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Abstract

We prove that commutator subgroups of topological full groups arising from mini-
mal subshifts have exponential growth. We also prove that the measurable full group
associated to the countable, measure-preserving, ergodic and hyperfinite equivalence
relation is topologically generated by two elements.

1 Introduction

We study algebraic properties of topological full groups of Cantor minimal systems. By a
Cantor set, we mean a metrizable topological space which is compact, totally disconnected
(the closed and open sets form a base for the topology) and has no isolated points. Any
two such spaces are homeomorphic. A homeomorphism φ : X → X is said to be minimal
if for all x ∈ X the set {φn(x) | n ∈ Z} is dense in X, or equivalently, there are no non-
trivial closed φ-invariant subsets of X. A pair (X,φ) of a Cantor set X and a minimal
homeomorphism φ of it is called a Cantor minimal system. The study of orbit structure
of such dynamical systems was initiated by T. Giordano, I. F. Putnam and C. F. Skau
in [5]. They classified Cantor minimal systems up to topological orbit equivalence. This
classification was later extended to cover all minimal actions of finitely generated abelian
groups on Cantor sets [4].

For a Cantor minimal system (X,φ), the topological full group [[φ]] was introduced
in [6]. The group [[φ]] consists of all homeomorphisms ψ : X → X for which there exists
a continuous map c : X → Z such that ψ(x) = φc(x)(x). Clearly [[φ]] is infinite and
countable. It was shown in [6, Corollary 4.4] that [[φ1]] is isomorphic to [[φ2]] as an
abstract group if and only if φ1 is conjugate to φ2 or φ−1

2 . This result suggests that the
algebraic structure of the topological full group [[φ]] is rich enough to recover the dynamics
of φ. Since then various properties of [[φ]] have been studied in [10, 1, 7]. We collect below
some of them. The commutator subgroup D([[φ]]) of [[φ]] is simple ([10, Theorem 4.9]
and [1, Theorem 3.4]). The quotient group [[φ]]/D([[φ]]) is isomorphic to the direct sum
of Z and C(X,Z/2Z)/{f − f ◦φ | f ∈ C(X,Z/2Z)} ([6, Section 5] and [10, Theorem 4.8]),
where C(X,Z/2Z) denotes the Z/2Z-valued continuous functions on X with pointwise
addition. The commutator subgroup D([[φ]]) is finitely generated if and only if φ is a
minimal subshift over a finite alphabet ([10, Theorem 5.4]). Recently, R. Grigorchuk and
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K. Medynets [7] proved that [[φ]] is locally embeddable into finite groups. It is not yet
known if [[φ]] is amenable.

In the present paper, we prove a couple of new results about [[φ]]. As mentioned
above, for a minimal subshift φ, D([[φ]]) is finitely generated. It is then natural to con-
sider the growth of D([[φ]]). We first observe that when φ is an odometer, any finitely
generated subgroup of [[φ]] has polynomial growth (Proposition 2.1). Next, we prove that
D([[φ]]) contains the lamplighter group if and only if φ is not an odometer (Theorem 2.4).
In particular, this implies that when φ is a minimal subshift, D([[φ]]) has exponential
growth (Corollary 2.5). Existence (or non-existence) of finitely generated subgroups of
intermediate growth remains open. In Section 3, we discuss generators of the topological
full group [[φ]] of Sturmian shifts φ. We have already shown in [10, Example 6.2] that
[[φ]] is generated by three elements. Based on this result, J. Kittrell and T. Tsankov [9]
proved that the measurable full group associated to the countable, measure-preserving,
ergodic and hyperfinite equivalence relation on the standard probability space is topo-
logically generated by at most three elements. In this paper we shall show that D([[φ]])
is contained in a subgroup generated by two elements (Proposition 3.1). By using this,
we can conclude that the measurable full group of the hyperfinite equivalence relation is
topologically generated by two elements (Theorem 3.2). Also, this readily improves the
estimates obtained in [9] for the number of topological generators of certain measurable
full groups (Corollary 3.3).

2 Growth of topological full groups

In this section, we discuss growth of (finitely generated subgroups of) topological full
groups. The reader may consult [8] for basic theory of growth of groups.

Form ∈ N, we write Zm = Z/mZ and identify it with {0, 1, . . . ,m−1}. The cardinality
of a set F is written |F |.

Let us first recall the odometers. Let (mn)n be a sequence of natural numbers such
that mn divides mn+1 and mn → ∞ as n→ ∞. There exists a surjective homomorphism
ρn : Zmn+1 → Zmn such that ρn(1) = 1. We let X be the inverse limit of Zmn under the
map ρn, that is,

X =
{
(xn)n ∈

∏
Zmn | ρn(xn+1) = xn

}
.

With the product topology, X is a Cantor set. Define a homeomorphism φ : X → X by
φ((xn)n) = (xn + 1)n. It is easy to see that (X,φ) is a Cantor minimal system. We call
(X,φ) the odometer of type (mn)n.

Proposition 2.1. Let (X,φ) be the odometer of type (mn)n. The topological full group
[[φ]] is written as an increasing union of subgroups of the form Zmn ⋊ Smn, where the
symmetric group Smn acts on Zmn by permutations of the coordinates. In particular, any
finitely generated subgroup of [[φ]] has polynomial growth.

Proof. Suppose that (X,φ) is the odometer of type (mn)n. For k ∈ N and l ∈ Zmk , we
set U(k, l) = {(xn)n ∈ X | xk = l}. Then {U(k, l) | l ∈ Zmk} is a clopen partition of X.
For ψ ∈ [[φ]], we let cψ : X → Z be the continuous function satisfying ψ(x) = φcψ(x)(x).
Define a subgroup Γk ⊂ [[φ]] by

Γk = {ψ ∈ [[φ]] | cψ is constant on U(k, l) for each l ∈ Zmk}.

2



Clearly Γk ⊂ Γk+1 and the union of Γk equals [[φ]].
Fix k ∈ N. We would like to show that Γk is isomorphic to Zmk⋊Smk . For any ψ ∈ Γk,

there exists τ ∈ Smk such that ψ(U(k, l)) = U(k, τ(l)), and so we obtain a homomorphism
π : Γk → Smk . For each τ ∈ Smk , one can define ψ ∈ Γk by ψ(x) = φτ(l)−l(x) for
x ∈ U(k, l), where l and τ(l) are regarded as elements in {0, 1, . . . ,mk−1}. The map
τ 7→ ψ is a homomorphism from Smk to Γk and is a right inverse of π. If ψ ∈ Γk belongs to
the kernel of π, then there exist nl ∈ Z for l ∈ Zmk such that ψ(x) = φnlmk(x) holds for any
x ∈ U(k, l). Evidently, ψ 7→ (nl)l gives an isomorphism from Kerπ to Zmk . Consequently,
Γk is isomorphic to Zmk ⋊ Smk .

The following lemma is well known. For the convenience of the reader, we include an
explicit proof.

Lemma 2.2. Let (X,φ) be a Cantor minimal system. If (X,φ) is not an odometer, then
there exists a continuous map π : X → {0, 1}Z such that π(X) is infinite and π◦φ = σ ◦π,
where σ : {0, 1}Z → {0, 1}Z is the shift.

Proof. Let {On | n ∈ N} be the set of all clopen subsets of X. For each n ∈ N, we define
a continuous map πn : X → {0, 1}Z by

πn(x)k =

{
1 φk(x) ∈ On

0 φk(x) /∈ On

for x ∈ X. Then one has πn ◦ φ = σ ◦ πn.
Arguing by contradiction, we assume that πn(X) is finite for all n ∈ N. We will

construct continuous maps π̃n : X → Zmn and surjective homomorphisms ρn : Zmn+1 →
Zmn such that π̃n(φ(x)) = π̃n(x) + 1 for x ∈ X, π̃n = ρn ◦ π̃n+1 and πn factors through
π̃n. First, letting m1 = |π1(X)|, we can find a continuous map π̃1 : X → Zm1 such
that π̃1(φ(x)) = π̃1(x) + 1 and π1 factors through π̃1. Suppose that we have constructed
π̃n : X → Zmn . Consider the continuous map πn+1 × π̃n : X → {0, 1}Z × Zmn and let
mn+1 = |(πn+1× π̃n)(X)|. Then, identifying (πn+1× π̃n)(X) with Zmn+1 , we can construct
π̃n+1 : X → Zmn+1 and ρn : Zmn+1 → Zmn as desired.

Let (Y, ψ) be the odometer of type (mn)n. Define the continuous map f : X → Y by
f(x) = (π̃n(x))n. Clearly we have f ◦ φ = ψ ◦ f . For any distinct points x, x′ ∈ X, there
exists On such that x ∈ On and x′ /∈ On, which means that f is injective. Thus (X,φ) is
conjugate to (Y, ψ), which completes the proof.

In what follows, for a clopen subset O ⊂ X,

1O : X → Z2

denotes the Z2-valued characteristic function of O. The following proposition is used in
the proof of Theorem 2.4 in order to construct an embedding of the infinite direct sum of
Z2 into [[φ]].

Proposition 2.3. Let (X,φ) be a Cantor minimal system. If (X,φ) is not an odometer,
then there exists a clopen subset O ⊂ X such that for any finite subset F ⊂ Z, the function∑

k∈F
1O ◦ φk

is not identically zero mod 2.
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Proof. By the lemma above, there exists a continuous map π : X → {0, 1}Z such that
π(X) is infinite and π ◦ φ = σ ◦ π, where σ : {0, 1}Z → {0, 1}Z is the shift. We identify
{0, 1} with Z/2Z. Set

O = {x ∈ X | π(x)0 = 1}.

In other words, 1O(x) = π(x)0 ∈ Z/2Z. We would like to see that the clopen subset
O ⊂ X satisfies the requirement. Let F ⊂ Z be a finite subset. Suppose that the function∑

k∈F
1O ◦ φk

is identically zero mod 2. Put l = min{k ∈ F} and m = max{k ∈ F}. Assume that
x, y ∈ X satisfies π(x)n = π(y)n for all n ∈ {l, l+1, . . . ,m}. Then

π(x)l−1 = 1O(φ
l−1(x))

= 1O(φ
l−1(x)) +

∑
k∈F

1O(φ
k−1(x))

=
∑

k∈F\{l}

1O(φ
k−1(x))

=
∑

k∈F\{l}

π(x)k−1,

and so π(x)l−1 = π(y)l−1. Repeating this procedure, we obtain π(x)n = π(y)n for every
n ≤ l. In the same way we get π(x)n = π(y)n for every n ≥ m. Thus π(x) = π(y). This
means that the cardinality of π(X) is at most 2m−l+1, which is a contradiction.

We call the wreath product

L =

(⊕
Z

Z2

)
⋊ Z

the lamplighter group, where the semi-direct product is taken with respect to the shift
action. It is easy to see that L is finitely generated and that L contains a free semi-group
on two generators. Hence L has exponential growth (see [8, VII.1] for example).

The technique we employ in the proof of the following theorem is essentially the same
as that of [2, Theorem 8.1]. I am grateful to Koji Fujiwara for explaining this technique.

Theorem 2.4. Let (X,φ) be a Cantor minimal system. The following three conditions
are equivalent.

(1) (X,φ) is not an odometer.

(2) D([[φ]]) contains the lamplighter group L.

(3) [[φ]] contains the lamplighter group L.

Proof. (2)⇒(3) is obvious. (3)⇒(1) immediately follows from Proposition 2.1. We show
(1)⇒(2). Choose a non-empty clopen subset U ⊂ X so that U , φ(U), φ2(U) and φ3(U)
are disjoint. Let ψ be the first return map on U (see [5, Definition 1.5]). Letting ψ(x) = x
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for x ∈ X \U , we may regard ψ as an element of [[φ]]. Define r = ψ ◦φ ◦ψ ◦φ−1. Clearly
r is of infinite order. For each clopen subset V ⊂ U , we define τV ∈ [[φ]] by

τV (x) =


φ(x) x ∈ V

φ−1(x) x ∈ φ(V )

x otherwise.

It is easy to see that for any clopen subsets V,W ⊂ U , τV and τW commute. Also, we have
r ◦ τV ◦r−1 = τψ(V ). Furthermore, for clopen subsets V1, V2, . . . , Vn ⊂ U , τV1 ◦ τV2 ◦ · · · ◦ τVn
equals the identity if and only if 1V1 +1V2 + · · ·+1Vn equals zero (as a Z2-valued function).
Since (X,φ) is not an odometer, neither is (U,ψ|U). It follows from the proposition above
that there exists a clopen subset O ⊂ U such that for any finite subset F ⊂ Z, the function∑

k∈F
1O ◦ ψk

is not identically zero mod 2. Define s = τO. Because r
k ◦ s ◦ r−k = τψk(O) for any k ∈ Z,

the homeomorphisms rk ◦ s ◦ r−k commute with each other. Moreover, for any non-empty
finite subset {k1, k2, . . . , kn} ⊂ Z,

(rk1 ◦ s ◦ r−k1) ◦ (rk2 ◦ s ◦ r−k2) ◦ · · · ◦ (rkn ◦ s ◦ r−kn)

is not the identity, because

1ψk1 (O) + 1ψk2 (O) + · · ·+ 1ψkn (O) ̸= 0.

Therefore, the subgroup generated by r and s is isomorphic to the lamplighter group.
The support of r and s is contained in U ∪ φ(U), and so the support of φ2 ◦ r ◦ φ−2 and
φ2 ◦s◦φ−2 is contained in φ2(U)∪φ3(U). Since U ∪φ(U) and φ2(U)∪φ3(U) are disjoint,
the subgroup

⟨r ◦ φ2 ◦ r−1 ◦ φ−2, s ◦ φ2 ◦ s−1 ◦ φ−2⟩ ⊂ D([[φ]])

is also isomorphic to the lamplighter group, which completes the proof.

Corollary 2.5. Let (X,φ) be a Cantor minimal system. If D([[φ]]) is finitely generated,
then it has exponential growth.

Proof. By Proposition 2.1, φ is not an odometer. (We remark that D([[φ]]) is finitely
generated if and only if φ is a minimal subshift over a finite alphabet, see [10, Theorem
5.4].) It follows from the theorem above that D([[φ]]) contains the lamplighter group
L. As mentioned above, L has exponential growth. Therefore D([[φ]]) has exponential
growth, too.

3 Generators of full groups

In this section, we will prove that the measurable full group associated to the countable,
measure-preserving, ergodic and hyperfinite equivalence relation is topologically generated
by two elements (Theorem 3.2).
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3.1 Algebraic generators of topological full groups

Let α ∈ (0, 1) be an irrational number and let (X,φ) be the Sturmian shift arising from the
α-rotation on T = R/Z. In [10, Example 6.2], it was shown that the topological full group
[[φ]] is (algebraically) generated by the three elements σU , σV and φ. In this subsection,
for 0 < α < 1/6, we will show that the subgroup generated by φ and σU contains the
commutator subgroup D([[φ]]).

Assume 0 < α < 1/6. We recall the notation used in [10, Example 6.2]. The clopen
subset corresponding to the interval [0, α) ⊂ T is denoted by U ⊂ X. The element
σU ∈ [[φ]] is defined by

σU (x) =


φ(x) x ∈ U

φ−1(U) x ∈ φ(U)

x otherwise.

Proposition 3.1. In the setting above, let G ⊂ [[φ]] be the subgroup generated by φ and
σU .

(1) The commutator subgroup D([[φ]]) is contained in G.

(2) The subgroup G is normal and [[φ]]/G ∼= Z/2Z.

Proof. (1) Let W be the set of all clopen subsets W ⊂ X such that φ−1(W ), W , φ(W )
are mutually disjoint. Clearly U is in W. For W ∈ W, we define γW ∈ [[φ]] by

γW (x) =


φ(x) x ∈ φ−1(W ) ∪W
φ−2(x) x ∈ φ(W )

x otherwise.

It is easy to see that γW belongs to D([[φ]]) (see the comment before [10, Lemma 5.2]).
It was shown in [10, Lemma 5.2] that the commutator subgroup D([[φ]]) is generated by
{γW | W ∈ W} (see also the comment before [10, Theorem 4.9]). For any n ∈ Z, φn(U)
is the clopen subset corresponding to the interval [nα, (n+1)α) ⊂ T. For any m,n ∈ Z, if
φm(U)∩φn(U) is not empty, then it corresponds to either [mα, (n+1)α) or [nα, (m+1)α).
Hence any clopen subsetW ⊂ X can be written as a finite disjoint union of clopen subsets
of the form φm(U) ∩ φn(U). It follows that D([[φ]]) is generated by

{γW | ∃m,n ∈ Z, W=φm(U) ∩ φn(U)}.

Since φn ◦ σU ◦ φ−n = σφn(U), one verifies

(φn ◦ σU ◦ φ−n) ◦ (φn−1 ◦ σU ◦ φ−n+1) ◦ (φn ◦ σU ◦ φ−n) ◦ (φn−1 ◦ σU ◦ φ−n+1)

= σφn(U) ◦ σφn−1(U) ◦ σφn(U) ◦ σφn−1(U)

= γφn(U),

and so γφn(U) belongs to G. Suppose that the clopen subset φm(U) ∩ φn(U) corresponds
to the interval [mα, (n+1)α) ⊂ T. Then φn−2(U), φn−1(U), φn(U) ∪ φm(U), φm+1(U),
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φm+2(U) are mutually disjoint, because α is less than 1/6. Therefore, thanks to [10,
Lemma 5.3 (ii)], we have

γφm+1(U) ◦ γ−1
φn−1(U)

◦ γ−1
φm+1(U)

◦ γφn−1(U) = γφm(U)∩φn(U),

and so γφm(U)∩φn(U) belongs to G. When the clopen subset φm(U) ∩ φn(U) corresponds
to the interval [nα, (m+1)α) ⊂ T, we obtain the same conclusion in a similar way. Hence
G contains the commutator subgroup D([[φ]]).

(2) By [10, Example 5.2], [[φ]] is generated by φ, σU and σV , where V ⊂ X is another
clopen subset. The element σV is of order two and is not contained in G. We can check

σV ◦ φ ◦ σV = (σV ◦ φ ◦ σV ◦ φ−1) ◦ φ ∈ G

and
σV ◦ σU ◦ σV = (σV ◦ σU ◦ σV ◦ σU ) ◦ σU ∈ G.

It follows that G is normal and [[φ]]/G ∼= Z/2Z.

3.2 Topological generators of measurable full groups

In this subsection we follow the notation of [9]. Let X be a standard Borel space and let
µ be a non-atomic Borel probability measure on it. Denote by Aut(X,µ) the group of
all measure-preserving automorphisms of (X,µ) (modulo null sets). We equip the group
Aut(X,µ) with the topology induced by the metric

d(f, g) = µ({x ∈ X | f(x) = g(x)})

and call it the uniform topology. For a countable, Borel, measure-preserving equivalence
relation E on X, its measurable full group [E] is defined by

[E] = {f ∈ Aut(X,µ) | (x, f(x)) ∈ E for almost every x ∈ X}.

The measurable full group [E] is a closed subgroup of Aut(X,µ) in the uniform topology
and they turn out to be separable, and hence Polish. Following [9], we let t([E]) denote the
minimum number of topological generators of [E] (i.e. the minimum number of elements
which generate a dense subgroup of [E]). By using Proposition 3.1, we can improve some
results for t([E]) obtained in [9].

The following theorem answers [9, Question 4.3].

Theorem 3.2. Let E be the countable, measure-preserving, ergodic and hyperfinite equiv-
alence relation on the standard probability space (X,µ). Then t([E]) = 2.

Proof. Let (X,φ) be the Sturmian shift arising from an irrational number α ∈ (0, 1/6).
By Proposition 3.1, there exists σU ∈ [[φ]] such that the subgroup G ⊂ [[φ]] generated by
φ and σU contains the commutator subgroup D([[φ]]).

Let E ⊂ X × X be the equivalence relation induced by φ. There exists a unique φ-
invariant Borel probability measure µ on X. Then E is the countable, measure-preserving,
ergodic and hyperfinite equivalence relation on the standard probability space (X,µ). By
[9, Proposition 4.1], [[φ]] is dense in [E] in the uniform topology. In particular, the
commutator subgroup D([[φ]]) is dense in the commutator subgroup D([E]). It follows
that G is dense in D([E]). Since [E] is simple by [3], [E] = D([E]). Therefore the group
G generated by the two elements φ and σU is dense in [E], which implies t([E]) = 2.
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The theorem above enables us to sharpen the estimates given in Theorem 4.10 and
Corollary 4.12 of [9].

Corollary 3.3. Let E be a countable, measure-preserving, ergodic equivalence relation on
the standard probability space (X,µ).

(1) If the cost of E is less than n for some n ∈ N, then t([E]) ≤ 2n.

(2) If E is induced by a free action of the free group Fn, then n+1 ≤ t([E]) ≤ 2(n+1).

Acknowledgement. The author would like to thank Koji Fujiwara and Konstantin
Medynets for valuable discussions.
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