
Strong Normalizability

of Calculus of Explicit Substitutions
with Composition

Takafumi Sakurai

Department of Mathematics and Informatics, Chiba University
sakurai@math.s.chiba-u.ac.jp

Abstract. We develop a novel method for proving the strong normaliz-
ability of simply typed λx with a composition rule. Bloo and Geuvers [2]
proved the strong normalizability of λx with a composition rule, but our
composition rule is a new one: t〈y:=r〉〈x:=s〉 �→ t〈x:=s〉〈y:=r〈x:=s〉〉 if
x ∈ FV(r). In fact, we prove the stronger result: Suppose we have a re-
duction sequence that consists of rules of λx, the above composition rule,
and the permutation rule t〈y:=r〉〈x:=s〉 �→ t〈x:=s〉〈y:=r〉 if x �∈ FV(r),
where the successive application of permutation rules is finite. Then, the
reduction sequence is finite. This implies that the meta-substitution is
admissible in our calculus.

1 Introduction

λσ [1] is designed to formalize the implementation of λβ. So it was natural to
expect that λσ inherits all the good properties of λβ. But Melliès [10] has shown
that there is a typed λσ term that is not strongly normalizing. In his counterex-
ample, the substitution composition rule plays the essential role. So, since then,
a quest for an appropriate composition rule has begun. λd and λdn [8, 7] are vari-
ants of λσ whose substitution composition rules are more restrictive than that of
λσ. λws [4, 6, 5] is a calculus of explicit substitutions whose terms are decorated
with ‘labels’ that correspond to weakenings and it has a full composition rule
that is controlled by the information attached to the term. In the case of λx [3],
which is the simplest calculus of explicit substitution, terms do not have such
extra information. So, it is difficult to control the application of composition
rule. Up to now, the best result is the one proved by Bloo and Geuvers [2]. They
proved the strong normalizability of λx with the following composition rule:

t〈y:=r〉〈x:=s〉 �→ t〈y:=r〈x:=s〉〉 if y ∈ FV(x(t)) and x �∈ FV(x(t))−{y}
where x(t) stands for the substitution-normal-form of t. This form of compo-
sition has been considered as ‘on the edge’, but our composition rule is a full
composition rule controlled by a simple condition, that is,

t〈y:=r〉〈x:=s〉 �→ t〈x:=s〉〈y:=r〈x:=s〉〉 if x ∈ FV(r).

In this paper, we prove the strong normalizability of λx with this composition
rule. In fact, we prove the stronger result: Suppose we have a reduction sequence
that consists of rules of λx, the above composition rule, and the permutation
rule

t〈y:=r〉〈x:=s〉 �→ t〈x:=s〉〈y:=r〉 if x �∈ FV(r),

where the successive application of permutation rules is finite. Then, the re-
duction sequence is finite. This make the meta-substitution admissible in our
calculus.

Usually, when we try to prove the strong normalizability of λx or its variant,
it is necessary to show the lemma “If t〈x:=s〉〈y:=r〉 is SN, then ((λx. t)s)〈y:=r〉
is SN.” Then, we are tempted to prove this lemma by converting a reduction
sequence starting from ((λx. t)s)〈y:=r〉 to a reduction sequence starting from
t〈x:=s〉〈y:=r〉. But if we try to convert a reduction sequence ((λx. t)s)〈y:=r〉 ∗→
(λx. t〈y:=r〉)(s〈y:=r〉) → t〈y:=r〉〈x:=s〈y:=r〉〉, we get stuck. This is why the
proof of strong normalizability of λx is more difficult than that of λβ. Various
techniques are introduced to overcome this difficulty, but we present a novel
technique. We extend the notion of term by adding a new kind of substitution.
Our substitution has a distinctive feature that it can be composed with other
substitutions unconditionally. This leads to non-termination, but we can deal
with it by modifying the notion of SN. (We call the modified notion semi SN.)
In this setting, we can naturally prove the lemma (Lemma 3) that corresponds to
the lemma mentioned above, but the drawback is that the proof of void lemma
(weakening lemma) becomes complicated.

Unlike the ordinary style, we prove PSN property using intersection type sys-
tem. Furthermore, we can characterize semi SN using intersection type system,
though we omit the proof here.

This paper is organized as follows. In section 2, we describe our calculus.
Section 3 is the most complicated part of this paper, which is devoted to prove
void lemma. In section 4, we prove the reducibility theorem. In section 5, we
briefly note the relation with intersection type system.

2 Explicit Substitution

We define the calculus of explicit substitution λx [3]. We assume a countably
infinite set V of variables and define the syntax of (untyped) λx-term by the
following grammar

t, s ::= x | λx. t | ts | t〈x:=s〉
where x ranges over V. We omit the formal definition of free and bound variables
here. We just remark that in λx. t and t〈x:=s〉, the variable x in t is bound by the
binders λx. and 〈x:=s〉. We call x in λx. and 〈x:=s〉 a binding variable, 〈x:=s〉 a
substitution, and s (resp. t) in t〈x:=s〉 the body (resp. target) of the substitution.
We identify α-convertible terms and adopt the conventions that bound variables

2

are different from free variables and different binders have different binding vari-
ables. We write tyx for a term obtained by renaming free occurrence of x in t to
y.

A position is a string over L, F, A, T, B. (An empty string is denoted by Λ.)
For a term t and a position π, we define a term t/π as follows.

1. t/Λ
�= t

2. λx. t/Lπ
�= t/π

3. ts/Fπ
�= t/π ts/Aπ

�= s/π

4. t〈x:=s〉/Tπ �= t/π t〈x:=s〉/Bπ �= s/π

Note that t/π may be undefined, but we will use the notation t/π only when it is
defined and say π is a position in t. Then, we say t/π is in (position π of) t, or
t/π is a subterm of t. If t/π ≡ r〈x:=s〉 for some r, we say 〈x:=s〉 is in (position
π of) t.

Let π and σ be positions. We write π � σ if σ ≡ ππ′ for some π′, and write
π � σ if π′ �≡ Λ. If π is a position in t, then tπ[s] stands for the term which is
obtained from t by textually replacing its subterm t/π at π with s.

The conversion rules �→ of λx are defined as follows.

(λ) (λx. t)s �→ t〈x:=s〉
(var) x〈x:=s〉 �→ s
(gc) t〈x:=s〉 �→ t if x �∈ FV(t)

(abs) (λy. t)〈x:=s〉 �→ λy. t〈x:=s〉 if y �∈ {x} ∪ FV(s)
(app) (tr)〈x:=s〉 �→ (t〈x:=s〉)(r〈x:=s〉)

We refer to a set of these rules as λx and, moreover, we have the following
composition rule.

(comp) t〈y:=r〉〈x:=s〉 �→ t〈x:=s〉〈y:=r〈x:=s〉〉 if x ∈ FV(r)

We write (R|π) : t → t′ if t/π �→ s by rule (R) and t′ ≡ tπ[s], and say (R|π) is
applied to t, (R) is applied at π (in t), or π is a reduction position of (R). We
just write t → t′ or (R) : t → t′ when (R) and/or π need not be specified. To
specify a reduction sequence, we write γ1, . . . , γn, . . . : t1 → · · · tn → · · · when
γi is applied to ti.

We will extend the notion of term in the following, so we will refer to the
term defined above as an original λx-term. Now, we prepare another countably
infinite set D of variables that is disjoint from V and introduce a new kind of
substitution {x:=s}, which we call definitional substitution (or d-substitution for
short). Then, we say t is a term or t satisfies the term formation condition, if
t : term is derivable using the following rules.

x ∈ V ∪ D
x : term

t : term s : term
ts : term

t : term x ∈ V
λx. t : term

t : term s : term x ∈ V
t〈x:=s〉 : term

t : term s : term x ∈ D FV(s) ⊆ D

t〈x:=s〉 : term

t : term s : term x ∈ D FV(s) ⊆ D

t{x:=s} : term

3

We also assume that when a bound variable is renamed, a variable in V (resp.
D) should be renamed to a variable in V (resp. D). A term is ds-free if it
does not have a subterm of the form t{x:=s}. As for the notion of position,
d-substitution is treated in the same way as substitution, that is, t{x:=s}/Tπ �=
t/π, t{x:=s}/Bπ �= s/π.

The conversion rules for d-substitution are given by replacing 〈x:=s〉 in (var),
(gc), (abs), (app) by {x:=s} and these rules are referred to by the same names.
Furthermore, the following rules are introduced.

(d◦x) t〈y:=r〉{x:=s} �→ t{x:=s}〈y:=r{x:=s}〉
(d◦d) t{y:=r}{x:=s} �→ t{x:=s}{y:=r{x:=s}}
(d2x) t{x:=s} �→ t〈x:=s〉

(perm) t〈y:=r〉〈x:=s〉 �→ t〈x:=s〉〈y:=r〉 if x �∈ FV(r)

Note that the term formation condition is not violated by the reduction. Though
non-termination is easily caused by these rules, we can deal with it by relaxing
the notion of SN. We will define it after we introduce another form of term in
the next paragraph.

A definition is an expression of the form x := s where x ∈ D and s is a term
such that FV(s) ⊆ D, and a def-term is an expression of the form ∆ t where
∆ is a sequence of definitions and t is a term. When ∆ is an empty sequence,
we identify ∆ t and t. Let ∆ ≡ d1, . . . , dn be a definition sequence. We write
∆k for dk and ∆|k for d1, . . . , dk. For def-terms, we have the following reduction
rules.

(R) ∆ t → ∆ t′ if (R) : t → t′ where (R) is one of the above rules
(def) ∆,x := s t → ∆ t{x:=s}

A definition is essentially a d-substitution, but this syntactic distinction is neces-
sary when we define reducibility. Before that, we can think of x1:=s1, . . . , xn:=sn

t as t{xn:=sn} · · · {x1:=s1}.
A reduction sequence is non-permutative if the length of every successive

application of (perm)s is finite. A reduction sequence starting from ∆ t is non-
trivial if it is non-permutative and there exists its initial part ∆ t

∗→ t′ such that
t′ is ds-free. A def-term ∆ t is semi SN if any non-trivial reduction sequence
starting from ∆ t terminates, and a sequence of definitions ∆ is semi SN if
∆|k−1 sk is semi SN for each ∆k ≡ x:=sk. (Therefore, a ds-free term t is semi
SN iff any non-permutative reduction sequence starting from t terminates.) For
a ds-free term t, we write ν(t) for the length of the longest non-permutative
reduction sequence starting from t ignoring the number of (perm)s. Note that if
(perm) : t → t′ and ν(t) is defined then ν(t) = ν(t′).

A position π is n-applicative, if π ≡ Tk1F · · · Tkn−1FTkn for some k1, . . . , kn ≥
0, and is n≥-applicative if m-applicative for some m ≤ n. This notion is used
to specify a position in a term of the form (· · · (t0θ0 t1)θ1 · · · tn)θn where θi ≡
{〈xi1:=si1}〉 · · · {〈ximi

:=simi
}〉 and {〈xij :=sij}〉 stands for either a substitution or a

d-substitution. In this term, {〈xij :=sij}〉 (0 ≤ i ≤ n) and (ti−1θi−1 ti) (1 ≤ i ≤ n)
are in n−i+1-applicative position and t0 is in n+1-applicative position.

4

Lemma 1. If there is an infinite non-trivial reduction sequence starting from
∆ t0t1 · · · tn that has no (λ) at n-applicative position, at least one of ∆ t0,
∆ t1, . . ., ∆ tn is not semi SN.

Proof. Let γ be the reduction sequence. Since all terms in γ are of the form
(· · · (t′0θ0 t′1)θ1 · · · t′n)θn and γ is infinite, we have three cases. (i) There is an i-
applicative position π (1 ≤ i ≤ n) such that there are infinitely many reduction
positions of the form πAπ′ in γ. (ii) There is an n-applicative position π such
that there are infinitely many reduction positions of the form πFπ′ in γ. (iii)
There is an i-applicative position π (1 ≤ i ≤ n) such that there are infinitely
many reduction positions of the form πBπ′ in γ.

In the case (i), we construct a reduction sequence starting from ∆ tn−i+1

by modifying γ, that is, we change or skip each reduction γ in γ as follows: (In
the following, π̃ denotes a position obtained by removing all F from π.)

1. γ ≡ (R|πAπ′) where π is an i-applicative position: changed to (R|π̃π′).
2. γ ≡ (R|πBπ′) where π is an i≥-applicative position: changed to (R|π̃Bπ′).
3. γ ≡ (R|π) where (R) ≡ (comp), (d◦x), (d◦d), or (gc) and π is an i≥-

applicative position: changed to (R|π̃).
4. otherwise: skipped.

In the case (ii) (resp. (iii)), we can similarly construct an infinite reduction
sequence starting from ∆ t0 (resp. ∆ tn−i+1). ��
Lemma 2. If ∆ t is not semi SN, then ∆ ts, ∆ st, ∆ t〈x:=s〉, and ∆ s〈x:=t〉
are not semi SN.

Proof. We prove the case ∆ t〈x:=s〉. Other cases are similar. Suppose we have
an infinite non-trivial reduction sequence γ starting from ∆ t. By changing (def)
to (def), (d◦x|Λ) and changing (R|σ) to (R|Tσ), we have an infinite non-trivial
reduction sequence starting from ∆ t〈x:=s〉. ��

The following lemma is the one that we mentioned in the introduction. By ex-
amining how this kind of lemma is used in proving reducibility theorem, we find
that we need to prove this lemma only in the case 〈y:=r〉 is a d-substitution.
We explain the idea of the proof using a simple example. Suppose we have a
reduction sequence y:=r (λx. t)s → ((λx. t)s){y:=r} → ((λx. t)s)〈y:=r〉 ∗→
(λx. t〈y:=r〉)(s〈y:=r〉) → t〈y:=r〉〈x:=s〈y:=r〉〉. Then, we have the following se-
quence y:=r t〈x:=s〉 → t〈x:=s〉{y:=r} → t{y:=r}〈x:=s{y:=r}〉 ∗→ t〈y:=r〉
〈x:=s〈y:=r〉〉 by delaying (d2x).

Lemma 3. If ∆ (t〈x:=s〉)s1 · · · sn is semi SN, then ∆ (λx. t)ss1 · · · sn is semi
SN.

Proof. Suppose ∆ (λx. t)ss1 · · · sn is not semi SN. By Lemma 1, we have two
cases.

1. one of ∆ λx. t, ∆ s, ∆ s1, . . ., ∆ sn is not semi SN: If ∆ λx. t is not
semi SN, then ∆ t is not semi SN. So, by Lemma 2, ∆ (t〈x:=s〉)s1 · · · sn

is not semi SN.

5

2. there is an infinite non-trivial reduction sequence γ, (λ|σ), . . . where (λ|σ) is
the first (λ) applied at n+1-applicative position: Let γ, (λ|σ) : ∆ (λx. t)s
s1 · · · sn

∗→ ∆′ r1 → ∆′ r2. (Note that r1 is of the form (· · · (((λx. t′)s′)θ0

s′1)θ1 · · · s′n)θn and r2 is (· · · ((t′〈x:=s′〉)θ0 s′1)θ1 · · · s′n)θn.) We construct a
reduction sequence ∆ (t〈x:=s〉)s1 · · · sn

∗→ ∆′ r2 by modifying γ as follows.
First, we remove all n+1≥-applicative (d2x)s in γ and restore the substi-
tutions in the reduction sequence to the d-substitutions accordingly. We
trace the d-substitutions and apply (d2x) when they leave n+1≥-applicative
position (that is, when they come to the n+2-applicative position, the πA
position, or the πB position where π is the n+1≥-applicative position). We
also change n+1≥-applicative (comp) to (d◦d) and n+1≥-applicative (perm)
to (d◦d) and (gc). (Note that substitution 〈y:=r〉 in an n+1≥-applicative
position of r1 comes from ∆.) Then, we have a reduction sequence ∆
(λx. t)ss1 · · · sn

∗→ ∆′ r′1 such that some of n+1≥-applicative 〈y:=r〉 in
r1 are {y:=r} in r′1. By applying (d2x) to those {y:=r}, we have a new
reduction sequence ∆ (λx. t)ss1 · · · sn

∗→ ∆′ r1.
Next, we change or skip each reduction γ in the new sequence as follows, so
that we have a reduction sequence ∆ (t〈x:=s〉)s1 · · · sn

∗→ ∆′ r2.
(a) γ ≡ (R|πFπ′) where π is an n+1-applicative position: (i) π′ ≡ Tk: skipped

if (R) = (abs), and changed to (R|πTπ′) otherwise. (ii) π′ ≡ TkLπ′′:
changed to (R|πTTkπ′′).

(b) γ ≡ (R|πAπ′) where π is an n+1-applicative position: changed to (R|πBπ′).
(c) otherwise: unchanged.
Using this modified reduction sequence, we have an infinite non-trivial re-
duction sequence starting from ∆ (t〈x:=s〉)s1 · · · sn. ��

3 Void Lemma

To prove Void Lemma (Lemma 14), we introduce the notion of weight, but we
need to define several auxiliary notions to define it.

Let t be a term. We write dsfr(t) for a ds-free term obtained by replacing
every subterm s{x:=r} of t by s〈x:=r〉. Let ∆ t be a def-term where ∆ ≡
x1:=s1, . . . , xn:=sn. We write dsfr(∆ t) for a ds-free term dsfr(t〈xn:=sn〉 · · ·
〈x1:=s1〉). For a ds-free term t, core(t) is a term that is obtained by removing
‘irrelevant’ substitutions from t as follows.

1. core(x) �= x

2. core(λx. t) �= λx. core(t)
3. core(ts) �= core(t)core(s)
4. core(t〈x:=s〉) �= core(t) if x ∈ D and x �∈ FV(core(t))
5. core(t〈x:=s〉) �= core(t)〈x:=core(s)〉 if x ∈ V or x ∈ FV(core(t))

Note that t
∗→ core(t) by (gc)s and FV(t) ∩ V = FV(core(t)) ∩ V.

Given a term s〈x:=r〉, we write sv(s〈x:=r〉) for x and write sb(s〈x:=r〉) for
〈x:=r〉. Let t be a ds-free term and π be a position in t. Let ρ1, . . . , ρn be an

6

increasing sequence of all positions in t such that ρiT � π (1 ≤ i ≤ n). We
write CL(π, t) for a term (t/π)〈yn:=rn〉 · · · 〈y1:=r1〉 where 〈yi:=ri〉 ≡ sb(t/ρi).
This means that 〈yn:=rn〉 · · · 〈y1:=r1〉 is a sequence of substitutions that contain
position π in their scopes. We define a set of positions {Λ}∪{πB | sv(t/π) ∈ D} as
S(t) and say t is locally semi SN if core(CL(π, t)) is semi SN for every π ∈ S(t).

Lemma 4. Let t be a ds-free term and π, τ be positions in t. Suppose t/τ ≡
r〈x:=s〉, τT � π, and there is no τ ′ such that τT � τ ′T � π. Then, if x ∈
FV(t/π), there is a reduction sequence t/τ

∗→ t′ such that t′/ρ ≡ (t/π)〈x:=s〉
for some ρ, and if x �∈ FV(t/π), there is a reduction sequence t/τ

∗→ t′ such that
t′/ρ ≡ t/π for some ρ and t′/ρ is not in the scope of 〈x:=s〉.
Proof. By induction on (length of π)− (length of τT). In the base case (that is,
r ≡ t/π), take t/τ for t′ if x ∈ FV(t/π), and take r for t′ (since (gc) : t/τ → r) if
x �∈ FV(t/π). In the case r ≡ r2〈y:=r1〉, t/π is a subterm of r1, because there is no
τ ′ such that τT � τ ′T � π. If x ∈ FV(t/π), we have (comp) : r2〈y:=r1〉〈x:=s〉 →
r2〈x:=s〉〈y:=r1〈x:=s〉〉. By induction hypothesis, r1〈x:=s〉 ∗→ t′′ where t′′/ρ ≡
(t/π)〈x:=s〉. Therefore, r2〈y:=r1〉〈x:=s〉 ∗→ r2〈x:=s〉〈y:=t′′〉. If x �∈ FV(t/π), we
have (perm) : r2〈y:=r1〉〈x:=s〉 → r2〈x:=s〉〈y:=r1〉. Therefore, r1 is not in the
scope of 〈x:=s〉. For other cases of r, straightforward by induction hypothesis.

��
Lemma 5. If ∆ t is semi SN, then dsfr(∆ t) is locally semi SN.

Proof. Put r ≡ dsfr(∆ t). By (def) and (d2x), we have ∆ t
∗→ r. So, r is semi SN.

Take π ∈ S(r) and suppose CL(π, r) ≡ (r/π)〈yn:=rn〉 · · · 〈y1:=r1〉. Since r/π
∗→

core(r/π) by (gc), we have r
∗→ rπ[core(r/π)]. If yn ∈ FV(core(r/π)), we have

rπ [core(r/π)] ∗→ r′ where r′/ρ ≡ core(r/π)〈yn:=core(rn)〉 for some ρ by Lemma
4 and the property of core. If yn �∈ FV(core(r/π)), we can get rid of 〈yn:=rn〉 by
Lemma 4. By repeating this process, we have r

∗→ r′π′ [core(CL(π, r))] for some
r′ and π′. Therefore, core(CL(π, r)) is semi SN. ��
Lemma 6. If ∆1 t1 → ∆2 t2 and dsfr(∆1 t1) is locally semi SN, then
dsfr(∆2 t2) is locally semi SN.

Proof. By case analysis of the reduction rule. ��
We define totally ordered sets Wn, Fn (n = 0, 1, 2, . . .) as follows. In the fol-

lowing, the orders on pairs or ordered sequences are lexicographic and N denotes
the set of natural numbers with the ordinary order.

W0
�= ∅ F0

�= {ε (empty sequence)}
Wn

�= Wn−1 ∪ {〈k, f〉 | k ∈ N, f ∈ Fn−1}
Fn

�= {〈w1, h1〉, . . . , 〈wm, hm〉 | wi ∈ Wn, hi ∈ N, 〈wi, hi〉 ≥ 〈wi+1, hi+1〉}
(Note that Fn−1 ⊆ Fn.) For f1, f2 ∈ Fn, f1#f2 denotes the merge of two ordered
sequences f1 and f2 (that is, f1 and f2 are concatenated and then sorted). Note
that Wn is well-founded. (But

⋃∞
n=0 Wn is not well-founded.)

7

We define height hy(t) of a term t with respect to a variable y inductively as
follows.

1. hy(x) �= 2
2. hy(λx. t) �= hy(t) + 1
3. hy(ts) �= max(hy(t), hy(s)) + 1
4. hy(t〈x:=s〉) �= hy(t) if x ∈ D, or x ∈ V and y �∈ FV(s)
5. hy(t〈x:=s〉) �= hy(t) · hy(s) if x ∈ V and y ∈ FV(s)

Let Σ ≡ 〈x1:=s1〉, . . . , 〈xm:=sm〉 be a sequence of substitutions. We write |Σ|
for m. For a term t, we write Σt for a term t〈xm:=sm〉 · · · 〈x1:=s1〉 and for a set
of variables V , we define Σ|V as follows.

1. ε|V �= ε

2. Σ, 〈x:=s〉|V �= Σ|(FV(s) ∪ (V − {x})), 〈x:=s〉 if x ∈ V

3. Σ, 〈x:=s〉|V �= Σ|V if x �∈ V

For a ds-free term t, we define its weight w(t), which is an element of Wn for
some n, as follows. (In the following, Σ be a sequence of substitutions.)

1. w(t) �= wε(t)
2. wΣ(t) �= 〈ν(core(Σt)) + |Σ|, fΣ(t)〉
3. fΣ(x) �= ε (empty sequence)
4. fΣ(λx. t) �= fΣ(t)
5. fΣ(ts) �= fΣ(t) # fΣ(s)
6. fΣ(t〈x:=s〉) �= 〈wΣ|FV(s)(s), hx(t)〉 # fΣ,〈x:=s〉(t) if x ∈ D

7. fΣ(t〈x:=s〉) �= fΣ(s) # fΣ(t) if x ∈ V

We will give some examples of how to calculate w(t). In the following exam-
ples, we assume x, y, u,w ∈ D and z ∈ V and put k = ν((xy)〈x:=λz. z〉). We
have:

w((xy)〈x:=λz. z〉)
= 〈ν((xy)〈x:=λz. z〉), fε((xy)〈x:=λz. z〉)〉
= 〈k, 〈wε(λz. z), hx(xy)〉 # f〈x:=λz. z〉(xy)〉
= 〈k, 〈〈0, ε〉, 2〉 # f〈x:=λz. z〉(x) # f〈x:=λz. z〉(y)〉 = 〈k, 〈〈0, ε〉, 2〉〉

Another example is:

w((xw)〈y:=xu〉〈x:=λz. z〉)
= 〈ν((xw)〈x:=λz. z〉), fε((xw)〈y:=xu〉〈x:=λz. z〉)〉
= 〈k, 〈wε(λz. z), hx((xw)〈y:=xu〉)〉 # f〈x:=λz. z〉((xw)〈y:=xu〉)〉
= 〈k, 〈〈0, ε〉, 2〉 # 〈w〈x:=λz. z〉(xu), hy(xw)〉 # f〈x:=λz. z〉,〈y:=xu〉(xw)〉
= 〈k, 〈〈0, ε〉, 2〉 # 〈〈ν((xu)〈x:=λz. z〉)+1, f〈x:=λz. z〉(xu)〉, 2〉 # ε〉
= 〈k, (〈〈k+1, ε〉, 2〉, 〈〈0, ε〉, 2〉)〉

8

Though we omit the intermediate calculation steps, we have:

w((xw)〈x:=λz. z〉〈y:=(xu)〈x:=λz. z〉〉) = 〈k, (〈〈k, 〈〈0, ε〉, 2〉〉, 2〉, 〈〈0, ε〉, 2〉)〉

Note that w((xw)〈y:=xu〉〈x:=λz. z〉) > w((xw)〈x:=λz. z〉〈y:=(xu)〈x:=λz. z〉〉)
in W3.

Lemma 7. If t is locally semi SN, then w(t) is defined.

Proof. For each 〈x:=s〉 in t such that x ∈ D, wΣ|FV(s)(s) is calculated for
some Σ in the calculation process of w(t). Suppose 〈x:=s〉 is in position π and
CL(πB, t) ≡ (t/πB)〈yn:=rn〉 · · · 〈y1:=r1〉. Then, s ≡ t/πB and Σ is a subsequence
of 〈y1:=r1〉, . . . , 〈yn:=rn〉. Due to the term formation condition, FV(s′〈y:=r′〉) ⊆
D if FV(s′) ⊆ D and y ∈ D. Since FV(s) ⊆ D, 〈yi:=ri〉 such that yi ∈ V
can be removed by (gc). Therefore, core(CL(πB, t)) ∗→ core((Σ|FV(s))s). Since
core(CL(πB, t)) is semi SN, ν(core((Σ|FV(s))s)) is defined. ��

Lemma 8. Let r1, r2, r3 be ds-free terms.
1. wΣ,〈z:=r1〉(r2) > wΣ(r2〈z:=r1〉)
2. fΣ,〈z:=r1〉,〈y:=r2〉(r3) ≥ fΣ,〈y:=r2〈z:=r1〉〉,〈z:=r1〉(r3) if z ∈ FV(r2)
3. fΣ,〈z:=r1〉,〈y:=r2〉(r3) = fΣ,〈y:=r2〉,〈z:=r1〉(r3) if z �∈ FV(r2)
4. fΣ(r1) = fΣ|FV(r1)(r1)

Proof. 1. We have wΣ,〈z:=r1〉(r2) = 〈ν(core((Σ, 〈z:=r1〉)r2)) + |Σ, 〈z:=r1〉|, f1〉
and wΣ(r2〈z:=r1〉) = 〈ν(core(Σ(r2〈z:=r1〉))) + |Σ|, f2〉 for some f1, f2. Since
core((Σ, 〈z:=r1〉)r2) ≡ core(Σ(r2〈z:=r1〉)) and |Σ, 〈z:=r1〉| > |Σ|, we have the
result.
2. Since fΣ,...(r3) is calculated recursively on r3, for each s such that 〈x:=s〉 is in
r3 and x ∈ D, we need to compare ν(core(Σ1s)) + |Σ1| and ν(core(Σ2s)) + |Σ2|
where Σ1 ≡ Σ, 〈z:=r1〉, 〈y:=r2〉, Σ′|FV(s) and Σ2 ≡ Σ, 〈y:=r2〈z:=r1〉〉, 〈z:=r1〉,
Σ′|FV(s). Since core(Σ1s)

∗→ core(Σ2s) and |Σ1| ≥ |Σ2|, we have the result.
3. Similar to the above case.
4. For any substitution 〈x:=s〉 in r1 and any Σ′, we have Σ′|FV(s) = (Σ′|FV(r1))|
FV(s), because FV(s) ⊆ FV(r1). ��

Lemma 9. Let t1 be a ds-free term. If (R) : t1 → t2 and t1 is locally semi SN,
then w(t1) > w(t2) if (R) �= (perm) and w(t1) = w(t2) if (R) = (perm).

Proof. Let (R|π) : t1 → t2 be the reduction and ρ be a position in t1 such that

1. ρ � π
2. ρ ≡ Λ, or there exists ρ′ such that ρ ≡ ρ′B and sv(t/ρ′) ∈ D
3. for any ρ′′ such that ρ � ρ′′B � π, sv(t/ρ′′) ∈ V

By comparing the calculation processes of w(t1) and w(t2), we find following
three points where differences may occur. (Note that w(t2) is defined by Lemma
6.)

9

A. The main difference comes from wΣ1(t1/ρ) and wΣ2(t2/ρ) where Σ1 = Σ2

if (R) �= (gc) and Σ1|FV(t2/ρ) = Σ2 if (R) = (gc). (Note that only (gc) can
erase free variables.) Since wΣi(ti/ρ) = 〈ν(core(Σi(ti/ρ))) + |Σi|, fΣi(ti/ρ)〉
and core(ti/π) is a subterm of core(ti/ρ) (i = 1, 2), we will compare them
following the outline given below.
• If (R) �= (perm) and (R) �= (gc), we will show that ν(core(t1/π)) >

ν(core(t2/π)), or ν(core(t1/π)) = ν(core(t2/π)) and fΣ(t1/π) > fΣ(t2/π).
• If (R) = (gc), let νi ≡ ν(core(Σi(ti/ρ))) + |Σi| (i = 1, 2). We will show

that ν1 > ν2, or ν1 ≥ ν2 and fΣ1(t1/π) > fΣ2(t2/π).
• If (R) = (perm), we will show that ν(core(t1/π)) = ν(core(t2/π)) and

fΣ(t1/π) = fΣ(t2/π).
B. Suppose ρ ≡ ρ′B. Other than the point A, there are two cases t1/ρ may

contribute to the value of ν(core(Σ1s1)) that is a part of wΣ1(s1). (If so,
there is a corresponding calculation ν(core(Σ2s2)) that t2/ρ may contribute
to.)
• t1/ρ is a subterm of s1: In this case, t2/ρ is a subterm of s2 and Σ1|FV(s2)
≡ Σ2.

• Σ1 ≡ Σ′
1, 〈y:=r1〉, Σ and t1/ρ is a subterm of r1: In this case, s1 ≡ s2,

Σ2 ≡ Σ′
2, 〈y:=r2〉, Σ, and t2/ρ is a subterm of r2.

In both cases, we have ν(core(Σ1s1) + |Σ1| ≥ ν(core(Σ2s2)) + |Σ2| if (R) �=
(perm), and ν(core(Σ1s1) + |Σ1| = ν(core(Σ2s2)) + |Σ2| if (R) = (perm).
This follows from the proof of the point A.

C. There may be a subterm r1〈y:=s〉 of t1 such that t1/π is a subterm of
r1 and y ∈ D. Suppose r1 → r2 by this reduction. Then, we may have
hy(r1) < hy(r2) when (R) = (λ) or (R) = (comp) in the case 11 of the fol-
lowing case analysis, if r1〈y:=s〉 is a subterm of t1/ρ. (If not, t1/ρ does not
contribute to hy(r1), because sv(t1/ρ) ∈ D.) This implies 〈wΣ(s), hy(r1)〉 <
〈wΣ(s), hy(r2)〉, but in these cases we can verify ν(core(t1/ρ)) > ν(core(t2/ρ)).
Note also that hy(r1) = hy(r2) in the case (R) = (perm).

Now, we will do case analysis for the point A, but here we examine only a
few cases. (In the following, we write r′i for core(ri) (i = 1, 2, 3).)

1. (R) = (λ) and t1/π ≡ (λy. r1)r2: In this case, t2/π ≡ r1〈y:=r2〉, core(t1/π) ≡
(λy. r′1)r

′
2, and core(t2/π) ≡ r′1〈y:=r′2〉. So, we have (λ) : core(t1/π) →

core(t2/π). Therefore, ν(core(t1/π)) > ν(core(t2/π)).
2. (R) = (var) and t1/π ≡ z〈z:=r1〉: In this case, t2/π ≡ r1, core(t1/π) ≡

z〈z:=r′1〉, and core(t2/π) ≡ r′1. So, we have (var) : core(t1/π) → core(t2/π).
Therefore, ν(core(t1/π)) > ν(core(t2/π)).

3. (R) = (app), t1/π ≡ (r2r3)〈z:=r1〉, and z ∈ D: In this case, t2/π ≡ (r2〈z:=r1〉)
(r3〈z:=r1〉).
(a) z ∈ FV(r′1) or z ∈ FV(r′2): In this case, core(t1/π) ≡ (r′2r′3)〈z:=r′1〉 and

core(t2/π) ≡ (r′2〈z:=r′1〉)(r′3〈z:=r′1〉) or (r′2〈z:=r′1〉)r′3 or r′2(r
′
3〈z:=r′1〉).

So, we have core(t1/π) +→ core(t2/π) by (app) and 0 or 1 (gc). Therefore,
ν(core(t1/π)) > ν(core(t2/π)).

10

(b) z �∈ FV(r′1) and z �∈ FV(r′2): In this case, core(t1/π) ≡ core(t2/π) ≡
r′1r

′
2. So, we will show fΣ(t1/π) > fΣ(t2/π).

fΣ((r2r3)〈z:=r1〉)
= 〈w1, hx(r2r3)〉 # fΣ,〈z:=r1〉(r2r3)
= 〈w1, hx(r2r3)〉 # fΣ,〈z:=r1〉(r2) # fΣ,〈z:=r1〉(r3)
fΣ((r2〈z:=r1〉)(r3〈z:=r1〉))
= fΣ(r2〈z:=r1〉) # fΣ(r3〈z:=r1〉)
= 〈w1, hx(r2)〉 # fΣ,〈z:=r1〉(r2) # 〈w1, hx(r3)〉 # fΣ,〈z:=r1〉(r3)

where w1 ≡ wΣ|FV(r1)(r1). Since hx(r2r3) > hx(r2) and hx(r2r3) >
hx(r3), we have fΣ((r2r3)〈z:=r1〉) > fΣ((r2〈z:=r1〉)(r3〈z:=r1〉)).

4. (R) = (app), t1/π ≡ (r2r3)〈z:=r1〉, and z ∈ V: In this case, t2/π ≡ (r2〈z:=r1〉)
(r3〈z:=r1〉). Since y ∈ V, we have core(t1/π) ≡ (r′2r

′
3)〈z:=r1〉 and core(t2/π) ≡

(r′2〈z:=r′1〉)(r′3〈z:=r′1〉). So, we have (app) : core(t1/π) → core(t2/π). There-
fore, ν(core(t1/π)) > ν(core(t2/π)).

5. (R) = (abs) and t1/π ≡ (λz. r2)〈z:=r1〉: Similar to the case 3 and 4.
6. (R) = (gc), t1/π ≡ r2〈z:=r1〉, and z ∈ D: In this case, t2/π ≡ r2 and

z �∈ FV(r2). So, we have core(Σ1(t1/ρ)) ≡ core(Σ2(t2/ρ)) and |Σ1| ≥ |Σ2|.
Since fΣ1(r2〈z:=r1〉) = 〈wΣ|FV(r1)(r1), hx(r2)〉 # fΣ1,〈z:=r1〉(r2), we have
fΣ1(t1/π) > fΣ2(t2/π).

7. (R) = (gc), t1/π ≡ r2〈z:=r1〉, and z ∈ V: We have core(t1/π) ≡ r′2〈z:=r′1〉.
So, we have core(Σ1(t1/ρ)) +→ core(Σ2(t2/ρ)) by (gc)s. Since |Σ1| ≥ |Σ2|,
we have ν(core(Σ1(t1/ρ))) + |Σ1| > ν(core(Σ2(t2/ρ))) + |Σ2|.

8. (R) = (comp), t1/π ≡ r3〈y:=r2〉〈z:=r1〉 and z, y ∈ D: In this case, t2/π ≡
r3〈z:=r1〉〈y:=r2〈z:=r1〉〉 and z ∈ FV(r2).

(a) y ∈ FV(r′3), z ∈ FV(r′2): If z ∈ FV(r′3), then core(t1/π) ≡ r′3〈y:=r′2〉〈z:=r′1〉
and core(t2/π) ≡ r′3〈z:=r′1〉〈y:=r′2〈z:=r′1〉〉. So, we have (comp) : core(t1/π)
→ core(t2/π). If z �∈ FV(r′3), then core(t1/π) ≡ r′3〈y:=r′2〉〈z:=r′1〉 and
core(t2/π) ≡ r′3〈y:=r′2〈z:=r′1〉〉. So, we have (comp), (gc) : core(t1/π) →
r′3〈z:=r′1〉〈y:=r′2〈z:=r′1〉〉 → core(t2/π). In both cases, we have ν(core(t1/π))
> ν(core(t2/π)).

(b) otherwise: If y ∈ FV(r′3), z �∈ FV(r′2), and z ∈ FV(r′3), then core(t1/π) ≡
r′3〈y:=r′2〉〈z:=r′1〉 and core(t2/π) ≡ r′3〈z:=r′1〉〈y:=r′2〉, otherwise, core(t1/π)
≡ core(t2/π). Since (perm) : core(t1/π) → core(t2/π) in the former case,
we have ν(core(t1/π)) = ν(core(t2/π)) in both cases. So, we will show
fΣ(t1/π) > fΣ(t2/π).

fΣ(r3〈y:=r2〉〈z:=r1〉)
= 〈wΣ|FV(r1)(r1), hz(r3〈y:=r2〉)〉 # fΣ,〈z:=r1〉(r3〈y:=r2〉)
= 〈wΣ|FV(r1)(r1), hz(r3)〉 # 〈wΣ,〈z:=r1〉|FV(r2)(r2), hy(r3)〉#

fΣ,〈z:=r1〉,〈y:=r2〉(r3)

11

fΣ(r3〈z:=r1〉〈y:=r2〈z:=r1〉〉)
= 〈wΣ1(r2〈z:=r1〉), hy(r3〈z:=r1〉)〉 # fΣ,〈y:=r2〈z:=r1〉〉(r3〈z:=r1〉)
= 〈wΣ1(r2〈z:=r1〉), hy(r3)〉 # 〈wΣ2(r1), hz(r3)〉#

fΣ,〈y:=r2〈z:=r1〉〉,〈z:=r1〉(r3)

where Σ1 ≡ Σ|FV(r2〈z:=r1〉) and Σ2 ≡ Σ, 〈y:=r2〈z:=r1〉〉|FV(r1). We
have Σ, 〈z:=r1〉|FV(r2) ≡ Σ|(FV(r1) ∪ (FV(r2) − {z})), 〈z:=r1〉 ≡ Σ1,
〈z:=r1〉. We also have Σ2 ≡ Σ|FV(r1), since y �∈ FV(r1). Therefore, by
Lemma 8, we have fΣ(r3〈y:=r2〉〈z:=r1〉) > fΣ(r3〈z:=r1〉〈y:=r2〈z:=r1〉〉).

9. (R) = (comp), t1/π ≡ r3〈y:=r2〉〈z:=r1〉, z ∈ D, and y ∈ V: This case is
similar to the above, except that core(r3〈y:=r2〉) ≡ r′3〈y:=r′2〉 since y ∈ V,
and that fΣ(t1/π) > fΣ(t2/π) is proved as follows.

fΣ(r3〈y:=r2〉〈z:=r1〉)
= 〈wΣ|FV(r1)(r1), hz(r3〈y:=r2〉)〉 # fΣ,〈z:=r1〉(r3〈y:=r2〉)
= 〈wΣ|FV(r1)(r1), hz(r3〈y:=r2〉)〉 # fΣ,〈z:=r1〉(r2) # fΣ,〈z:=r1〉(r3)
fΣ(r3〈z:=r1〉〈y:=r2〈z:=r1〉〉)
= fΣ(r2〈z:=r1〉) # fΣ(r3〈z:=r1〉)
= 〈wΣ|FV(r1)(r1), hz(r2)〉 # fΣ,〈z:=r1〉(r2) # 〈wΣ|FV(r1)(r1), hz(r3)〉#

fΣ,〈z:=r1〉(r3)

Since z ∈ FV(r2) and y ∈ V, we have hz(r3〈y:=r2〉) > hz(r2) and hz(r3〈y:=r2〉)
> hz(r3). Therefore, fΣ(r3〈y:=r2〉〈z:=r1〉) > fΣ(r3〈z:=r1〉〈y:=r2〈z:=r1〉〉).

10. (R) = (comp), t1/π ≡ r3〈y:=r2〉〈z:=r1〉, z ∈ V, and y ∈ D: This case is void,
because FV(r2) ⊆ D.

11. (R) = (comp), t1/π ≡ r3〈y:=r2〉〈z:=r1〉 and z, y ∈ V: By the remark after
the definition of core, we have z ∈ FV(r′2). We also have core(r3〈y:=r2〉) ≡
r′3〈y:=r′2〉 since y ∈ V. Therefore, this can be proved similarly to the case 8a.

12. (R) = (perm), t1/π ≡ r3〈y:=r2〉〈z:=r1〉 and z, y ∈ D: In this case, t2/π ≡
r3〈z:=r1〉〈y:=r2〉 and z �∈ FV(r2). If y ∈ FV(r′3) and z ∈ FV(r′3), then
(perm) : core(t1/π) → core(t2/π), otherwise, core(t1/π) ≡ core(t2/π). In
both cases, we have ν(core(t1/π)) = ν(core(t2/π)). So, we will show fΣ(t1/π)
= fΣ(t2/π).

fΣ(r3〈y:=r2〉〈z:=r1〉)
= 〈wΣ|FV(r1)(r1), hz(r3〈y:=r2〉)〉 # fΣ,〈z:=r1〉(r3〈y:=r2〉)
= 〈wΣ|FV(r1)(r1), hz(r3)〉 # 〈wΣ,〈z:=r1〉|FV(r2)(r2), hy(r3)〉#

fΣ,〈z:=r1〉,〈y:=r2〉(r3)
fΣ(r3〈z:=r1〉〈y:=r2〉)
= 〈wΣ1(r2), hy(r3〈z:=r1〉)〉 # fΣ,〈y:=r2〉(r3〈z:=r1〉)
= 〈wΣ1(r2), hy(r3)〉 # 〈wΣ2(r1), hz(r3)〉 # fΣ,〈y:=r2〉,〈z:=r1〉(r3)

where Σ1 ≡ Σ|FV(r2) and Σ2 ≡ Σ, 〈y:=r2〉|FV(r1). We have Σ, 〈z:=r1〉|
FV(r2) ≡ Σ|FV(r2) ≡ Σ1, since z �∈ FV(r2). We also have Σ2 ≡ Σ|FV(r1),
since y �∈ FV(r1). By Lemma 8, we have the result.

12

13. (R) = (perm), t1/π ≡ r3〈y:=r2〉〈z:=r1〉, z ∈ D, and y ∈ V: In this case,
t2/π ≡ r3〈z:=r1〉〈y:=r2〉 and z �∈ FV(r2). If z ∈ FV(r′3), then (perm) :
core(t1/π) → core(t2/π), otherwise, core(t1/π) ≡ core(t2/π). In both cases,
we have ν(core(t1/π)) = ν(core(t2/π)). So, we will show fΣ(t1/π) = fΣ(t2/π).

fΣ(r3〈y:=r2〉〈z:=r1〉)
= 〈wΣ|FV(r1)(r1), hz(r3〈y:=r2〉)〉 # fΣ,〈z:=r1〉(r3〈y:=r2〉)
= 〈wΣ|FV(r1)(r1), hz(r3)〉 # fΣ,〈z:=r1〉(r2) # fΣ,〈z:=r1〉(r3)
fΣ(r3〈z:=r1〉〈y:=r2〉)
= fΣ(r2) # fΣ(r3〈z:=r1〉)
= fΣ(r2) # 〈wΣ|FV(r1)(r1), hz(r3)〉 # fΣ,〈z:=r1〉(r3)

Since z �∈ FV(r2), we have fΣ,〈z:=r1〉(r2) = fΣ(r2) by Lemma 8. So, we have
fΣ(r3〈y:=r2〉〈z:=r1〉) = fΣ(r3〈z:=r1〉〈y:=r2〉).

14. (R) = (perm), t1/π ≡ r3〈y:=r2〉〈z:=r1〉, z ∈ V, and y ∈ D: Symmetric to the
above case.

15. (R) = (perm), t1/π ≡ r3〈y:=r2〉〈z:=r1〉 and z, y ∈ V: Easy. ��
By this lemma, we have shown that weights of terms in a non-permutative
reduction sequence decreases, but to conclude that the sequence is finite, it is
necessary to show that all weights are in Wn for some n.

When w �∈ Wn−1 and w ∈ Wn, we define the level of w as n and the level of
w is denoted by |w|. We can calculate the level of a ds-free term t as follows.

1. lv(x) �= 1
2. lv(λx. t) �= lv(t)
3. lv(ts) �= max(lv(t), lv(s))
4. lv(t〈x:=s〉) �= max(lv(t), lv(s) + 1) if x ∈ D

5. lv(t〈x:=s〉) �= max(lv(t), lv(s)) if x ∈ V

Lemma 10. Let t be a ds-free term and suppose w(t) is defined. Then, |w(t)| =
lv(t).

Proof. When f �∈ Fn−1 and f ∈ Fn, we write |f | for n. Then, by clause 2
of the definition of weight, we have |wΣ(t)| = |fΣ(t)| + 1 if wΣ(t) is defined.
By induction on t, we prove that |wΣ(t)| = lv(t) if wΣ(t) is defined. Here,
we prove only the case t〈x:=s〉 (x ∈ D). By clause 6, we have |fΣ(t〈x:=s〉)| =
max(|wΣ|FV(s)(s)|, |fΣ,〈x:=s〉(t)|). Therefore, |wΣ(t〈x:=s〉)| = max(|wΣ|FV(s)(s)|+
1, |fΣ,〈x:=s〉(t)| + 1) = max(lv(s) + 1, lv(t)) = lv(t〈x:=s〉). ��
Since the level may increase by reduction, we need to estimate the upper bound
of the levels in a reduction sequence. We define a potential level plv(t) of a ds-free
term t as follows. (In the following clauses, x in 〈x:=s〉 satisfies x ∈ D.)

1. plv(x) �= 1
2. plv(λx. t) �= plv(t)

13

3. plv(ts) �= max(plv(t), plv(s))
4. plv(y〈x:=s〉) �= plv(s) + 1
5. plv((λy. t)〈x:=s〉) �= plv(t〈x:=s〉)
6. plv((tr)〈x:=s〉) �= max(plv(t〈x:=s〉), plv(r〈x:=s〉))
7. plv(t〈y:=r〉〈x:=s〉) �= max(plv(t〈y:=r〈x:=s〉〉), plv(t〈x:=s〉)) if x ∈ FV(r)
8. plv(t〈y:=r〉〈x:=s〉) �= max(plv(t〈y:=r〉), plv(t〈x:=s〉)) if x �∈ FV(r)
9. plv(t〈y:=r〉) �= max(plv(t), plv(r)) if y ∈ V

Lemma 11. plv is well-defined.

Proof. Let t be a ds-free term. When t is of the form t0〈xn:=tn〉 · · · 〈x1:=t1〉
where t0 is not of the form r1〈y:=r2〉, we define prefix length of t as n. We can
prove the well-definedness of plv(t) by double induction on the size of t and the
prefix length of t. ��
Lemma 12. Let t1 be a ds-free term. If t1 → t2, then plv(t1) ≥ plv(t2).

Proof. By case analysis of the reduction rule. ��
Lemma 13. Let t be a ds-free term and suppose w(t) is defined. Then, |w(t)| ≤
plv(t).

Proof. Since lv(t) ≤ plv(t) implies this lemma by Lemma 10, we prove it by
induction on the definition of plv(t). The critical case is clause 7. By induction
hypothesis, we have

lv(t〈y:=r〈x:=s〉〉) ≤ plv(t〈y:=r〈x:=s〉〉), lv(t〈x:=s〉) ≤ plv(t〈x:=s〉)
Since lv(t〈y:=r〉) ≤ lv(t〈y:=r〈x:=s〉〉) and lv(t〈y:=r〉〈x:=s〉) = max(lv(t〈y:=r〉),
lv(t〈x:=s〉)), we have lv(t〈y:=r〉〈x:=s〉) ≤ plv(t〈y:=r〉〈x:=s〉). ��
Lemma 14 (Void Lemma). If ∆ s and ∆ t are semi SN and x �∈ FV(t),
then ∆, x := s t is semi SN.

Proof. Given a non-trivial reduction sequence starting from ∆, x := s t, we
have a ds-free term t0 such that ∆, x := s t

∗→ t0 and γ : t0 → t1 → t2 → · · ·
is a non-permutative reduction sequence. First, we will show that t0 is lo-
cally semi SN. Let ∆ ≡ x1:=s1, . . . , xn:=sn and define V (r) �= {x ∈ D |
r2{x:=r1} or r2〈x:=r1〉 is a subterm of r}. Without loss of generality, we can
assume {x1, . . . , xn}, V (s1), . . ., V (sn), {x}, V (s), V (t) are mutually disjoint.
Put r ≡ dsfr(∆, x := s t) and take any π ∈ S(r). If π ≡ Λ or sv(r/π) ∈
V (t), put r′ ≡ dsfr(∆ t). Otherwise, put r′ ≡ dsfr(∆ s). Let π′ be Λ if
π ≡ Λ, and π′ be a position such that sv(r′/π′) ≡ sv(r/π) otherwise. Then,
core(CL(π, r)) ≡ core(CL(π′, r′)), because x �∈ FV(t). Since ∆ s and ∆ t are
semi SN, core(CL(π′, r′)) is semi SN by Lemma 5. Therefore, r is locally semi
SN. So, t0 is locally semi SN by Lemma 6.

By Lemma 13 and Lemma 12, we have |w(ti)| ≤ plv(t0). Therefore, γ is finite
by Lemma 9. ��

14

4 Type System and Reducibility

We recall simply typed λx. We define types (A, B) of simply typed λx by

A, B ::= o | A→B

where o ranges over atomic types. A declaration is an expression of the form x : A
where x is a variable and A is a type, and a typing judgement is an expression
of the form Γ � t : A where Γ is a sequence of declarations whose variables are
different each other, t is an original λx-term, and A is a type. The inference rules
to derive typing judgements of simply typed λx are given as follows and t is said
to be a typable term if a typing judgement of the form Γ � t : A is derivable for
some Γ and A.

Γ1, x : A, Γ2 � x : A
(var)

Γ, x : A � t : B

Γ � λx. t : A→B
(abs) Γ � t : A→B Γ � s : A

Γ � ts : B
(app)

Γ � s : A Γ, x : A � t : B

Γ � t〈x:=s〉 : B
(xsub)

We have defined typability on original λx-terms, but we will define our re-
ducible set as a set of def-terms ∆ t such that FV(t) ⊆ D.

We introduce the following relation < on def-terms.

∆ t < ∆, x := s t if x �∈ FV(t)

We write ≤ for the reflexive and transitive closure of <. We associate a set of
def-terms for each type and sequence of definitions as follows.

[o]∆
�= {∆ t | FV(t) ⊆ D and ∆ t is semi SN}

[A→B]∆
�=

∆ t

∣∣∣∣∣∣∣∣
FV(t) ⊆ D, ∆ is semi SN, and
for all Σ such that ∆ t ≤ Σ t and Σ is semi SN,
and for all Σ s ∈ [A]Σ ,
Σ ts ∈ [B]Σ


We say ∆ t is reducible if ∆ t ∈ [A]∆ for some A.

In the following, we prove that a reducible def-term is semi SN and that a
typable term is reducible. First, we prove the former part (Proposition 1).

Proposition 1. (1) If ∆ t ∈ [C]∆, then ∆ t is semi SN.
(2) Let ∆ ≡ y1:=r1, . . . , ym:=rn. If ∆ s1, . . ., ∆ sn (n ≥ 0), and ∆ are semi
SN and x �∈ {y1, . . . , ym}, then ∆ xs1 · · · sn ∈ [C]∆.

Proof. We prove (1) and (2) simultaneously by induction on C.

1. C ≡ o: (1) Clear. (2) Since ∆ xs1 · · · sn is semi SN by Lemma 1, ∆
xs1 · · · sn ∈ [o]∆.

15

2. C ≡ A→B: (1) Take a new variable y. Then, ∆ y ∈ [A]∆ by induction
hypothesis. So, we have ∆ ty ∈ [B]∆. By induction hypothesis, ∆ ty is
semi SN. Since a reduction sequence starting from ∆ t can be lifted to a
reduction sequence starting from ∆ ty, ∆ t is semi SN. (2) Take any Σ
such that ∆ xs1 · · · sn ≤ Σ xs1 · · · sn and Σ is semi SN, and take any
Σ r ∈ [A]Σ . By induction hypothesis, Σ r is semi SN. By Lemma 14,
Σ s1, . . ., Σ sn are semi SN. Therefore, Σ xs1 · · · snr ∈ [B]Σ by induction
hypothesis. ��
Next, we prove that a typable term is reducible (Theorem 1).

Lemma 15. If ∆ t ∈ [C]∆, ∆ t ≤ Σ t, and Σ is semi SN, then Σ t ∈ [C]Σ.

Proof. By induction on type C, using Lemma 14 in the base case. ��
Lemma 16. If ∆ t ∈ [C]∆ and t → t′, then ∆ t′ ∈ [C]∆.

Proof. By induction on type C. ��
Lemma 17. If ∆, x := s ts1 · · · sn ∈ [C]∆,x:=s and x �∈ ⋃n

i=1 FV(si), then
∆ (t{x:=s})s1 · · · sn ∈ [C]∆, therefore, ∆ (t〈x:=s〉)s1 · · · sn ∈ [C]∆.

Proof. We prove the first part of the lemma by induction on type C.

1. C ≡ o: By Proposition 1, ∆, x := s ts1 · · · sn is semi SN. We have ∆, x := s
ts1 · · · sn

∗→ ∆ (t{x:=s})(s1{x:=s}) · · · (sn{x:=s}) ∗→ ∆ (t{x:=s})s1 · · · sn,
since x �∈ ⋃n

i=1 FV(si). Therefore, ∆ (t{x:=s})s1 · · · sn is semi SN.
2. C ≡ A→B: We put t′ ≡ (t{x:=s})s1 · · · sn. Take any Σ such that ∆ t′ ≤

Σ t′ and Σ is semi SN, and take any Σ r ∈ [A]Σ . We can take y ∈ D
such that y �∈ ⋃n

i=1 FV(si) ∪ FV(r). Then, by Lemma 15, we have Σ, y :=
s r ∈ [A]Σ,y:=s. Then, we have Σ, y := s tyxs1 · · · snr ∈ [B]Σ,y:=s. Therefore,
Σ t′r ∈ [B]Σ by induction hypothesis.

Therefore, ∆ (t{x:=s})s1 · · · sn ∈ [C]∆. By Lemma 16, ∆ (t〈x:=s〉)s1 · · · sn ∈
[C]∆. ��

Here is a subtle point. We say t is inner if t is a ds-free term such that x ∈ V
for every substitution 〈x:=s〉 in t.

Lemma 18. Let t be an inner term and suppose x ∈ D and z ∈ V. If ∆
(t〈x:=s〉)s1 · · · sn ∈ [C]∆, then ∆ (tzx〈z:=s〉)s1 · · · sn ∈ [C]∆.

Proof. Since tzx〈z:=s〉 satisfies the term formation condition and the conditions
for the application of reduction rules does not change, we have the result when
C ≡ o. The rest of the lemma can be proved by induction on type C. ��
Lemma 19. If ∆ (t〈x:=s〉)s1 · · · sn ∈ [C]∆, then ∆ (λx. t)ss1 · · · sn ∈ [C]∆.

Proof. By induction on type C, using Lemma 3 in the base case. ��

16

Lemma 20. Let ∆ ≡ ∆1, x := s, ∆2. If ∆ s1, . . ., ∆ sn (n ≥ 0), ∆ are semi
SN and ∆1 s is reducible, then ∆ xs1 · · · sn ∈ [C]∆.

Proof. Since ∆1 s is semi SN by Proposition 1, it is easy to see that ∆1, x := s x
is semi SN. Therefore, ∆ x is semi SN by Lemma 14. Now, suppose ∆ xs1 · · · sn

is not semi SN. By Lemma 1, we have two cases.

1. one of ∆ x, ∆ s1, . . ., ∆ sn is not semi SN: Contradiction.
2. there is an infinite reduction sequence that begins with γ1, . . . , γm, (λ|σ)

where (λ|σ) is the first (λ) applied at n-applicative position: To apply
(λ) at n-applicative position, x should be instantiated, that is, γi : ∆′

tσ[x〈x:=s′〉] → ∆′ tσ[s′] for some i where σ is an n-applicative position and
∆ s

∗→ ∆′ s′. Since ∆1 s is reducible, ∆ s′ is reducible by Lemma 15,
16, and 17. Therefore, ∆ s′s1 · · · sn is semi SN. By applying the reduction
sequence γ1, . . ., γi−1 to ∆ s′s1 · · · sn, we have ∆′ tσ[s′]. Contradiction.

Therefore, ∆ xs1 · · · sn is semi SN. The rest of the lemma can be proved by
induction on type C. ��

We can assume an injective map ι : V → D and write x̂ for ι(x). We write
t̂ for a term obtained by renaming each free occurrence of x ∈ V in t by x̂.
Let ∆ ≡ x̂1:=s1, . . . , x̂n:=sn be a definition sequence and Γ ≡ xi1 : Ai1 , . . . ,
xim

: Aim
(1 ≤ i1 < · · · < im ≤ n) be a declaration sequence. We say ∆ is a

reducible instance of Γ if ∆′ sij
∈ [Aij

]∆′ (∆′ ≡ ∆|ij−1) for each j in 1..m.

Theorem 1. Let ∆ be a definition sequence and suppose Γ � r : C is derivable.
If ∆ is a reducible instance of Γ , then ∆ r̂ ∈ [C]∆.

Proof. By induction on the derivation of Γ � r : C.

1. (var): By Proposition 1 or Lemma 20.
2. (abs): In this case, r ≡ λx. t and C ≡ A→B. Take any ∆′ such that ∆ λ̂x. t ≤

∆′ λ̂x. t and ∆′ is semi SN, and take any ∆′ s ∈ [A]∆′ . Since ∆′, x̂:=s is a
reducible instance of Γ, x:A, we have ∆′, x̂:=s t̂ ∈ [B]∆′,x̂:=s by induction
hypothesis. Since t̂ is inner, we have ∆′ (̂λx. t)s ∈ [B]∆′ by Lemma 17, 18,
and 19. Therefore, ∆ λ̂x. t ∈ [A→B]∆.

3. (app): In this case, r ≡ ts and C ≡ A. By induction hypothesis, ∆ t̂ ∈
[A→B]∆ and ∆ ŝ ∈ [A]∆. Therefore, ∆ t̂s ∈ [B]∆.

4. (xsub): In this case, r ≡ t〈x:=s〉 and C ≡ B. Since ∆ ŝ ∈ [A]∆ by induc-
tion hypothesis, ∆, x̂:=ŝ is a reducible instance of Γ, x:A. So, ∆, x̂:=ŝ t̂ ∈
[B]∆,x̂:=ŝ by induction hypothesis. Since t̂ is inner, we have ∆ ̂t〈x:=s〉 ∈ [B]∆
by Lemma 17 and 18. ��

Corollary 1. If t is typable in λx, then t is semi SN, therefore, t is SN with
respect to λx + (comp).

17

5 Intersection Type System

We extend the type system λx by introducing the intersection type A ∩ B and
adding the following typing rules.

Γ � t : A Γ � t : B
Γ � t : A ∩ B

Γ � t : A ∩ B
Γ � t : A

Γ � t : A ∩ B
Γ � t : B

But in this section, we regard Γ in a typing judgement Γ � t : A as a finite set
of declarations whose variables are different each other. We call this type system
λx∩, and call the type system λx∩ − (xsub) (where terms are restricted to pure
λ-terms) λ∩.

Theorem 2 (PSN). Let t be a pure λ-term. If t is SN with respect to β-rule,
then t is semi SN, therefore, t is SN with respect to λx + (comp).

Proof. By the well-known result (e.g. [11]), t is typable in λ∩. So, t is typable
in λx∩. By defining [A ∩B]∆

�= [A]∆ ∩ [B]∆, we can extend Corollary 1 to λx∩.
Therefore, t is semi SN. ��

Lengrand et al. [9] have shown that strong normalizability with respect to
λx is characterized by a type system λx∩ extended with a rule called (drop).
By adjusting their proof method to our case, we will show that semi SN is
characterized by λx∩.

We define preorder ≤ on types as the smallest reflexive and transitive relation
that satisfies the following.

1. A ∩ B ≤ A
2. A ∩ B ≤ B
3. if C ≤ A and C ≤ B, then C ≤ A ∩ B

We define relation ∼ on types as follows: A ∼ B iff A ≤ B and B ≤ A. We
define relation ≤ on finite sets of declarations as follows: Γ ≤ Γ ′ iff

for each x:A′ ∈ Γ ′, there exists A such that x:A ∈ Γ and A ≤ A′.

We define Γ1∩Γ2
�= {x:A1∩A2 | x:A1 ∈ Γ1, x:A2 ∈ Γ2}∪{x:A | x:A ∈ Γ1, x:A �∈

Γ2} ∪ {x:A | x:A �∈ Γ1, x:A ∈ Γ2}.
Lemma 21. If Γ ′ ≤ Γ , A ≤ A′, and Γ � t : A, then Γ ′ � t : A′.

As usual, we can prove the Generation Lemma.

Lemma 22 (Generation Lemma).
1. Γ � x : A iff there exists x:A′ ∈ Γ such that A′ ≤ A.
2. Γ � ts : B iff there exist A1, . . . , An, B1, . . . , Bn such that B ≥ B1 ∩ · · · ∩Bn,
Γ � t : Ai→Bi, and Γ � s : Ai (1 ≤ i ≤ n).
3. Γ � λx. t : C iff there exist A1, . . . , An, B1, . . . , Bn such that C ∼ (A1→B1)∩
· · · ∩ (An→Bn) and Γ, x:Ai � t : Bi (1 ≤ i ≤ n).
4. Γ � t〈x:=s〉 : B iff there exists A such that Γ � s : A and Γ, x:A � t : B.

18

Lemma 23. If s1, . . . , sn are typable, then for any type A there exists Γ such
that Γ � xs1 · · · sn : A.

Proof. Suppose Γ1 � s1 : A1, . . ., Γn � sn : An. Then, we have (∩n
i=1Γi) ∩

x:A1→· · ·→An→A � xs1 · · · sn : A. ��

Lemma 24. Let t be a β-normal pure λ-term.
1. If t is not an abstraction, then for any type A there exists Γ such that Γ � t : A
in λ∩.
2. If t is an abstraction, then t is typable in λ∩.

Proof. By induction on t. ��

We introduce the following rules.

(varc) x〈yn:=rn〉 · · · 〈y1:=r1〉〈x:=s〉 → s〈yn:=rn�x:=s�〉 · · · 〈y1:=r1�x:=s�〉
(gcc) t〈yn:=rn〉 · · · 〈y1:=r1〉〈x:=s〉 → t〈yn:=rn�x:=s�〉 · · · 〈y1:=r1�x:=s�〉

if x �∈ FV(t)

where t�x:=s� is defined as follows.

1. t�x:=s� �= t〈x:=s〉 if x ∈ FV(t)
2. t�x:=s� �= t if x �∈ FV(t)

Then, we define a strategy � for λx+(varc)+(gcc) as follows. (In the following,
C[] and A[] are contexts of the form C[] ≡ ([]〈xn:=sn〉 · · · 〈x1:=s1〉)t1 · · · tm
and A[] ≡ []t1 · · · tm and nf(s) means that s is normal with respect to �.)

1. λx. t� λx. t′ if t� t′

2. A[xs1 · · · snt]� A[xs1 · · · snt′] if nf(xs1 · · · sn) and t� t′

3. A[(λx. t)s]� A[t〈x:=s〉]
4. C[(λy. t)〈x:=s〉]� C[λy. t〈x:=s〉]
5. C[(tr)〈x:=s〉]� C[(t〈x:=s〉)(r〈x:=s〉)]
6. A[x〈yn:=rn〉 · · · 〈y1:=r1〉〈x:=s〉]� A[s〈yn:=rn�x:=s�〉 · · · 〈y1:=r1�x:=s�〉]
7. A[z〈yn:=rn〉 · · · 〈y1:=r1〉〈x:=s〉]� A[z〈yn:=rn�x:=s�〉 · · · 〈y1:=r1�x:=s�〉]

if x �≡ z and x ∈ FV(z〈yn:=rn〉 · · · 〈y1:=r1〉)
8. A[z〈yn:=rn〉 · · · 〈y1:=r1〉〈x:=s〉]� A[z〈yn:=rn〉 · · · 〈y1:=r1〉]

if x �∈ FV(z〈yn:=rn〉 · · · 〈y1:=r1〉) and nf(s)
9. A[z〈yn:=rn〉 · · · 〈y1:=r1〉〈x:=s〉]� A[z〈yn:=rn〉 · · · 〈y1:=r1〉〈x:=s′〉]

if x �∈ FV(z〈yn:=rn〉 · · · 〈y1:=r1〉) and s� s′

Lemma 25 (Subject Expansion). If t� s and Γ � s : A,

then

{
Γ ′ � t : A for some Γ ′ ≤ Γ if t is not an abstraction
Γ ′ � t : A′ for some Γ ′ ≤ Γ and A′ if t is an abstraction

Proof. By considering the derivation of A[s] or C[s], we can easily prove the
following two claims:

19

Suppose that, for any Γ and A such that Γ � s : A, there exists Γ ′ ≤ Γ
such that Γ ′ � t : A. If Γ � A[s] : C, then there exists Γ ′ ≤ Γ such that
Γ ′ � A[t] : C.

and

Suppose that Γ � s : A implies Γ � t : A for any Γ and A. If Γ � C[s] : C,
then Γ � C[t] : C.

We prove the lemma by induction on the definition of�. The base cases are
3–7. First, we prove these base cases when A[] ≡ C[] ≡ [].

3. Suppose Γ � t〈x:=s〉 : B. By Lemma 22, we have Γ � s : A and Γ, x:A � t : B
for some A. Therefore, Γ � (λx. t)s : B

4. Suppose Γ � λy. t〈x:=s〉 : C. By Lemma 22, there exist A1, . . . , An, B1, . . . ,
Bn such that C ∼ (A1→B1) ∩ · · · ∩ (An→Bn) and Γ, y:Ai � t〈x:=s〉 : Bi

(1 ≤ i ≤ n). So, by Lemma 22, there exists Ci such that Γ, y:Ai � s : Ci

and Γ, y:Ai, x:Ci � t : Bi. Since y �∈ FV(s), we have Γ � s : Ci. Hence,
Γ � (λy. t)〈x:=s〉 : Ai→Bi. Therefore, Γ � (λy. t)〈x:=s〉 : C.

5. Suppose Γ � (t〈x:=s〉)(r〈x:=s〉) : B. By Lemma 22, there exist A1, . . . , An,
B1, . . . , Bn such that B ≥ B1 ∩ · · · ∩ Bn, Γ � t〈x:=s〉 : Ai→Bi, and Γ �
r〈x:=s〉 : Ai (1 ≤ i ≤ n). So, by Lemma 22, there exist Ci, C

′
i such that

Γ � s : Ci, Γ, x:Ci � t : Ai→Bi, Γ � s : C ′
i, and Γ, x:C ′

i � r : Ai. We put
Di ≡ Ci ∩C ′

i. Then, by Lemma 21, we have Γ � s : Di, Γ, x:Di � t : Ai→Bi,
and Γ, x:Di � r : Ai. Hence, Γ � (tr)〈x:=s〉 : Bi. Therefore, Γ � (tr)〈x:=s〉 :
B.

6. Suppose Γ � s〈yn:=rn�x:=s�〉 · · · 〈y1:=r1�x:=s�〉 : B. By Lemma 22, there
exist A1, . . . , An such that Γ, y1:A1, . . . , yi−1:Ai−1 � ri�x:=s� : Ai (1 ≤
i ≤ n) and Γ, y1:A1, . . . , yn:An � s : B. We put I ≡ {i | x ∈ FV(ri)}.
If i ∈ I, there exists Bi such that Γ, y1:A1, . . . , yi−1:Ai−1 � s : Bi and
Γ, y1:A1, . . . , yi−1:Ai−1, x:Bi � ri : Ai. Since {y1, . . . , yn} ∩ FV(s) = ∅, we
have Γ � s : B. We put C ≡ (∩i∈IBi) ∩ B if I �= ∅ and C ≡ B otherwise.
Then, we have Γ � s : C. Hence, Γ � x〈yn:=rn〉 · · · 〈y1:=r1〉〈x:=s〉 : C.
Therefore, Γ � x〈yn:=rn〉 · · · 〈y1:=r1〉〈x:=s〉 : B.

7. Suppose Γ � z〈yn:=rn�x:=s�〉 · · · 〈y1:=r1�x:=s�〉 : B. By Lemma 22, there
exist A1, . . . , An such that Γ, y1:A1, . . . , yi−1:Ai−1 � ri�x:=s� : Ai (1 ≤ i ≤
n) and Γ, y1:A1, . . . , yn:An � z : B. We put I ≡ {i | x ∈ FV(ri)}. Then,
I �= ∅. If i ∈ I , there exists Bi such that Γ, y1:A1, . . . , yi−1:Ai−1 � s : Bi and
Γ, y1:A1, . . . , yi−1:Ai−1, x:Bi � ri : Ai. Since {y1, . . . , yn} ∩ FV(s) = ∅, we
have Γ � s : Bi. We put C ≡ ∩i∈IBi. Then, we have Γ � s : C. Therefore,
Γ � z〈yn:=rn〉 · · · 〈y1:=r1〉〈x:=s〉 : B.

By the above two claims, we have the result in the base case. For the induction
step, we first prove when A[] ≡ [].

1. Suppose Γ � λx. t′ : C. By Lemma 22, there exist A1, . . . , An, B1, . . . , Bn

such that C ∼ (A1→B1) ∩ · · · ∩ (An→Bn) and Γ, x:Ai � t′ : Bi (1 ≤ i ≤ n).
By induction hypothesis, we have Γ ′, x:A′

1 � t : B′
1 for some Γ ′, x:A′

1 ≤
Γ, x:A1 and B′

1. Therefore, Γ ′ � λx. t : A′
1→B′

1.

20

2. Suppose Γ � xs1 · · · snt′ : B. By Lemma 22, there exist A′
1, . . . , A

′
n, B1, . . . , Bn

such that B ≥ B1 ∩ · · · ∩ Bn, Γ � xs1 · · · sn : A′
i→Bi, and Γ � t′ : A′

i

(1 ≤ i ≤ n). By induction hypothesis, we have Γi � t : Ai for some Γi ≤ Γ
and Ai. By Lemma 23, there exists Γ ′

i such that Γ ′
i � xs1 · · · sn : Ai→Bi.

Hence, Γi ∩ Γ ′
i � xs1 · · · snt : Bi. Therefore, ∩n

i=1(Γi ∩ Γ ′
i) � xs1 · · · snt : B.

8. Suppose Γ � z〈yn:=rn〉 · · · 〈y1:=r1〉 : B. Since nf(s), Γ ′ � s : C for some Γ ′

and C by Lemma 24. Therefore, Γ ∩ Γ ′ � z〈yn:=rn〉 · · · 〈y1:=r1〉〈x:=s〉 : B
since x �∈ FV(z〈yn:=rn〉 · · · 〈y1:=r1〉).

9. Suppose Γ � z〈yn:=rn〉 · · · 〈y1:=r1〉〈x:=s′〉 : B. By Lemma 22, there ex-
ists A′ such that Γ � s′ : A′ and Γ, x:A′ � z〈yn:=rn〉 · · · 〈y1:=r1〉 : B.
By induction hypothesis, we have Γ ′ � s : A for some Γ ′ ≤ Γ and A. Since
x �∈ FV(z〈yn:=rn〉 · · · 〈y1:=r1〉), we have Γ, x:A � z〈yn:=rn〉 · · · 〈y1:=r1〉 : B.
Therefore, Γ ∩ Γ ′ � z〈yn:=rn〉 · · · 〈y1:=r1〉〈x:=s〉 : B.

We are done by applying the first claim to the above cases other than case 1. ��

Theorem 3. Let t be an original λx-term. Then, the followings are equivalent.
(1) t is semi SN.
(2) t is SN with respect to λx + (varc) + (gcc).
(3) t is typable in λx∩.

Proof. (1)⇒(2): Since (varc) (resp. (gcc)) is decomposed into a several applica-
tions of (comp) or (perm) followed by (var) (resp. (gc)), a reduction sequence that
consists of λx + (varc) + (gcc) can be converted to a non-permutative sequence.
(2)⇒(3): Since � is a strategy for λx + (varc) + (gcc), there is a normal form of
t with respect to �. Because the normal form is a pure λ-term, it is typable in
λ∩ by Lemma 24. Therefore, t is typable in λx∩ by Lemma 25.
(3)⇒(1): By Theorem 2. ��

6 Conclusion

In this paper, we have developed a novel method for proving the strong normal-
izability of simply typed λx with a composition rule. Using this method, we have
proved the new result. Our composition rule is the first full composition rule in
λx that is controlled by a very simple condition. The characteristic feature of
our calculus is that we can freely push a substitution into a term in our calculus,
which is justified by the notion of semi SN.

We believe we can apply our method to other calculi of explicit substitutions
and simplify the proof of SN or introduce a composition rule.

We also remark that some part of our idea has evolved from our proof of SN
of λε [12]. The proof is very complicated, but now we can simplify it using the
method developed in this paper.

Acknowledgements We thank Masahiko Sato and Kentaro Kikuch for helpful
discussions.

21

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substitutions. Journal
of Functional Programming, 1:375–416, 1991.

2. R. Bloo and H. Geuvers. Explicit substitution On the edge of strong normalization.
Theoretical Computer Science, 211:375–395, 1999.

3. R. Bloo and K.H. Rose. Preservation of strong normalization in named lambda
calculi with explicit substitution and garbage collection. In van Vliet J. C., editor,
Proc. CSN’95 (Computer Science in Netherlands), 1995. (ftp://ftp.diku.dk/
diku/semantics/papers/D-246.ps).

4. R. David and B Guillaume. A λ-calculus with explicit weakening and explicit
substitution. Math. Struct. in Comp. Science, 11(1):169–206, 2001.

5. R. David and B Guillaume. Strong Normalization of the Typed λws-Calculus. In
Proc. CSL2003, LNCS 2803, pages 155–168, 2003.

6. R. Di Cosmo, D. Kesner, and E. Polonovski. Proof Nets and Explicit Substitutions.
In Proc. FOSSACS 2000, LNCS 1784, pages 63–81, 2000.

7. M.-C.-F. Ferreira, D. Kesner, and L. Puel. λ-calculi with explicit weakening and ex-
plicit substitution which preserve β-strong normalization. In Proc. ALP96, LNCS
1139, pages 284–298, 1996.

8. D. Kesner. Confluence properties of extensional and non-extensional λ-calculi with
explicit substitution. In Proc. Seventh RTA, LNCS 1103, pages 184–199, 1996.

9. S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van
Bakel. Intersection types for explicit substitutions. Information and Computa-
tion, 189(1):17–42, 2004.

10. P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate. In
Proc. TLCA’95, LNCS 902, pages 328–349, 1995.

11. G. Pottinger. A type assignment for the strongly normalizable λ-terms. In To H.B.
Curry: Essays on COmbinatory Logic, Lambda Calculus and Formalism, pages 561–
578, 1980.

12. M. Sato, T. Sakurai, and R. Burstall. Explicit Environments. Fundamenta Infor-
maticae, 45(1-2):79–115, 2001.

22

