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Abstract

We prove that commutator subgroups of topological full groups arising from mini-
mal subshifts have exponential growth. We also prove that the measurable full group
associated to the countable, measure-preserving, ergodic and hyperfinite equivalence
relation is topologically generated by two elements.

1 Introduction

We study algebraic properties of topological full groups of Cantor minimal systems. By a
Cantor set, we mean a metrizable topological space which is compact, totally disconnected
(the closed and open sets form a base for the topology) and has no isolated points. Any
two such spaces are homeomorphic. A homeomorphism ¢ : X — X is said to be minimal
if for all € X the set {¢"(z) | n € Z} is dense in X, or equivalently, there are no non-
trivial closed @-invariant subsets of X. A pair (X, ) of a Cantor set X and a minimal
homeomorphism ¢ of it is called a Cantor minimal system. The study of orbit structure
of such dynamical systems was initiated by T. Giordano, I. F. Putnam and C. F. Skau
in [5]. They classified Cantor minimal systems up to topological orbit equivalence. This
classification was later extended to cover all minimal actions of finitely generated abelian
groups on Cantor sets [4].

For a Cantor minimal system (X, ¢), the topological full group [[¢]] was introduced
in [6]. The group [[¢]] consists of all homeomorphisms 1 : X — X for which there exists
a continuous map ¢ : X — Z such that ¢(z) = ¢°®(z). Clearly [[¢]] is infinite and
countable. It was shown in [0, Corollary 4.4] that [[¢;]] is isomorphic to [[p2]] as an
abstract group if and only if ¢ is conjugate to @2 or ¢, . This result suggests that the
algebraic structure of the topological full group [[¢]] is rich enough to recover the dynamics
of . Since then various properties of [[¢]] have been studied in [10} [} [7]. We collect below
some of them. The commutator subgroup D([[¢]]) of [[¢]] is simple ([L0, Theorem 4.9]
and [Il, Theorem 3.4]). The quotient group [[¢]]/D([[¢]]) is isomorphic to the direct sum
of Z and C(X,Z/2Z)/{f—foe | fe C(X,Z/2Z)} ([6, Section 5] and [10, Theorem 4.8]),
where C(X,7Z/27) denotes the Z/27Z-valued continuous functions on X with pointwise
addition. The commutator subgroup D([[¢]]) is finitely generated if and only if ¢ is a
minimal subshift over a finite alphabet ([10, Theorem 5.4]). Recently, R. Grigorchuk and



K. Medynets [7] proved that [[¢]] is locally embeddable into finite groups. It is not yet
known if [[¢]] is amenable.

In the present paper, we prove a couple of new results about [[¢]]. As mentioned
above, for a minimal subshift ¢, D([[¢]]) is finitely generated. It is then natural to con-
sider the growth of D([[¢]]). We first observe that when ¢ is an odometer, any finitely
generated subgroup of [[]] has polynomial growth (Proposition 2]). Next, we prove that
D([[¢]]) contains the lamplighter group if and only if ¢ is not an odometer (Theorem [2.4)).
In particular, this implies that when ¢ is a minimal subshift, D([[¢]]) has exponential
growth (Corollary 2.5)). Existence (or non-existence) of finitely generated subgroups of
intermediate growth remains open. In Section 3, we discuss generators of the topological
full group [[p]] of Sturmian shifts ¢. We have already shown in [I0, Example 6.2] that
[[¢]] is generated by three elements. Based on this result, J. Kittrell and T. Tsankov [9]
proved that the measurable full group associated to the countable, measure-preserving,
ergodic and hyperfinite equivalence relation on the standard probability space is topo-
logically generated by at most three elements. In this paper we shall show that D([[¢]])
is contained in a subgroup generated by two elements (Proposition B.I]). By using this,
we can conclude that the measurable full group of the hyperfinite equivalence relation is
topologically generated by two elements (Theorem [B.2]). Also, this readily improves the
estimates obtained in [9] for the number of topological generators of certain measurable
full groups (Corollary B.3)).

2 Growth of topological full groups

In this section, we discuss growth of (finitely generated subgroups of) topological full
groups. The reader may consult [8] for basic theory of growth of groups.

For m € N, we write Z,, = Z/mZ and identify it with {0,1,...,m—1}. The cardinality
of a set F' is written |F|.

Let us first recall the odometers. Let (my,), be a sequence of natural numbers such
that m,, divides my,4+1 and m,, — oo as n — co. There exists a surjective homomorphism
pn : Lo,y — L, such that p,(1) = 1. We let X be the inverse limit of Z,,, under the
map pp, that is,

X ={(@a)n € []Zm, | pal@ni1) =20}

With the product topology, X is a Cantor set. Define a homeomorphism ¢ : X — X by
o((zn)n) = (xn + 1),. Tt is easy to see that (X, ) is a Cantor minimal system. We call
(X, ¢) the odometer of type (my,)n.

Proposition 2.1. Let (X, ) be the odometer of type (my)n. The topological full group
[[¢]] is written as an increasing union of subgroups of the form Z™" x Sy, , where the
symmetric group Sy, acts on Z™" by permutations of the coordinates. In particular, any
finitely generated subgroup of [[¢]] has polynomial growth.

Proof. Suppose that (X, ) is the odometer of type (my),. For k € N and | € Z,,,, we
set U(k,l) = {(xn)n € X | zx = 1}. Then {U(k,l) |l € Z,,} is a clopen partition of X.
For ¢ € [[¢]], we let ¢y : X — Z be the continuous function satisfying ¢ (z) = ¢ (z).
Define a subgroup I'y, C [[¢]] by

I'y, = {v € [[¢]] | ¢y is constant on U(k,1) for each | € Zy,, }.



Clearly I'y, C I'x41 and the union of 'y equals [[¢]].

Fix k£ € N. We would like to show that I'y, is isomorphic to Z™* x Sy,, . For any ¥ € I'y,
there exists 7 € Sy, such that ¢(U(k,l)) = U(k,7(l)), and so we obtain a homomorphism
7 : Ty — Sp,. For each 7 € S,,,, one can define ¢ € Ty by ¥(z) = o O(z) for
x € U(k,l), where [ and 7(l) are regarded as elements in {0,1,...,m;—1}. The map
T + 1 is a homomorphism from S,,, to I'y, and is a right inverse of 7. If ¢ € I'j, belongs to
the kernel of 7, then there exist n; € Z for | € Zy,, such that ¢(x) = ¢™"™* (x) holds for any
x € U(k,l). Evidently, ¢ — (n;); gives an isomorphism from Ker 7 to Z™*. Consequently,
I'j, is isomorphic to Z™* X Sy, . O

The following lemma is well known. For the convenience of the reader, we include an
explicit proof.

Lemma 2.2. Let (X, ) be a Cantor minimal system. If (X, ) is not an odometer, then
there exists a continuous map w: X — {0,1}% such that 7(X) is infinite and Top = oo,
where o : {0,1}2 — {0,1}% is the shift.

Proof. Let {O, | n € N} be the set of all clopen subsets of X. For each n € N, we define
a continuous map 7, : X — {0,1}% by

() :{1 #(@) € On
TR0 ) ¢ o,

for x € X. Then one has m, o ¢p = 0 o).

Arguing by contradiction, we assume that m,(X) is finite for all n € N. We will
construct continuous maps m, : X — Zy,, and surjective homomorphisms p;, : Zp,, ., —
Zo,, such that 7, (o(z)) = Tp(z) + 1 for x € X, 71, = pp © Tpy1 and 7, factors through
Tn. First, letting m; = |m1(X)|, we can find a continuous map 7 : X — Z,,, such
that 71(p(z)) = 71(z) + 1 and m; factors through 7. Suppose that we have constructed
#n + X = Zy,,. Consider the continuous map 7,1 X 7, : X — {0,1}% x Z,,, and let
Mpy1 = [(Tpy1 X Tp)(X)[. Then, identifying (7,41 X 7, )(X) with Z,,, ., we can construct
Tngl : X = L,y and py : Loy, ., — Ly, as desired.

Let (Y, %) be the odometer of type (my,),. Define the continuous map f: X — Y by
f(x) = (7n(x))n. Clearly we have f o = o f. For any distinct points x, 2’ € X, there
exists O, such that z € O,, and 2’ ¢ O,,, which means that f is injective. Thus (X, ¢) is
conjugate to (Y, ), which completes the proof. O

In what follows, for a clopen subset O C X,
1o : X — 7o

denotes the Zo-valued characteristic function of O. The following proposition is used in
the proof of Theorem 2.4 in order to construct an embedding of the infinite direct sum of
Zs into [[¢]].

Proposition 2.3. Let (X, ) be a Cantor minimal system. If (X, ) is not an odometer,
then there exists a clopen subset O C X such that for any finite subset I C Z, the function

ZloOSOk

is not identically zero mod 2.



Proof. By the lemma above, there exists a continuous map 7 : X — {0, 1}Z such that
7(X) is infinite and 7 o ¢ = o o 7, where o : {0,1}* — {0,1}% is the shift. We identify
{0,1} with Z/2Z. Set

O={ze X |n(x) =1}
In other words, 1p(z) = w(x)o € Z/2Z. We would like to see that the clopen subset
O C X satisfies the requirement. Let F' C Z be a finite subset. Suppose that the function

Zloogpk

is identically zero mod 2. Put [ = min{k € F} and m = max{k € F}. Assume that
x,y € X satisfies 7(x), = w(y), for all n € {I,I+1,...,m}. Then

m(@)i-1 = lo(¢'!(2))
=lo(¢' (@) + ) lo(¢" (@)

keF

= Y 1o @)

keF\{l}

= > w(@)k-1,

keF\{1}

and so 7(z);—1 = 7(y);—1. Repeating this procedure, we obtain 7(z), = m(y), for every
n <. In the same way we get m(z), = 7(y), for every n > m. Thus n(x) = 7(y). This
means that the cardinality of 7(X) is at most 2™ ~!*! which is a contradiction. O

We call the wreath product
L= (@ Zg) x 7,
z

the lamplighter group, where the semi-direct product is taken with respect to the shift
action. It is easy to see that L is finitely generated and that L contains a free semi-group
on two generators. Hence L has exponential growth (see [8, VII.1] for example).

The technique we employ in the proof of the following theorem is essentially the same
as that of [2 Theorem 8.1]. T am grateful to Koji Fujiwara for explaining this technique.

Theorem 2.4. Let (X, ) be a Cantor minimal system. The following three conditions
are equivalent.

(1) (X, ) is not an odometer.
(2) D([[¢]]) contains the lamplighter group L.
(3) [[¢]] contains the lamplighter group L.

Proof. (2)=-(3) is obvious. (3)=-(1) immediately follows from Proposition 21 We show
(1)=>(2). Choose a non-empty clopen subset U C X so that U, ¢(U), *(U) and 3(U)
are disjoint. Let ¢ be the first return map on U (see [5, Definition 1.5]). Letting ¢(z) = =



for x € X \ U, we may regard 1 as an element of [[p]]. Define r = 1o potpop~t. Clearly
r is of infinite order. For each clopen subset V' C U, we define 7y € [[¢]] by

o(x) reV
v(z)= Qe (z) zeplV)
T otherwise.

It is easy to see that for any clopen subsets V, W C U, 1, and 7 commute. Also, we have
roryor—t= Ty(v)- Furthermore, for clopen subsets Vi, Va, ..., V;, CU, 7y, o1y 0---07y,
equals the identity if and only if 1y, 4+ 1y, +- - -+ 1y;, equals zero (as a Zg-valued function).
Since (X, ¢) is not an odometer, neither is (U, ¢|U). It follows from the proposition above
that there exists a clopen subset O C U such that for any finite subset F' C Z, the function

Z 1po wk
keF

is not identically zero mod 2. Define s = 7. Because r*

k k

osor k= Tyk(o) for any k € Z,

the homeomorphisms 7% o s o r ™" commute with each other. Moreover, for any non-empty

finite subset {k1,ka,...,kn} C Z,
(r*osor ™Yo (rf2 os0r ™) 0.0 (1 0 50 7kn)
is not the identity, because

Lm0y + lykaio) T+ Lytn(0) 7 0-

Therefore, the subgroup generated by r and s is isomorphic to the lamplighter group.
The support of r and s is contained in U U (U), and so the support of p? or o o2 and
@p?os0p~2is contained in p?(U)Up3(U). Since UUp(U) and ¢?(U)Up3(U) are disjoint,

the subgroup

%, s0¢?osTtop™?) C D([[4]])

is also isomorphic to the lamplighter group, which completes the proof. ]

(rog?or~lop”

Corollary 2.5. Let (X, ¢) be a Cantor minimal system. If D([[¢]]) is finitely generated,
then it has exponential growth.

Proof. By Proposition 21 ¢ is not an odometer. (We remark that D([[¢]]) is finitely
generated if and only if ¢ is a minimal subshift over a finite alphabet, see [10, Theorem
5.4].) It follows from the theorem above that D([[¢]]) contains the lamplighter group
L. As mentioned above, L has exponential growth. Therefore D([[¢]]) has exponential
growth, too. O

3 Generators of full groups

In this section, we will prove that the measurable full group associated to the countable,
measure-preserving, ergodic and hyperfinite equivalence relation is topologically generated
by two elements (Theorem [3.2)).



3.1 Algebraic generators of topological full groups

Let a € (0, 1) be an irrational number and let (X, ¢) be the Sturmian shift arising from the
a-rotation on T = R/Z. In [10, Example 6.2], it was shown that the topological full group
[[¢]] is (algebraically) generated by the three elements oy, oy and . In this subsection,
for 0 < @ < 1/6, we will show that the subgroup generated by ¢ and oy contains the
commutator subgroup D([[¢]]).

Assume 0 < a < 1/6. We recall the notation used in [10, Example 6.2]. The clopen
subset corresponding to the interval [0,«) C T is denoted by U C X. The element
ou € [[p]] is defined by

() relU
ou(x) =o' (U) ze€eU)
x otherwise.

Proposition 3.1. In the setting above, let G C [[¢]] be the subgroup generated by ¢ and
ay.

(1) The commutator subgroup D([[¢]]) is contained in G.
(2) The subgroup G is normal and [[¢]]/G = Z/27Z.

Proof. (1) Let W be the set of all clopen subsets W C X such that o= 1(W), W, (W)
are mutually disjoint. Clearly U is in W. For W € W, we define vy € [[¢]] by

p(x)  zep(W)UW
w(z) =49 %x) x€pW)
x otherwise.

It is easy to see that vy belongs to D([[¢]]) (see the comment before [10, Lemma 5.2]).
It was shown in [10, Lemma 5.2] that the commutator subgroup D([[¢]]) is generated by
{yw | W € W} (see also the comment before [10, Theorem 4.9]). For any n € Z, ¢"(U)
is the clopen subset corresponding to the interval [na, (n+1)a) C T. For any m,n € Z, if
e™(U)N™(U) is not empty, then it corresponds to either [ma, (n+1)a) or [na, (m+1)a).
Hence any clopen subset W C X can be written as a finite disjoint union of clopen subsets
of the form ¢™(U) N ™(U). It follows that D([[¢]]) is generated by

{ow | Im,n e Z, W=¢"(U) N e"(U)}.

n

Since ™ o oy 0 p™" = T4n (1), One verifies

n—1 n 7n+1)

(p"oouop™o(p"toayop o (ptooyop ) o (¢ ooy oy
= Tpn(U) © Tpn=1(U) © Tpn(U) © Tpr=1(U)
= Y (U)>»
and 80 7y, (7 belongs to G. Suppose that the clopen subset ™ (U) N ¢"(U) corresponds
to the interval [ma, (n+1)a) C T. Then ¢" 2(U), " Y(U), ¢"(U) U ¢™(U), @™ 1(U),



@™ T2(U) are mutually disjoint, because « is less than 1/6. Therefore, thanks to [10,
Lemma 5.3 (ii)], we have

Yem+1(U) © 7;71171((]) © ’Y;erl(U) O Yn=1(U) = Vm(U)Nen(U)>
and 80 Ym()nen (1) belongs to G. When the clopen subset ¢™(U) N ¢™(U) corresponds
to the interval [na, (m+1)a) C T, we obtain the same conclusion in a similar way. Hence
G contains the commutator subgroup D([[¢]])-
(2) By [10, Example 5.2], [[¢]] is generated by ¢, oy and oy, where V' C X is another
clopen subset. The element oy is of order two and is not contained in G. We can check

ovopooy =(avopoayop Nopel

and
oyooyooy =(oyooyooyooy)ooy €G.

It follows that G is normal and [[¢]]/G = Z/2Z. O

3.2 Topological generators of measurable full groups

In this subsection we follow the notation of [9]. Let X be a standard Borel space and let
u be a non-atomic Borel probability measure on it. Denote by Aut(X, ) the group of
all measure-preserving automorphisms of (X, ) (modulo null sets). We equip the group
Aut(X, ) with the topology induced by the metric

d(f,9) = p({z € X [ f(z) = g(2)})

and call it the uniform topology. For a countable, Borel, measure-preserving equivalence
relation E on X, its measurable full group [E] is defined by

[E] ={f € Aut(X,pn) | (z, f(z)) € E for almost every =z € X }.

The measurable full group [E] is a closed subgroup of Aut(X, x) in the uniform topology
and they turn out to be separable, and hence Polish. Following [9], we let ¢([F]) denote the
minimum number of topological generators of [E] (i.e. the minimum number of elements
which generate a dense subgroup of [E]). By using Proposition B.Il we can improve some
results for ¢([E]) obtained in [9].

The following theorem answers [9, Question 4.3].

Theorem 3.2. Let E be the countable, measure-preserving, ergodic and hyperfinite equiv-
alence relation on the standard probability space (X, u). Then t([E]) = 2.

Proof. Let (X, ) be the Sturmian shift arising from an irrational number o € (0,1/6).
By Proposition B1], there exists oy € [[¢]] such that the subgroup G C [[¢]] generated by
¢ and oy contains the commutator subgroup D([[¢]]).

Let E C X x X be the equivalence relation induced by ¢. There exists a unique -
invariant Borel probability measure p on X. Then F is the countable, measure-preserving,
ergodic and hyperfinite equivalence relation on the standard probability space (X, u). By
[9, Proposition 4.1], [[¢]] is dense in [E] in the uniform topology. In particular, the
commutator subgroup D([[¢]]) is dense in the commutator subgroup D([E]). It follows
that G is dense in D([E]). Since [E] is simple by [3], [E] = D([E]). Therefore the group
G generated by the two elements ¢ and oy is dense in [E], which implies ¢([E]) =2. O



The theorem above enables us to sharpen the estimates given in Theorem 4.10 and
Corollary 4.12 of [9].

Corollary 3.3. Let E be a countable, measure-preserving, ergodic equivalence relation on
the standard probability space (X, p).

(1) If the cost of E is less than n for some n € N, then t([E]) < 2n.

(2) If E is induced by a free action of the free group Fy,, then n+1 < t([E]) < 2(n+1).
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