Theorem 1.20. Conjecture 1.17 is true for twist knots.

In the same way, we can prove that for a negative integer n, that is,

for a non-alternating diagram Dn, every non-trivial Λ/(∆Kn(t))-coloring of

Dn assigns different colors to different arcs of Dn. Possibly we may remove



CHAPTER 1. QUANDLE COLORINGS OF CLASSICAL KNOTS 23

the condition that “a diagram is alternating” from Conjecture 1.17. At the

present the author does not know a counterexample.



Chapter 2

Quandle Colorings of Surface

Knots

In this chapter, we consider quandle colorings of surface knots, and construct

diagrams of twist-spun knots, For torus knots and pretzel knots, we obtain

the informations used to calculate the cocycle invariants of their twist-spins

in the next chapter.

2.1 Preliminaries

A surface knot is a connected, oriented, and closed surface embedded in the

4-space R4. In particular, we call an embedded 2-sphere a 2-knot. Two

surface knots F and F ′ are equivalent if there is an orientation-preserving

homeomorphism h : R4 → R4 such that h(F ) = F ′. Two surface knots

F and F ′ are ambient isotopic if there is an ambient isotopy {ht} of R4

such that h1(F ) = F ′. Two surface knots are equivalent if and only if they

are ambient isotopic. A surface knot F is trivial (unknotted) if there an

embedded handlebody H in R4 with ∂H = F , where a handlebody is a 3-

manifold obtained from a 3-ball by attaching some 1-handles. For a surface

knot F we denote the same surface with the orientation reversed by −F ,

24
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and the mirror image of F , which is the image of F by orientation-reversing

homeomorphism of R4, by F ∗. We say that F is non-invertible if F � −F .

Refer to [11], [12], and [26] for more detail.

A projection p : F → R3 is generic if the singularity set of the projection

consists of double points, triple points and branch points (see the top of

Figure 2.1). Crossing information is indicated in the image p(F ) of F by

a generic projection as follows: Along every double point curve, two sheets

intersect locally, one of which is under the other relative to the projection

direction of p. Then the under-sheet is broken by the over-sheet. A diagram

of F is the image p(F ) with such crossing information (see the bottom of

Figure 2.1). Hence, a diagram is regarded as a union of disjoint compact,

connected sheets. Two surface diagrams represent equivalent surface knots if

and only if one can be transformed into the other by using finite sequence of

the Roseman moves and ambient isotopies of R4 (cf. [7], [11], [12], and [26]).

The triple point number of a surface-knot F , denoted by t(F ), is the

minimum number of triple points among all possible generic projections of

F into the 3-space R3. By definition, the triple point number t(F ) is an

invariant of F .

In the same way as the coloring of a classical knot diagram, we may define

a coloring of a surface knot diagram.

Definition 2.1. Let D be a diagram of a surface knot F , Σ the set of

connected sheets of D, and X a quandle. A coloring of D is a map C : Σ → X

satisfying

C(γ) = C(α) ∗ C(β)

at each double curve, where α, β, γ ∈ Σ are the three sheets meeting at the

double curve such that β is the over-sheet, α, γ are the under-sheets, which

the normal direction of β points α to γ (see Figure 2.2).

We denote the set of all X-colorings of D by ColX(D). The cardinality

#ColX(D) of colorings is called the X-coloring number of D.
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Figure 2.1: Singular points

Proposition 2.2 ([35]). The X-coloring number #ColX(D) of D is a surface

knot invariant.

Each triple point t of D is assigned the sign ε(t) = ±1 induced from the

orientation in such a way that ε(t) = +1 if and only if the ordered triple of the

orientation normals of the top, middle, and bottom sheets, respectively, agree

with the orientation of R3. The colors of the sheets near t are determined

by the three colors C(α),C(β) and C(γ), where γ is the top sheet, β is the

middle sheet in the back-side region of γ, and α is the bottom sheet in the

back-side regions of both β and γ (see Figure 2.3). The ordered triple

(C(α), C(β), C(γ)) ∈ X3

is called the color of t and denoted by C(t).
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Figure 2.2: Coloring relation at a double point curve

Figure 2.3: The color of a triple point

2.2 Twist-Spun Knots

In this section, we consider twist-spun knots and their diagrams.

A spun knot is a 2-knot introduced by Artin [1], and constructed from an

oriented classical knot K as follows: Let K0 be an embedded arc in R3
+ =

{(x, y, z, w) | z = 0, w = 0} such that its closure is K and ∂K0 = K0∩∂R3
+.
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The subset

{(x, y, z cos θ, z sin θ) | (x, y, z) ∈ K0, θ ∈ [0, 2π)}

of R4 is a 2-sphere embedded in R4. This 2-knot is a spun knot of K. The

spun knot is obtained by routing K0 around R2 = {(x, y, z, w) | z = 0, w =

0}. See Figure 2.4.

Figure 2.4: Construction of a spun knot

There is another definition of a spun knot. Let B be a 3-ball, K0 an

embedded arc in B such that its closure is K and ∂K0 = K0∩∂B. We define

an equivalence relation ∼ on B × S1 by

(x, θ) ∼ (x, θ′) for x ∈ ∂B and θ, θ′ ∈ S1.

Then B×S1/ ∼ is a 4-sphere, and K0×S1/ ∼ is a 2-sphere in the 4-sphere.

Therefore, the 2-sphere K0×S1/ ∼ is a 2-knot in R4 = (B×S1/ ∼)\{point}.
We call this 2-knot a spun knot of K. The two definitions give the same 2-

knot up to equivalence.
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A spun knot was generalized by Zeeman [42] as follows: Let K0 be an

embedded arc in R3
+ such that its closure is an oriented classical knot K and

∂K0 = K0∩∂R3
+ and its knotted part is contained in a 3-ball B3 (see Figure

2.5). By twisting the 3-ball B3 r-times while the 3-space R3
+ goes around R2,

we obtain a 2-knot in R4. This 2-knot is called an r-twist-spun knot of K. A

0-twist-spun knot is a spun knot. See Figure 2.5.

Figure 2.5: Construction of a twist-spun knot

Similarly to a spun knot, there is another definition of a twist-spun knot.

Let B be a 3-ball, K0 an embedded arc in B such that its closure is K

and ∂K0 = K0 ∩ ∂B. Let Rθ be rotation by the angle θ in the meridian

direction. Then B × S1/ ∼ is a 4-sphere, and
⋃

θ∈S1

(
Rrθ(K0)× {eiθ}) / ∼

is a 2-sphere in the 4-sphere, where ∼ is the equivalence relation defined

above. Therefore, the 2-sphere
⋃

θ∈S1

(
Rrθ(K0)× {eiθ}) / ∼ is a 2-knot in

R4 = (B × S1/ ∼) \ {point}. We call this 2-knot a r-twist-spun knot of K,

denote by τ r(K). The two definitions give the same 2-knot up to equivalence.
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Proposition 2.3 ([32]). For any oriented classical knot K and positive in-

teger r, we have

(1) τ r(−K) ∼= τ r(K)∗,

(2) τ r(K∗) ∼= −τ r(K),

(3) τ r(−K∗) ∼= −τ r(K)∗.

In [41], Yajima introduced the concept of a ribbon 2-knot, and prove that

a 2-knot F is a ribbon 2-knot if and only if t(F ) = 0, where t(F ) denote the

triple point number of F .

Theorem 2.4 ([13]). For any non-trivial classical knot K, and r = 2, the

r-twist-spun knot τ r(K) of K is a non-ribbon knot.

The r-twist-spin τ rK of K has a natural diagram τ rD constructed in [6]

which has 2r-triple points for each crossing point of T . The diagram has the

following properties.

(1) The 2r-triple points t+1 (x), t−1 (x), t+2 (x), t−2 (x), . . . , t+r (x), t−r (x) have the

sign ε(t+k (x)) = ε(x) and ε(t−k (x)) = −ε(x) (1 5 k 5 r), where ε(x) is

the sign of a crossing point x of T .

(2) When r is odd. The diagram of τ rK admits only trivial Rp-colorings.

(3) When r is even. There is a one-to-one correspondence between shadow

colorings of T and colorings of the diagram. Let C̃(x) = (s, a, b) ∈ R3
p

be the quandle triple at x, and c ∈ Rp be the color of the terminal arc

of T . The colors C(t+k (x)) and C(t−k (x)) of t+k (x) and t−k (x) (1 5 k 5 r)

are given by

C(t+k (x)) = (s ∗ ck, a ∗ ck, b ∗ ck) ∈ R3
p,

C(t−k (x)) = (a ∗ ck, b ∗ ck, c) ∈ R3
p

respectively, where ∗ is the binary operation of Rp and ∗ck is k-times

composite of ∗c : Rp → Rp.
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The diagram τ rD, which is called the Satoh’s diagram, is more pictorial than

that in [39]. Refer to [6] for more detail.



Chapter 3

Quandle Cocycle Invariants

In this chapter, we define quandle cocycle invariants, and calculate the invari-

ants of torus knots, pretzel knots, and their twist-spins. Using this results, we

consider the non-invertibility of surface knots and the integrality of quandle

cocycle invariants.

3.1 Quandle Homology and Cohomology

We recall homology and cohomology of quandles. Let CR
n (X) the free abelian

group generated by n-tuples (x1, x2, . . . , xn) of elements of a rack/quandle X.

A boundary homomorphism ∂n(X) : CR
n (X) → CR

n (X) is defined by

∂n(x1, x2, . . . , xn)

=
n∑

i=1

(−1)i [ (x1, x2, . . . , x̂i, . . . , xn)

− (x1 ∗ xi, x2 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn) ]

for n = 2, and ∂n = 0 for n 5 1. It can be checked by hand that ∂n−1∂n = 0.

Hence CR
∗ (X) = {CR

n (X), ∂n} is a chain complex.

Let CD
n (X) be the subgroup of CR

n (X) generated by n-tuples of elements
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of X with

xi = xi+1

for some i ∈ {1, 2, . . . , n − 1} if n = 2, and let CD
n = 0 if n 5 1. If X is

a quandle it is follows from the properties of a quandle that ∂n(CD
n (X)) ⊂

CD
n−1(X). Hence CD

∗ (X) = {CD
n (X), ∂n} is a sub-complex of CR

∗ (X). We

define the quotient group CQ
n (X) and the quotient complex CQ

∗ (X) by

CQ
n (X) = CR

n (X)/CD
n , CQ

∗ (X) = {CQ
n (X), ∂′n},

where ∂′n is the induced homomorphism. In the following, we denote all

boundary maps by ∂n.

Let G an abelian group. We define the chain complex

CW
∗ (X; G) = CW

∗ (X)⊗G, ∂ = ∂ ⊗ id

and cochain complex

C∗
W(X; G) = Hom(CW

∗ (X), G), δ = Hom(∂, id)

in the usual way, where W = D, R, Q. Then we have the homology group

HW
n (X; G) = HW

n (CW
∗ ⊗G)

and the cohomology group

Hn
W(X; G) = Hn(Hom(CW

∗ (X), G)).

We note that only HR
n (X; G) and Hn

R(X; G) are well defined even if X is

a rack. We call HR
n (X; G) (resp. Hn

R(X; G)) the n-th rack homology group

(resp. rack cohomology group) of a rack/quandle X with coefficient group

G, HD
n (X; G) (resp. Hn

D(X; G)) the n-th degenerate homology group (resp.

degenerate cohomology group) of a quandle X with coefficient group G, and

HQ
n (X; G) (resp. Hn

Q(X; G)) the n-th quandle homology group (resp. quandle

cohomology group) of a quandle X with coefficient group G.
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The cycle and boundary groups (resp. cocycle and coboundary groups)

are denoted by ZW
n (X; G) and BW

n (X; G) (resp. Zn
W(X; G) and Bn

W(X; G)),

so that

HW
n (X; G) = ZW

n (X; G)/BW
n (X; G),

Hn
W(X; G) = Zn

W (X; G)/Bn
W(X; G),

where W = D, R, Q.

Let X be a quandle. By definition, a 2-cocycle φ in Z2
Q(X; G) satisfies

the following conditions.

(1) φ(x, x) = 0 for any x ∈ X,

(2) φ(x, z)− φ(x, y) = φ(x ∗ y, z)− φ(x ∗ z, y ∗ z) for any x, y, z ∈ X.

Similarly, a 3-cocycle θ in Z3
Q(X; G) satisfies the following conditions.

(i) θ(x, x, y) = θ(x, y, y) = 0 for any x, y ∈ X,

(ii) θ(x, z, w)− θ(x, y, w) + θ(x, y, z)

= θ(x ∗ y, z, w)− θ(x ∗ z, y ∗ z, w) + θ(x ∗ w, y ∗ w, z ∗ w)

for any x, y, z, w ∈ X.

In [33], Mochizuki has proved that the third quandle cohomology group

H3
Q(Rp;Zp) of Rp with coefficient group Zp is isomorphic to Zp for any odd

prime integer p. Additionally he has given an explicit presentation of its

generator.

Theorem 3.1 ([33]). We define the map f : Zp × Zp × Zp → Zp by

f(x, y, z) = (y − x)

(
2

p
zp +

4

p− 1
zp−1(y − z)

− 1

p− 1
(yp−1x + (−x + 2z)(−y + 2z)p−1)

+
1

p(p− 1)
(yp + (−y + 2z)p)

)
.

Then the map f is a generator of H3
Q(Rp;Zp).
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We define two maps θp and νp : Zp × Zp × Zp → Zp by





θp(x, y, z) = (x− y)
(2z − y)p + yp − 2zp

p
,

νp(x, y, z) = 4(x− y)(y − z)zp−1 + (x− y)2
(
(2z − y)p−1 − yp−1

)
.

We note that all the coefficients of the polynomial (2z − y)p + yp − 2zp are

divided by p. By using the equation
1

p(p− 1)
=

1

p− 1
− 1

p
, we have

f = θp + νp.

Both θp and νp satisfy the above-mentioned conditions (i) and (ii), that is,

these also are 3-cocycles in Z3
Q(Rp;Zp). given in Section 3.2.

Proposition 3.2 ([6]). The cohomology classes defined by the 3-cocycles f ,

θp, and νp ∈ Z3
Q(Rp;Zp) satisfy

[f ] = [θp], [νp] = 0

in H3
Q(Rp;Zp).

Proof. The proof is given in the next section.

The presentation of θp is more convenient than that of the original Mochizuki’s

3-cocycle f .

3.2 Quandle Cocycle Invariants of

Classical Knots

In this section, we define the quandle cocycle invariants of a oriented classi-

cal knot, and calculate concretely the cocycle invariants of torus knots and

pretzel knots.

Let K be a oriented classical knot, D a diagram of K. Let X be a finite

quandle, G an abelian group, and θ a quandle 3-cocycle in Z3
Q(X; G). For



CHAPTER 3. QUANDLE COCYCLE INVARIANTS 36

each shadow X-coloring C̃ ∈ C̃olX(D), and a crossing x of D, we define the

weight W̃θ(x; C̃) ∈ G by

W̃θ(x; C̃) = ε(x)θ(C̃(x)),

where ε(x) = ±1 is the sign of x, C̃(x) is the quandle triple at x (see Section

2.1). Next, we define the element W̃θ(C̃) ∈ G by

W̃θ(C̃) =
∑

x

W̃θ(x; C̃),

where x runs all crossings of D. We consider the state-sum

Ψθ(D) =
∑

eC∈gColX(D)

W̃θ(C̃)

which takes value in Z [G].

Theorem 3.3 ([7]). The state-sum Ψθ(D) is an invariant of K.

We denote the invariant by Ψθ(K). The invariant Ψθ(K) has following

properties (cf. [7], [10], and [36]).

Proposition 3.4 ([7]). Let θ, θ′ ∈ Z3
Q(X; G) be 3-cocycles. If θ and θ′ coho-

mologous, then Ψθ(K) = Ψθ′(K) for any knot K.

Proposition 3.5 ([7]). If θ ∈ Z3
Q(X; G) is a trivial, then Ψθ(K) is equal to

the number of shadow X-colorings, that is, Ψθ(K) = #C̃olX(D).

There exists another invariant derived from 3-cocycle in Z3
Q(X; G) of K.

This invariant is defined as follows: Let T be a one-string tangle diagram of

K. For each shadow X-coloring C∗ ∈ Col∗(T ), and a crossing x of T , we

define the weight W ∗
θ (x; C∗) ∈ G by

W ∗
θ (x; C∗) = ε(x)θ(C∗(x)),

where ε(x) = ±1 is the sign of x, C∗(x) is the quandle triple at x (see Section

2.1). Next, we define the element Wθ(C
∗) ∈ G by

W ∗
θ (C∗) =

∑

x∈P (T )

W ∗
θ (x; C∗),
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where P (T ) denotes the set of crossing pints of T . We consider the state-sum

Ψ∗
θ(T ) =

∑

C∗∈Col∗(T )

W ∗
θ (C∗)

which takes value in the group ring Z [G].

Proposition 3.6 ([6]). The state-sum Ψ∗
θ(T ) dose not depend on the choice

of a tangle diagram T of K.

Proof. It is easy to check that Ψ∗
θ(T ) is invariant under the Reidemeister

moves with boundary points of T fixed.

Let T1, T2, and T3 be tangle diagrams of K as shown in Figure 3.1. The

tangle diagrams T2 and T3 are obtained from T1 by reversing the boundary

points of T1. We prove that

∑

x∈P (T1)

W ∗
θ (x; C∗) =

∑

x∈P (T2)

W ∗
θ (x; C∗) =

∑

x∈P (T3)

W ∗
θ (x; C∗),

where P (T1), P (T2), and P (T3) denote the set of crossing points of T1, T2,

and T3, respectively. Let a+ and a− be the colors of initial and terminal

arcs of T colored by C∗ ∈ Col∗(T1). By lemma 1.9, we have a+ ∗ a− = a+

and a− ∗ a+ = a−. Hence, T2 and T3 are colored as shown in Figure 3.1,

where colors enclosed by a circle denote colors of regions. We note that

colors of a part of enclosed by a square in T1, T2, and T3 are the same. Since

θ(a+, a+, a−) = 0, we have

∑

x∈P (T2)

W ∗
θ (x; C∗) = θ(a+, a+, a−) +

∑

x∈P (T1)

W ∗
θ (x; C∗)

=
∑

x∈P (T1)

W ∗
θ (x; C∗).

Similarly, we may prove that

∑

x∈P (T1)

W ∗
θ (x; C∗) =

∑

x∈P (T3)

W ∗
θ (x; C∗).
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Figure 3.1: Tangle diagrams

Hence the state-sum Ψ∗
θ(T ) is an invariant of K. We denote the invariant

by Ψ∗
θ(K).

We consider the case X = Rp and G = Zp. To clarify the meaning of

the group ring Z [Zp], we identify Z [Zp] with the Laurent polynomial ring

Z[t±1]/(tp− 1) by taking the coefficient group Zp = 〈t|tp = 1〉. Then we have

Ψθ(K) =
∑

eC∈gCol(D)

t
fWθ( eC) ∈ Z[t±1]/(tp − 1),

Ψ∗
θ(K) =

∑

C∗∈Col∗(T )

tW
∗
θ (C∗) ∈ Z[t±1]/(tp − 1).

If W̃θ(C̃) (resp. W ∗
θ (C∗)) is equal to 0 ∈ Zp for any C̃ ∈ C̃olX(D) (resp.

C∗ ∈ Col∗X(T )), then Ψθ(K) (resp. Ψ∗
θ(K)) take value in Z.

3.2.1 Torus Knots

We calculate the quandle cocycle invariants Ψθp(T (m,n)) and Ψ∗
θp

(T (m,n))

of the torus knot T (m,n), where θp is the 3-cocycle defined in Section 4.1.

Since m and n are relatively prime and T (m,n) and T (n,m) are the same

knot, we may assume that m is odd without loss of generality.

Let DT (m,n) be the diagram of T (m,n) defined in Section 2.2. Fix a point

e on the top arc α of DT (m,n). We obtain a tangle diagram of T (m,n) by
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cutting the arc at e. From Corollary 1.10, it follows that the two external arcs

of the tangle diagram have the same color. When we restrict the coloring

of DT (m,n) such that a = s, the color of each arc or region of the tangle

diagram coincide with the color of corresponding arc or region of DT (m,n),

where a = a01, s = s11 (= s21 = · · · = sn1). Hence, we obtain

Ψ∗
θp

(T (m,n)) =
∑
a=s

t
fWθ( eC),

where C̃ runs all shadow Rp-colorings of DT (m,n) such that a = s. Calculating

W̃θp(C̃), we have Ψθp(T (m,n)) and Ψ∗
θp

(T (m, n)).

First, we consider the case that m = p and n is even.

Lemma 3.7 ([6]). It holds that

n−1∑
j=1

p∑
i=1

W̃θp(xij; C̃) = − n

2
(a− b)2,

where a = a01, b = a02.

Proof. If C̃ is trivial, that is, a01 − a02, the equation holds. Hence, we may

assume that C̃ is not trivial. Further, if j is even, then we obtain

W̃θp(xij; C̃) = ε(xij)θp(C̃(xij))

= θp(2a− s− (2i− j)δ, a− iδ, a− iδ)

= 0

from Proposition 1.14, where δ = a − b, s = s11 (= s21 = · · · = sn1). Note

that θp(x, y, y) = 0 for any x, y ∈ Rp by definition. Hence, we may assume

that the sum is taken for odd j = 1, 3, . . . , n− 1. Then it holds that
p∑

i=1

W̃θp(xij; C̃) = ε(xij)

p∑
i=1

θp(C̃(xij))

=

p∑
i=1

(s− a + (i− j)δ)
(a− (i + 1)δ)p + (a− (i− 1)δ)p − 2(a− iδ)p

p

= δ

p∑
i=1

i
Xi

p
+ (s− a− jδ)

p∑
i=1

Xi

p
,
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where

Xi = (a− (i + 1)δ)p + (a− (i− 1)δ)p − 2(a− iδ)p (mod p2).

Since xp = yp (mod p2) if x = y (mod p), we have

p∑
i=1

i
Xi

p
=

p+1∑
i=2

(i− 1)(a− iδ)p +

p−1∑
i=0

(i + 1)(a− iδ)p − 2

p∑
i=1

i(a− iδ)p

= {(p− 1)(a− pδ)p + p(a− (p + a)δ)p}
+ {ap + 2(a− δ)p} − 2{(a− δ)p + p(a− pδ)p}

= p(bp − ap).

Furthermore, it holds that
p∑

i=1

Xi

p
=

p∑
i=1

(a− (i + 1)δ)p +

p∑
i=1

(a− (i− 1)δ)p − 2

p∑
i=1

(a− iδ)p

= {(a− pδ)p + (a− (p + 1)δ)p}
+ {ap + (a− δ)p} − 2{(a− δ)p + (a− pδ)p}

= 0.

Therefore, we have
p∑

i=1

W̃θp(xij; C̃) = δ · (bp − ap)− jδ · 0 = (b− a)δ = −δ2.

Taking the sum for odd j = 1, 3, . . . , n− 1, we obtain

n−1∑
j=1

p∑
i=1

W̃θp(xij; C̃) = − n

2
(a− b)2.

Proposition 3.8 ([6]). If n is even, the quandle cocycle invariants Ψθp(T (p, n))

and Ψ∗
θp

(T (p, n)) are given by

Ψθp(T (p, n)) = p2

(
p−1∑
i=0

t−ni2

)
∈ Z[t±1]/(tp − 1),

Ψ∗
θ(T (p, n)) = p

(
p−1∑
i=0

t−ni2

)
∈ Z[t±1]/(tp − 1),
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where p is an odd prime integer.

Proof. As discussed in Chapter 1, the shadow Rp-coloring C̃ of the diagram

DT (m,n) is determined by (a, b, s) ∈ Z3
p. Hence, from Lemma 3.7, it follows

that

Ψθp(T (p, n)) =
∑

(a,b,s)∈Z3
p

t
fWθp( eC) =

∑

s∈Zp

∑

(a,b)∈Zp

t−
n
2
(a−b)2

=
∑

s∈Zp

(
p

(
p−1∑
i=0

t−
n
2

i2

))
= p2

(
p−1∑
i=0

t−
n
2

i2

)

and

Ψ∗
θp

(T (p, n)) =
∑

(a,b)∈Z2
p

t
fWθp( eC) =

∑

(a,b)∈Zp

t−
n
2
(a−b)2

= p

(
p−1∑
i=0

t−
n
2

i2

)
.

From Proposition 3.8, we obtain the quandle cocycle invariants Ψθp(T (m,n))

and Ψ∗
θp

(T (m, n)) of the torus knot T (m,n).

Theorem 3.9 ([6]). If T (m,n) admits a non-trivial Rp-coloring, then we

have

Ψθp(T (m,n)) = p2

(
p−1∑
i=0

t−
mn
2p

i2

)
,

Ψ∗
θp

(T (m,n)) = p

(
p−1∑
i=0

t−
mn
2p

i2

)

and otherwise Ψθp(T (m,n)) = p2 and Ψ∗
θp

(T (m,n)) = p.

Proof. Since T (m,n) has non-trivial Rp-coloring if and only if m is divisi-

ble by p and n is even (under the assumption that m is odd), the invari-

ants Ψθp(T (m,n)) and Ψ∗
θp

(T (m, n)) are obtainted from Ψθp(T (p, n)) and

Ψ∗
θp

(T (p, n)) by replacing t with t
m
p . Hence, the theorem follows from Propo-

sition 3.8.
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3.2.2 Pretzel Knots

In the following, we assume that the pretzel knot P = P (p1, . . . , pm) is al-

ternating, odd, and oriented by the orientation indicated in Figure 1.8. We

calculate the quandle cocycle invariants Ψθp(P ) and Ψ∗
θp

(P ) of the pretzel

knots. Using this results, we prove that the invariants take value in Z for

any 3-cocycle in Z3
Q(Rp;Zp).

Let DP be the diagram of P (p1, . . . , pm) defined in Section 2.2. Fix a point

e on the top arc α of DP . We obtaint a tangle diagram of P (p1, . . . , pm) by

cutting the arc at e. From Corollary 1.10, it follows that the two external

arcs of the tangle diagram have the same color. When we restrict the coloring

of DP such that a0 = s0, the color of each arc or region of the tangle diagram

concide with the color of corresponding arc or region of DP . Hence, we obtain

Ψ∗
θp

(P ) =
∑

a0=s0

t
fWθ( eC),

where C̃ runs all shadow Rp-colorings of DP such that a0 = s0. Calculating

W̃θ(C̃), we have Ψθ(P ) and Ψ∗
θ(P ).

Lemma 3.10. For any shadow Rp-coloring C̃ of the diagram DP of the

alternating odd pretzel knot P (p1, . . . , pm), we have W̃θp(C̃) = 0, that is,

m∑
i=1

|pi|∑
j=1

Wθp(xij, C̃) = 0,

where xij is the j-th crossing from the top of the i-th column of DP .

Proof. Assume that all pi’s are positive (1 5 i 5 m). The quandle triple
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C̃(xij) of a crossing point xij of DP is given by

C̃(xij) =





(si−1,j−1, ai−1,j−1, ai−1,j) if j is even,

(si−1,j, ai−1,j+1, ai−1,j) if j is odd,

=





(2(ai + (j − 2)di)− si−1, ai + (j − 2)di, ai + (j − 1)di)

if j is even,

(2(ai + (j − 1)di)− si−1, ai + jdi, ai + (j − 1)di)

if j is odd,

from the equations (1.5), (1.6) and Figure 1.9. Since ε(xij) = −1,

W̃θp(xij, C̃) = −θp(C̃(xij))

= (ai − jdi + s0 − 2a0)
(ai + (j − 2)di)

p + (ai + jdi)
p − 2(ai + (j − 1)di)

p

p

=
1

p
(aiXij − jdiXij + (s0 − 2a0)Xij)

with no regard to the parity of j, where

Xij = (ai + (j − 2)di)
p + (ai + jdi)

p − 2(ai + (j − 1)di)
p.

Then it holds that
pi∑

j=1

Xij = (ai − di)
p − (ai)

p − (ai + (pi − 1)di)
p + (ai + pidi)

p,

pi∑
j=1

aiXij = ai((ai−1)
p − (ai)

p)− ai((ai−1 + pidi)
p − (ai + pidi)

p),

pi∑
j=1

jdiXij = di(ai−1)
p − di(ai−1 + pidi)

p

+ pidi((ai + pidi)
p − (ai−1 + pidi)

p).

(3.1)

If all pi’s are not divisible by p (1 5 i 5 m), then it holds that di =

ai − ai−1 = qic0 = c0
pi

. From equations (3.1), we obtain

m∑
i=1

pi∑
j=1

Xij =
m∑

i=1

{(ai−1)
p − (ai)

p} −
m∑

i=1

{(ai−1 + c0)
p − (ai + c0)

p}

= 0− 0 = 0.
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Furthermore, it holds that

m∑
i=1

pi∑
j=1

aiXij =
m∑

i=1

di(ai−1)
p −

m∑
i=1

di(ai−1 + c0)
p,

m∑
i=1

pi∑
j=1

jdiXij =
m∑

i=1

di(ai−1)
p −

m∑
i=1

di(ai−1 + c0)
p.

Therefore, we have

W̃θp(C̃) =
m∑

i=1

pi∑
j=1

W̃θp(xij, C̃) = 0.

If pi1 , . . . , pin in {p1, . . . , pm} are divisible by p for some n = 1 (i1 < · · · <
in), it holds that Wθp(xij, C̃) = 0 for i 6= i1, · · · , in, because all arcs of i-th

column are colored by a same color. Hence we may assume that pi is divisible

by p for any i (1 5 i 5 m = n). Since pidi = 0, it follows from the equations

(3.1) that W̃θp(C̃) = 0.

Assume that all pi’s are negative. Then in the same way we may find the

quandle triple and the sign of a crossing xij, calculate Wθp(C̃), and get the

same result, that is, W̃θp(C̃) = 0.

Proposition 3.11. Let C̃ be a shadow Rp-coloring of the diagram DP of the

alternating odd pretzel knot P (p1, . . . , pm). For any Zp-valued 3-cocycle θ on

Rp, we have W̃θ(C̃) = 0.

Proof. The cohomology class [θp] is a generator of H3(Rp,Zp). Hence, for

any Zp-valued 3-cocycle θ on Rp, there is k ∈ Zp such that [θ] = k[θp] ∈
H3(Rp,Zp). Then we have W̃θ(C̃) = kW̃θp(C̃) = 0.

Theorem 3.12. If the alternating odd pretzel knot P (p1, . . . , pm) admits a

non-trivial Rp-coloring, the cocycle invariants Ψθ(P ), Ψ∗
θ(P ) of P (p1, . . . , pm)
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are given by

Ψθ(P ) =





p3 Case 1,

pn+1 Case 2,

Ψ∗
θ(P ) =





p2 Case 1,

pn Case 2,

where Case 1, 2 means that P (p1, . . . , pm) belong to Case 1, 2 in Section

1.2.2, respectively. If P (p1, . . . , pm) admits only trivial Rp-colorings, then

Ψθ(P ) = p2, Ψ∗
θ(P ) = p.

Proof. Assume that P (p1, . . . , pm) admits a non-trivial Rp-coloring. As dis-

cussed in Chapter 1, the shadow Rp-coloring C̃ of the diagram DP is deter-

mined by (a0, b0, s0) ∈ Z3
p, (ai1 , . . . , ain , s0) ∈ Zn+1

p in Case 1, 2 respectively.

Since W̃θ(C̃) = 0 for any C̃, we have

Ψθ(P ) =





∑

(a0,b0,s0)∈Z3
p

t
fWθ( eC) = p3 Case 1,

∑

(ai1
,...,ain ,s0)∈Zn+1

p

t
fWθ( eC) = pn+1 Case 2.

We may assume that ai1 = a0 without loss of generality. Fix a base point

of P (p1, . . . , pm) on the top arc colored by a0. The color s0 is the color of an

adjacent region to the arc colored by a0. By the definition of Ψ∗
θ, we obtain

Ψ∗
θ(P ) =





∑

(a0,b0)∈Z2
p

t
fWθ( eC) = p2 Case 1,

∑

(ai1
,...,ain )∈Zn

p

t
fWθ( eC) = pn Case 2.

Assume that P (p1, . . . , pm) admits only trivial Rp-colorings. The shadow

Rp-coloring C̃ of the diagram DP is determined by (a0, s0) ∈ Z2
p. In the same

way, we obtain Ψθ(P ) = p2, Ψ∗
θ(P ) = p. This completes the proof.
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In this section, we have proved that Ψθp = pΨ∗
θp

holds for torus knots and

pretzel knots. It has been known that the equality holds for also 2-bridge

knots (cf. [24]), 3-braid knots (cf. [38]). However, it is unknown whether the

equality holds for any classical knots or not.

3.3 Quandle Cocycle Invariants of

Surface Knots

In this section, we define the quandle cocycle invariant of surface knots, and

calculate concretely the quandle cocycle invariants of twist-spun knots of

torus knots and pretzel knots. Using the result, we consider non-invertibility

of surface knots.

Let F be a surface knot, D a diagram of F . Let X be a finite quandle,

G an abelian group, and θ a quandle 3-cocycle in Z3
Q(X; G). For each X-

coloring C ∈ ColX(D), and a triple point t, we define Wθ(t, C) and Wθ(C)

by

Wθ(t, C) = ε(t)θ(C(t)) ∈ G,

Wθ(C) =
∑

t

Wθ(t, C) ∈ G,

where t runs all triple points of D. We consider the state-sum Φθ(D) defined

by

Φθ(D) =
∑

C

Wθ(C),

which takes value in the group ring Z [G].

Theorem 3.13 ([7]). The state-sum Φθ(D) is independent of the choice of

a diagram D of a surface knot F .

Hence, the state-sum Φθ(D) is an invariant of a surface knot. We denote

the invariant by Φθ(F ). By definition, the invariant Φθ(F ) is equal to the
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coloring number |ColX(D)| ∈ Z ⊂ Z [G] if F is a ribbon 2-knot or admits

only trivial colorings.

Proposition 3.14 ([7]). If θ and θ′ are cohomologous, then Φθ(F ) = Φθ′(F )

for any surface knot F .

For an element
∑

aigi ∈ Z[G], we denote the element
∑

aig
−1
i ∈ Z[G] by

∑
aigi.

Proposition 3.15 ([9]). For any surface knot F and any 3-cocycle θ ∈
Z3

Q(X; G), we have

Φθ(−F ∗) = Φθ(F ).

Since T (m,n) ∼= −T (m,n), it follows form Proposition 2.3 and Proposi-

tion 3.15 that

Φθ(−τ r(T (m,n))) ∼= Φθ(τ r(T (m,n))).

Hence, we obtain Φθ(−τ r(T (m,n))) from Φθ(τ
r(T (m,n))) without calculat-

ing the invariant.

We consider the case that X = Rp, G = Zp, and F = τ r(K), where K

is a classical knot, and r is a non-negative integer. Let θp be the 3-cocycle

defined in Chapter 2, and ρr : Z[t±1]/(tp − 1) → Z[t±1]/(tp − 1) be the map

induced by t → tr.

In [6], Satoh have proved the following theorem.

Theorem 3.16 ([6]). (i) If r is odd, then we have Φθp(τ
r(K)) = p.

(ii) If r is even, then we have Φθp(τ
r(K)) = ρrΨ∗

θp
(K).

Using Theorem 3.16 and Theorem 3.9, we obtain the quandle cocycle

invariants Φθp(τ
r(T (m,n))) of the torus knot T (m,n).
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Theorem 3.17 ([6]). If τ r(T (m,n)) admits a non-trivial Rp-coloring, then

Φθp(τ
r(T (m,n))) = p

(
p−1∑
i=1

t−
mnr
2p

i2

)

and otherwise Φθp(τ
r(T (m,n))) = p.

Proof of Proposition 3.2. By Theorem 3.17, we have

Φθp(τ
2(T (m, 2))) = p

(
p−1∑
i=1

t−2i2

)
.

If the cohomology class [θp] is not a generator of H3
Q(Rp;Zp) ∼= Zp, the cocycle

invariant must be p2 by definition. Hence, [θp] is a generator. Therefore, it

holds that [νp] = k[θp] ∈ H3
Q(Rp;Zp) for some k ∈ Zp. By definition, we have

Φνp(τ
2(T (m, 2))) = p

(
p−1∑
i=1

t−2ki2

)
.

On other hand, by calculating Φνp(τ
2(T (m, 2))), we obtain

Φνp(τ
2(T (m, 2))) = p2.

Hence, we have k = 0, that is, [νp] = 0 and [f ] = [θp] + [νp] = [θp] ∈
H3

Q(Rp;Zp).

Let F r
g (m,n) denote the surface knot of genus g obtained from τ r(T (m,n))

by surgery along g = 0 trivial 1-handles (cf. [26]). It is easy to prove the

following lemma.

Lemma 3.18 ([6]). Φθp

(
F r

g (m,n)
)

= Φθp

(
τ rT (m,n)

)

Theorem 3.19 ([6]). Suppose that m is odd. Then the surface knot F r
g (m,n)

is non-invertible if there is a prime factor p of m satisfying the following;

(i) p ≡ 3 (mod 4),

(ii) m is not divisible by p2,



CHAPTER 3. QUANDLE COCYCLE INVARIANTS 49

(iii) n is even, and

(iv) r is even and not divisible by p.

Proof. By Lemma 3.18, it is sufficient to prove that

Φp

(
τ rT (m,n)

) 6= ρ−1Φp

(
τ rT (m,n)

)
.

if m,n, r and p satisfy the conditions (i)–(iv). This can be seen easily from

Theorem 3.17 and the fact that

p
(p−1∑

i=0

t−Ni2
) 6= p

(p−1∑
i=0

tNi2
)

in Z[t±1]/(tp−1) if and only if p ≡ 3 (mod 4) and N is not divisible by p.

The following is a main theorem in this thesis.

Theorem 3.20 ([6]). For each non-negative integer g, there is an infinite

family of non-invertible surface knots of genus g.

Proof. Among the non-invertible surface knot F r
g (m,n) satisfying the con-

ditions (i)–(iv), we consider the ones given by m = p and n = r = 2, for

example. Then we see that the family
{
F 2

g (p, 2)
∣∣p = 3, 7, 11, 19, . . .

}
is infi-

nite, for if p 6= p′, then

Φp

(
F 2

g (p, 2)
)

= p
(p−1∑

i=0

t−2i2
)
,

Φp

(
F 2

g (p′, 2)
)

= p

by Theorem 3.17, and hence F 2
g (p, 2) is not ambient isotopic to F 2

g (p′, 2).

In the same way, we may calculate the cocycle invariant Φθ(τ
rP ) of the

alternating odd pretzel knot P = P (p1, . . . , pm)
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Theorem 3.21. If the alternating odd pretzel knot P (p1, . . . , pm) admits a

non-trivial Rp-coloring and r is even, then the cocycle invariant Φθ(τ
rP ) of

the r-twist-spin τ rP of P (p1, . . . , pm) is given by

Φθ(τ
rP ) =





p2 Case 1,

pn Case 2.
(3.2)

for any 3-cocycle θ ∈ Z3
Q(Rp;Zp). If P (p1, . . . , pm) admits only trivial Rp-

colorings or r is odd, then we have Φθ(τ
rP ) = p for any 3-cocycle θ ∈

Z3
Q(Rp;Zp).

Proof. Assume that P (p1, . . . , pm) admits a non-trivial Rp-coloring and r is

even. If θ = θp, then the equation (3.2) follows from Theorem 3.16 and

Theorem 3.9. Let C̃ be a restricted shadow Rp-coloring of the diagram DP

of P (p1, . . . , pm) such that a0 = s0. Let C be the Rp-coloring of the diagram

τ rDP determined by C̃. Then we obtain Wθp(C) = rW̃θp(C̃). Theorem

3.16 (ii) follows from the equation (cf. [6]). By Proposition 3.11, we have

Wθp(C) = 0. Since the cohomology class [θp] is a generator of H3(Rp,Zp),

it holds that Wθ(C) = Wθp(C) = 0 for any Zp-valued 3-cocycle θ on Rp

(cf. Proof of Proposition 3.11). Hence Φθ(τ
rP ) = Φθp(τ

rP ). Therefore, the

equation (3.2) holds for any 3-cocycle θ ∈ Z3
Q(Rp;Zp).

Assume that P (p1, . . . , pm) admits only trivial Rp-colorings and r is odd.

Then τ rP admits only trivial Rp-colorings. Therefore, we have Φθ(τ
rP ) = p

for any 3-cocycle θ ∈ Z3
Q(Rp;Zp).

The following is another main theorem in this thesis.

Theorem 3.22. There exists a non-ribbon 2-knot F which admit a non-

trivial Rp-coloring, and whose quandle cocycle invariant Φθ(F ) takes value

in Z ⊂ Z[Zp] for any 3-cocycle θ ∈ Z3
Q(Rp;Zp).
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Proof. Let P (p1, . . . , pm) be an alternating odd pretzel knot. If m = 3 then

P (p1, . . . , pm) is not trivial (cf. [29]). From Theorem 2.4, it follows that

the r-twist-spun knot τ rP of P (p1, . . . , pm) is a non-ribbon 2-knot for any

m = 3, r = 2. On the other hand, its quandle cocycle invariant Φθ(τ
rP )

takes value in Z ⊂ Z[Zp] for any 3-cocycle θ ∈ Z3
Q(Rp;Zp) by Theorem 3.21.

This completes the proof.
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