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Abstract. We say that a C∗-algebra A is approximately square root closed,

if any normal element in A can be approximated by a square of a normal
element in A. We study when A is approximately square root closed, and have
an affirmative answer for AI-algebras, Goodearl type algebras over the torus,
purely infinite simple unital C∗-algebras etc.

0. Introduction

D. Deckard and C. Pearcy [7, 8] proved that, for a commutative AW ∗-algebra
M , any algebraic equation with M -valued coefficients has roots in M . Many re-
searchers study analogous problems for a commutative C∗-algebra C(X), and some
results are strongly related to topological properties of X (e.g., covering dimension,
cohomology etc.)[4, 5, 11, 17, 18].

In this paper, we consider this problem for a C∗-algebra which is not necessarily
commutative. But we restrict our attention to a special quadratic equation, namely
x2 = a. We make the following definition:

Definition 0.1. Let A be a C∗-algebra.

(1) We say that A is square root closed, if for any normal element a ∈ A, there
exists a normal element b ∈ A such that a = b2.

(2) We say that A is approximately square root closed, if for any ε > 0 and
any normal element a ∈ A, there exists a normal element b ∈ A such that∥∥a − b2

∥∥ < ε.

Needless to say, for a commutative C∗-algebra A, the square root closed property
for A is the same as the classical property, i.e., every element in A has its square
root in A.

Our result is as follows.

(1) Every AI-algebra is approximately square root closed. (Theorem 1.8.)
(2) If A is a unital C∗-algebra, A ⊗ M2∞ is approximately square root closed.

(Theorem 2.2.)
(3) For a Goodearl type algebra A over T, A is approximately square root

closed if and only if K1(A) is 2-divisible. (Theorem 2.4.)
(4) For a purely infinite simple unital C∗-algebra A, A is approximately square

root closed if and only if K1(A) is 2-divisible. (Theorem 3.9.)
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1. AI-algebras

It is clear that every finite dimensional C∗-algebra is square root closed. We
say that a C∗-algebra A has the property (FN), if any normal element in A can
be approximated by some normal element in A with finite spectrum. If A has the
property (FN), then we can see that A is approximately square root closed. H.
Lin [14] proved that every AF-algebra has the property (FN). This implies every
AF-algebra is approximately square root closed.

We give two examples of C∗-algebras which are approximately square root closed
but not square root closed.

Example 1.1. There exists a unital AF-algebra A such that A has a maximal
abelian self-adjoint subalgebra B which is isomorphic to the algebra C(T) of con-
tinuous functions on the torus T (see [2]). Then A is not square root closed.

Indeed, let u be a unitary generator of B ∼= C(T). If y ∈ A is normal and satisfies
y2 = u, then y belongs to B by the maximality of B. But u does not have such an
element in B ∼= C(T). So A is not square root closed.

Example 1.2. Let I = [0, 1] be the interval. The algebra C(I,M2) of 2× 2 matrix
valued continuous functions on I is not square root closed but approximately square
root closed.

We define a normal element f ∈ C(I,M2) as follows:

f(t) =



[
1 0
0 0

]
+ e6π

√
−1t

[
0 0
0 1

]
t ∈ [0, 1/3] ∪ [2/3, 1]

1
2

[
1 1
1 1

]
+

1
2
e6π

√
−1t

[
1 −1
−1 1

]
t ∈ (1/3, 2/3).

We assume that g is a normal element in C(I,M2) with g2 = f . By the continuity
of spectra, one of g(1/3) and g(2/3) must have the spectrum {1,−1}. We only
consider the case Sp(g(1/3)) = {1,−1}. Since we have

lim
t→1/3−0

g(t) =
[
1 0
0 −1

]
̸=

[
0 1
1 0

]
= lim

t→1/3+0
g(t),

this contradicts the assumption.
In Corollary 1.6, we will show that C(I,Mn) is approximately square root closed.

But, for above f , we construct its approximate square root here. Let 0 < θ < 1
and u be a unitary in C(I,M2) with

u(θ/3) =
[
1 0
0 1

]
, u(1/3)

[
1 0
0 0

]
=

1
2

[
1 1
1 1

]
u(1/3).
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We define the normal element h in C(I,M2) as follows:

h(t) =



[
1 0
0 0

]
+ e3π

√
−1t/θ

[
0 0
0 1

]
t ∈ [0, θ/3]

u(t)

[
1 0
0 −1

]
u(t)∗ t ∈ [θ/3, 1/3]

1
2

[
1 1
1 1

]
+

1
2
e3π

√
−1t

[
1 −1
−1 1

]
t ∈ (1/3, 2/3)[

1 0
0 0

]
+ e3π

√
−1t

[
0 0
0 1

]
t ∈ [2/3, 1].

It is easy to see that if 1 − θ is sufficiently small, then so is ∥f − h2∥.

Let f be a normal element of C(I,Mn). For each point t ∈ I, f(t) has the spectral
decomposition: f(t) =

∑n
i=1 λi(t)pi(t), where λ1(t), . . . , λn(t) are the eigenvalues

of f(t) and pi(t) is a one-dimensional projection corresponding to λi (1 ≤ i ≤ n)
and satisfying

∑n
i=1 pi(t) = 1. By Rouché’s theorem, we may assume that λi is

continuous on I for each i. But pi(t) is not necessarily continuous.

Lemma 1.3. Let k ≤ n and {pi(t)}k
i=1 ⊂ Mn be a family of mutually orthogonal,

one-dimensional projections for each t ∈ I. If the map I ∋ t 7→ p(t) =
∑k

i=1 pi(t)
is continuous, then there are mutually orthogonal projections q1, . . . , qk ∈ C(I,Mn)
such that pi(0) = qi(0), qi(1) = pi(1) and p =

∑k
i=1 qi.

Proof. We can choose a continuous function I ∋ t 7→ x1(t) ∈ Range(p(t)) such that
p1(0)x1(0) = x1(0), p1(1)x1(1) = x1(1) and ∥x1(t)∥ = 1 for any t ∈ I. We define
the projection q1 = x1 ⊗ x1 ∈ C(I,Mn). Then I ∋ t 7→ p(t) − q1(t) is continuous.
Repeating the same argument, for l = 2, . . . , k, we can choose a continuous function
I ∋ t 7→ xl(t) ∈ Range((p −

∑l−1
i=1 qi(t))) such that pl(0)xl(0) = xl(0), pl(1)xl(1) =

xl(1) and ∥xl(t)∥ = 1 for any t ∈ I. Therefore we have p =
∑k

i=1 qi, where
qi = xi ⊗ xi for i = 1, . . . , k. ¤

Lemma 1.4. Let ε > 0, k ≤ n and f =
∑n

i=1 λipi be a normal element of C(I,Mn),
where λ1, . . . , λn ∈ C(I) and {pi(t)}n

i=1 ⊂ Mn is a family of mutually orthogonal
projections. If |λ1(t) − λl(t)| < ε and |λ1(t) − λl(t)| < |λ1(t) − λm(t)| for each
l ∈ {1, . . . , k} and m ∈ {k + 1, . . . , n}, then p =

∑k
i=1 pi ∈ C(I,Mn).

Moreover we can choose a family of mutually orthogonal projections q1, . . . , qk ∈
C(I,Mn) such that qi(0) = pi(0), qi(1) = pi(1) and∥∥∥∥∥pfp −

k∑
i=1

λiqi

∥∥∥∥∥ < 2ε.

Proof. We can choose a continuously differentiable function C : I × T → C such
that C(t, ·)(= Ct) is a simple closed curve with canonical orientation and separates
{λ1(t), . . . , λk(t)} (in its inside) and {λk+1(t), . . . , λn(t)} (in its outside) for each
t ∈ I. Since we have

1
2π

√
−1

∫
Ct

1
z − f(t)

dz =
k∑

i=1

pi(t)
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for any t ∈ I, this implies the continuity of p =
∑k

i=1 pi.
By the previous lemma, there are mutually orthogonal projections q1, . . . , qk ∈

C(I,Mn) such that pi(0) = qi(0), qi(1) = pi(1) and p =
∑k

i=1 qi. Then we have∥∥∥∥∥pfp −
k∑

i=1

λiqi

∥∥∥∥∥ ≤

∥∥∥∥∥
k∑

i=1

λipi −
k∑

i=1

λiqi

∥∥∥∥∥ ≤ ε +

∥∥∥∥∥
k∑

i=1

λ1pi −
k∑

i=1

λiqi

∥∥∥∥∥
= ε +

∥∥∥∥∥λ1p −
k∑

i=1

λiqi

∥∥∥∥∥ < 2ε. ¤

Proposition 1.5. Let ε > 0 and f be a normal element of C(I,Mn). Then there
are λ1, . . . , λn ∈ C(I) and mutually orthogonal projections q1, . . . , qn ∈ C(I,Mn)
such that ∥∥∥∥∥f −

n∑
i=1

λiqi

∥∥∥∥∥ < ε.

Proof. We can choose λ1, . . . , λn ∈ C(I) such that f(t) =
∑n

i=1 λi(t)pi(t), where
p1(t), . . . , pn(t) are mutually orthogonal projections for each t ∈ I. Then there
exists δ > 0 such that

|t − s| < δ =⇒ |λi(t) − λi(s)| < ε/2 (i = 1, . . . , n).

For any t ∈ I, we define index sets I1(t), . . . , IN(t)(t) as follows:

i1(t) = 1,

I1(t) = {i ∈ {1, . . . , n} : |λ1(t) − λi(t)| < ε/2},

ik(t) = min

(
{1, . . . , n} \

k−1⋃
i=1

Ii(t)

)
, (k ≥ 2)

Ik(t) =

{
i ∈ {1, . . . , n} \

k−1⋃
l=1

Il(t) :
∣∣λik(t)(t) − λi(t)

∣∣ < ε/2

}
.

Then we can choose a neighborhood Ut of t satisfying the closure Ut of Ut is [at, bt]
and |at − bt| < δ and, for i ∈ Ik(t), j ∈ {1, . . . , n} \

⋃k
l=1 Il(t) (1 ≤ k ≤ N(t)) and

s ∈ [at, bt], ∣∣λik(t)(s) − λi(s)
∣∣ < ε/2,

∣∣λik(t)(s) − λj(s)
∣∣ ≥ ε/4,∣∣λik(t)(s) − λi(s)

∣∣ <
∣∣λik(t)(s) − λj(s)

∣∣ .

Since
⋃

t∈I Ut is an open covering of I, there exists a finite subcovering of I. We
may assume that

0 = a1 < t1 < a2 < b1 < t2 < a3 < b2 < · · · < bK−1 < tK < bK = 1,

Utl
= [al, bl] (1 ≤ l ≤ K), I =

K⋃
l=1

Utl
.

For instance, we set b0 = a1. For each l = 1, . . . ,K, applying the previous
lemma N(tl) times, we can find mutually orthogonal projections q

(l)
1 , . . . , q

(l)
n ∈
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C([bl−1, bl],Mn) satisfying q
(l)
i (bl−1) = pi(bl−1), q

(l)
i (bl) = pi(bl) and∥∥∥∥∥f(t) −

n∑
i=1

λi(t)q
(l)
i (t)

∥∥∥∥∥ < ε.

We define, for each i, qi(t) = q
(l)
i (t), where t ∈ [bl−1, bl]. Then we have q1, . . . , qn ∈

C(I,Mn) as asserted. ¤

Corollary 1.6. C(I,Mn) is approximately square root closed.

Proof. Let ε > 0 and f be a normal element of C(I,Mn). Applying Proposition 1.5,
there are λ1, . . . , λn ∈ C(I) and mutually orthogonal projections q1, . . . , qn ∈
C(I,Mn) such that ∥f −

∑n
i=1 λiqi∥ < ε. For each i = 1, . . . , n, we can find

µi ∈ C(I) satisfying λi = µ2
i , which means that C(I,Mn) is approximately square

root closed. ¤

A C∗-algebra is called an AI-algebra if it is isomorphic to the inductive limit of a
sequence (C(I, Fn), φn), where each Fn is a finite dimensional C∗-algebra and each
φn : C(I, Fn) → C(I, Fn+1) is an injective *-homomorphism. A C∗-algebra A is
called stable rank one, if the set GL(A) of invertible elements of A is dense in A.
We remark that each C(I, Fn) has stable rank one.

We need the following lemma. We have been unable to find a suitable reference
in the literature, so we include a proof for completeness.

Lemma 1.7. Let A = lim−→An be an inductive limit such that each C∗-algebra An

has stable rank one. Then, for any normal element x ∈ A and ε > 0, there exists a
normal element y in some An such that ∥x − y∥ < ε.

Proof. For each n ∈ N, we can find an element xn ∈ An such that ∥x − xn∥ → 0.
Then [(xn)] := (xn)+

⊕
n An is a normal element in

∏
n An/

⊕
n An and C∗([(xn)])

is isomorphic to C(Sp([(xn)])), where C∗([(xn)]) is the C∗-algebra generated by
[(xn)]. Since Sp([(xn)]) can be embedded in the closed unit disk D, we have a
*-homomorphism from C(D) onto C(Sp([(xn)])). By using the argument of semi-
projectivity [16, Theorem 19.2.7], there exist a natural number m and a normal
element yn ∈ An for n ≥ m satisfying

[(x1, . . . , xm−1, xm, xm+1, . . .)] = [(0, . . . , 0, ym, ym+1, . . .)]

in
∏

n An/
⊕

n An. If we set y = yn for a sufficiently large n, then y satisfies the
desired condition. ¤

Theorem 1.8. Every AI-algebra is approximately square root closed.

Proof. Let A = lim−→An be an AI-algebra. Since each An has stable rank one, we
can apply Lemma 1.7. So, for any normal element a ∈ A and ε > 0, there exists
a normal element b in some An such that ∥a − b∥ < ε. By Corollary 1.6, b can
be approximated by a square of a normal element. Therefore A is approximately
square root closed. ¤

2. Two-divisibity for K1

Lemma 2.1. Let A be a C∗-algebra. If x ∈ A is normal, then there exists a normal
element y ∈ A ⊗ Mn such that x ⊗ 1n = yn.
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Proof. We set

y =
x

|x|(n−1)/n
⊗ e1,n + |x|

1
n ⊗ e2,1 + |x|

1
n ⊗ e3,2 + · · · + |x|

1
n ⊗ en,n−1.

Then y becomes a normal element of A ⊗ Mn and satisfies x ⊗ 1n = yn. ¤

Let M2∞ =
⊗∞

n=1 M2 be the UHF algebra of type 2∞ and γ : M2∞ → M2∞ be a
unital *-endomorphism defined by γ(x) = 12⊗x (x ∈ M2∞). For each n, we choose
a unitary wn ∈

⊗n
i=1 M2 ⊂ M2∞ such that

Adwn(x1 ⊗ · · · ⊗ xn) = wn(x1 ⊗ · · · ⊗ xn)w∗
n = xn ⊗ x1 ⊗ · · · ⊗ xn−1

for any x1 ⊗ · · · ⊗ xn ∈
⊗n

i=1 M2. Then we have

lim
n→∞

∥γ(x) − Adwn(x)∥ = 0 for all x ∈ M2∞ .

Theorem 2.2. If A is a unital C∗-algebra, then A⊗M2∞ is approximately square
root closed.

Proof. We consider the *-endomorphism α = id⊗γ of A ⊗ M2∞ . It is easy to see
that α(x) = limn→∞ Ad(1 ⊗ wn)(x) for all x ∈ A ⊗ M2∞ .

For any normal element x ∈ A⊗M2∞ , we can see α(x) like as
[
x 0
0 x

]
. So there

exists a normal element y ∈ A⊗M2∞ such that y2 = α(x) by Lemma 2.1. It follows
that ∥∥(Ad(1 ⊗ w∗

n)(y))2 − x
∥∥ =

∥∥y2 − Ad(1 ⊗ wn)(x)
∥∥ →

∥∥y2 − α(x)
∥∥ = 0,

which means that A ⊗ M2∞ is approximately square root closed. ¤

For a C∗-algebra A, we say that K1(A) is 2-divisible if any [x] ∈ K1(A) has an
element [y] ∈ K1(A) with [x] = 2[y].

It is known that if a unital C∗-algebra A has stable rank one, then Mn(A) has
also stable rank one, and in this case the map from the unitary group of A to K1(A)
is surjective, see [19] for details.

Let A be a unital commutative C∗-algebra (A ∼= C(X)). It is well-known that
A has stable rank one if and only if the covering dimension of the associated com-
pact Hausdorff space X is less than one. In this case K1(A) is isomorphic to
GL(A)/GL0(A), where GL0(A) is the connected component containing the iden-
tity in GL(A).

Proposition 2.3. Let A be a C∗-algebra with stable rank one.
(1) If A is approximately square root closed, then K1(A) is 2-divisible.
(2) If A is commutative and K1(A) is 2-divisible, then A is approximately

square root closed.

Proof. (1) Let u be a unitary in A. There exists a normal element a ∈ A such that∥∥u − a2
∥∥ < 1. In particular, a is invertible. Then we have [u] = [a2] = 2[a] in

K1(A).
(2) Since A has stable rank one, it suffices to show that any invertible element

in A can be approximated by a square of a normal element of A. For a ∈ GL(A),
there exists an invertible b ∈ A such that [a] = 2[b] = [b2] in K1(A). Therefore a is
connected to b2 in GL(A). So we can choose h1, . . . , hn ∈ A such that

a = eh1 · · · ehnb2.



SQUARE ROOT CLOSED C∗-ALGEBRAS 7

It follows that a = (e(h1+···+hn)/2b)2. ¤
Since K1(C(T)) = Z, we can see that C(T) is not approximately square root

closed. We define An = C(T) (n = 1, 2, . . .) and a *-homomorphism φn from An to
An+1 by

φn(f)(z) = f(z2) (f ∈ C(T) = An, z ∈ T).
Then the inductive limit A of this system (An, φn) is a commutative C∗-algebra
with stable rank one and has K1(A) ∼= Z[12 ] = { m

2n : m ∈ Z, n ∈ N}. In fact, A is
approximately square root closed.

We take a sequence {xn} of a compact Hausdorff space X and an increasing
sequence {kn} of positive integers such that kn divides kn+1 for each n. For each
n, we define a *-homomorphism φn from C(X,Mkn) to C(X,Mkn+1) by

φn(f)(x) = diag(f(x), . . . , f(x)︸ ︷︷ ︸
s(n)

, f(xn), . . . , f(xn))

for f ∈ C(X,Mkn) and x ∈ X. Then we call the inductive limit A of the inductive
system (C(X,Mkn), φn) a Goodearl type algebra over X. We note that if {xn} is
dense in X, then A becomes simple and is called a Goodearl algebra [10]. But, in
our setting {xn} is not necessarily dense in X.

Theorem 2.4. Let A be a Goodearl type algebra over T. Then the following are
equivalent.

(1) A is approximately square root closed.
(2) For any n ∈ N, there exists m ≥ n such that s(m) is even.
(3) K1(A) is 2-divisible.

Proof. (1) ⇒ (3). It follows from Proposition 2.3.
(3) ⇒ (2). We remark that K1(An) ∼= Z for each n ∈ N and denote by 1n

the unit of K1(An). Then we have (φn)∗(1n) = s(n)1n+1 ∈ K1(An+1). By the
assumption we can choose a positive integer N(> n) such that

s(N)s(N − 1) · · · s(n)1N+1 ∈ 2K1(AN+1).

This means that s(m) is even for some m ∈ {n, . . . , N}.
(2) ⇒ (1). Let f be a normal element in A and ε > 0. Since each An has stable

rank one, by the same argument in Theorem 1.8, we can choose a number n and a
normal element g ∈ An such that ∥f − g∥ < ε. Then we may assume that s(n) is
even. By Lemma 2.1 we can show that

φn(g) = g ⊗ 1s(n) ⊕ g(xn) ⊕ · · · ⊕ g(xn)

has a square root in An+1. ¤

3. Purely infinite simple unital C∗-algebras

Let A be a unital simple C∗-algebra. We say that A is purely infinite, if every non-
zero hereditary C∗-subalgebra of A contains an infinite projection. The simplicity
and the pure infiniteness of A ([20]) implies that A has real rank zero, i.e., the
invertible self-adjoint elements are dense in the set of the self-adjoint elements of
A. It is also known that the following are equivalent:

(i) A has real rank zero.
(ii) A has the property (HP), i.e., every non-zero hereditary C∗-subalgebra B

of A has an approximate identity of projections in B ([3]).
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(iii) A has the property weak (FU), i.e., for any u ∈ U0(A) and ε > 0, there
exists a unitary v ∈ U0(A) with finite spectrum such that ∥u − v∥ < ε,
where U0(A) is the connected component containing the identity in the set
of unitaries U(A) ([12]).

Proposition 3.1. Let A be a unital simple purely infinite C∗-algebra. When u ∈ A
is a unitary and [u] is 2-divisible in K1(A), for any ε > 0 there exists a unitary
v ∈ A such that

∥u − v2∥ < ε.

Proof. We denote the unit circle in C by T. If Sp(u) is not the whole of T, then
u has a square root. Therefore we may assume Sp(u) = T. Let F ⊂ T be an
ε-dense finite subset of T, that is, for any ξ ∈ T there exists η ∈ F such that
|ξ − η| ≤ ε. Since A has real rank zero, applying [13, Lemma 2], there exist a
unitary u0 ∈ A and a family of mutually orthogonal nonzero projections {eη}η∈F

such that ∥u − u0∥ < ε and

eηu0 = u0eη = ηeη

for all η ∈ F . Let e = 1 −
∑

η∈F eη and B = eAe. Then u1 = u0e is a unitary of
B. Note that [u1 + 1 − e] is equal to [u] in K1(A). Hence there exists a unitary
v ∈ B such that [u2] = −2[v] in K1(B) ∼= K1(A). Since M2(B) has the property
weak (FU), there exist projections q1, q2, . . . , qn ∈ M2(B) and ξ1, ξ2, . . . , ξn ∈ T
such that

n∑
i=1

qi =
[
1 0
0 1

]
and ∥∥∥∥∥

[
u1 0
0 v2

]
−

n∑
i=1

ξiqi

∥∥∥∥∥ < ε.

Because F is ε-dense in T, for each i = 1, 2, . . . , n, there exists ηi ∈ F such that
|ξi − ηi| ≤ ε. It follows that∥∥∥∥∥

[
u1 0
0 v2

]
−

n∑
i=1

ηiqi

∥∥∥∥∥ < 2ε.

Since A is simple and purely infinite, there exists a family of mutually orthogonal
projections ri in A such that ri ≤ eηi and [ri] = [qi] in K0(A). Put r =

∑n
i=1 ri.

Then we have

u0r =
n∑

i=1

ηiri,

and so we can find a unitary u2 ∈ rAr which is a copy of the unitary[
u1 0
0 v2

]
,

and ∥u2 − u0r∥ is less than 2ε. It follows that u3 = u1 + u2 + u0(1 − e − r) is a
unitary of A and ∥u3 − u∥ is less than 3ε. Moreover u1 + u2 looks likeu1 0 0

0 u1 0
0 0 v2

 ,
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which is a square of 0 u1 0
1 0 0
0 0 v

 .

Because u0(1 − e − r) has finite spectrum, the proof is completed. ¤

Corollary 3.2. Let A be a unital simple purely infinite C∗-algebra. Suppose that
K1(A) is 2-divisible. If x ∈ A is a normal element and Sp(x) is homeomorphic to
the circle, then for any ε > 0 there exists a normal element y ∈ A such that

∥x − y2∥ < ε.

Proof. Since the circle is one-dimensional, by perturbing x a little bit, we may
assume that x is invertible. Let f : T → Sp(x) be a homeomorphism. Because
f is a homeomorphism onto Sp(x), the rotation number of f is −1 or 0 or 1. If
the rotation number of f is zero, then x has a square root. Hence, without loss of
generality, we may assume that the rotation number of f is one. We denote the
inverse of f by f−1 : Sp(x) → T.

There exists δ > 0 such that if u, v ∈ A are unitaries with ∥u − v∥ < δ then
∥f(u)−f(v)∥ < ε. Applying Proposition 3.1 to the unitary f−1(x), we get a unitary
v ∈ A such that

∥f−1(x) − v2∥ < δ,

which means that
∥x − f(v2)∥ < ε.

Since the rotation number of the function

T ∋ ξ → f(ξ2) ∈ C
is two, we can find a continuous function g : T → C such that

g2(ξ) = f(ξ2)

for all ξ ∈ T. Put y = g(v). Then y is a normal element and y2 = g2(v) = f(v2),
which completes the proof. ¤

Let a and b be two elements of a C∗-algebra and ε > 0. We write a
ε
≈ b, if

∥a − b∥ < ε.

Lemma 3.3. Let A be a unital C∗-algebra and x ∈ A be a normal element. Suppose
that there exist ζ ∈ Sp(x) and closed subsets G0, G1 ⊂ Sp(x) such that Sp(x) =
G0 ∪ G1 and G0 ∩ G1 = {ζ}. Then, for any ε > 0, there exist normal elements
x0, x1 ∈ A and a unitary u ∈ M2(A) such that Sp(xi) = Gi and∥∥∥∥u

[
x

ζ

]
u∗ −

[
x0

x1

]∥∥∥∥ < ε.

Proof. We can identify C(Sp(x)) with the abelian C∗-subalgebra of A which is
generated by x and 1 ∈ A. Put

O = {ξ ∈ C : |ξ − ζ| < ε/2}.
Since G0 \ O and G1 \ O are disjoint, there exists a unitary u ∈ M2(C(Sp(x))) ∼=
C(Sp(x),M2) such that

u(ξ) =
[
1 0
0 1

]
for ξ ∈ G0 \ O and u(ξ) =

[
0 1
1 0

]
for ξ ∈ G1 \ O.
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Define xi ∈ C(Sp(x)) by

xi(ξ) =

{
ξ ξ ∈ Gi

ζ ξ ∈ G1−i.

If ξ /∈ O, then we can check

u(ξ)
[
ξ 0
0 ζ

]
u(ξ)∗ =

[
x0(ξ) 0

0 x1(ξ)

]
.

If ξ ∈ G0 ∩ O, then

u(ξ)
[
ξ 0
0 ζ

]
u(ξ)∗

ε/2
≈ u(ξ)

[
ζ 0
0 ζ

]
u(ξ)∗ =

[
ζ 0
0 ζ

]
ε/2
≈

[
ξ 0
0 ζ

]
=

[
x0(ξ) 0

0 x1(ξ)

]
.

When ξ ∈ G1 ∩ O, we can obtain the same estimate. ¤

We put
H+ = {a + b

√
−1 ∈ C : b ≥ 0}

and
H− = {a + b

√
−1 ∈ C : b ≤ 0}.

We identify the real line R with H+ ∩ H−.

Lemma 3.4. Let A be a unital C∗-algebra and x ∈ A be a normal element. Suppose
that there exists a homeomorphism f : C → C such that f(R)∩ Sp(x) = f([−1, 1]).
Then, for any ε > 0, there exist normal elements x0, x1, a ∈ A and a unitary
u ∈ M2(A) such that

Sp(x0) = f(H+) ∩ Sp(x), Sp(x1) = f(H−) ∩ Sp(x), Sp(a) = f([−1, 1])

and ∥∥∥∥u

[
x

a

]
u∗ −

[
x0

x1

]∥∥∥∥ < ε.

Proof. We identify C(Sp(x)) with the abelian C∗-subalgebra of A which is gener-
ated by x and 1 ∈ A. We first deal with the case that f : C → C is the identity
map. Let h0 : H+ → [−1, 1] and h1 : H− → [−1, 1] be continuous functions such
that hi(ξ) = ξ for ξ ∈ [−1, 1]. Define a, x0, x1 ∈ C(Sp(x)) by

a(ξ) =

{
h0(ξ) ξ ∈ H+

h1(ξ) ξ ∈ H−
,

x0(ξ) =

{
ξ ξ ∈ H+

h1(ξ) ξ ∈ H−

and

x1(ξ) =

{
h0(ξ) ξ ∈ H+

ξ ξ ∈ H−.

Since Sp(x) ∩ R = [−1, 1], there exists δ > 0 such that if ξ = s + t
√
−1 ∈ Sp(x)

with |t| < δ, then |hi(ξ) − ξ|< ε/2 for each i = 0, 1. We can find a unitary
u ∈ M2(C(Sp(x))) ∼= C(Sp(x),M2) such that

u(ξ) =
[
1 0
0 1

]
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for ξ = s + t
√
−1 ∈ Sp(x) with t ≥ δ and

u(ξ) =
[
0 1
1 0

]
for ξ = s + t

√
−1 ∈ Sp(x) with t ≤ −δ. If |t| ≥ δ, then for ξ = s + t

√
−1 ∈ Sp(x)

we can check

u(ξ)
[
ξ 0
0 a(ξ)

]
u(ξ)∗ =

[
x0(ξ) 0

0 x1(ξ)

]
.

If |t| < δ, then for ξ = s + t
√
−1 ∈ Sp(x) we can also check

u(ξ)
[
ξ 0
0 a(ξ)

]
u(ξ)∗

ε/2
≈ u(ξ)

[
a(ξ) 0
0 a(ξ)

]
u(ξ)∗ =

[
a(ξ) 0
0 a(ξ)

]
ε/2
≈

[
x0(ξ) 0

0 x1(ξ)

]
.

Now let us turn to the general case. Because K = f−1(Sp(x)) = Sp(f−1(x)) is
compact, there exists δ > 0 such that if y0 and y1 are normal elements in some C∗-
algebra B with Sp(yi) ⊂ K and ∥y0 − y1∥ < δ, then ∥f(y0)− f(y1)∥ < ε. Applying
the first part of this proof to f−1(x) and δ, we get∥∥∥∥u

[
f−1(x)

a

]
u∗ −

[
x0

x1

]∥∥∥∥ < δ.

By the choice of δ, we obtain∥∥∥∥u

[
x

f(a)

]
u∗ −

[
f(x0)

f(x1)

]∥∥∥∥ < ε,

thereby completing the proof. ¤

We define I0 and I1 by

I0 = {a + b
√
−1 ∈ C : 0 ≤ a ≤ 1, b = 0}

and
I1 = {a + b

√
−1 ∈ C : 0 ≤ b ≤ 1, a = 0}.

Let G be a compact subset of C. We say that G is a lattice graph, if there exist
finite subsets F0 and F1 of Z + Z

√
−1 such that

G =
⋃

i=0,1

⋃
ζ∈Fi

Ii + ζ.

We call each point in G ∩ (Z + Z
√
−1) a vertex of G and each Ii + ζ contained in

G an edge of G. We denote by |G| the number of edges of G.

Proposition 3.5. For any nonempty connected lattice graph G, there exists a
natural number N(G) ∈ N such that the following holds: Let A be a unital C∗-
algebra and x ∈ A be a normal element with Sp(x) = G. For any ε > 0, there exist
a natural number N ≤ N(G), normal elements a1, a2, . . . , aN , x0, x1, . . . , xN ∈ A,
and a unitary u ∈ MN+1(A) such that the following are satisfied.

(1) ∥u diag(x, a1, a2, . . . , aN )u∗ − diag(x0, x1, . . . , xN )∥ < ε.
(2) Sp(xi) is contained in G.
(3) Sp(xi) is homeomorphic to the closed interval [−1, 1] or the circle.
(4) Sp(ai) is contained in G.
(5) Sp(ai) is a single point or homeomorphic to the closed interval [−1, 1].
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Proof. The proof goes by induction concerning |G|. If |G| = 1, then G is homeo-
morphic to the closed interval, and so we have nothing to do.

We may assume that the assertion has been proved for all G with |G| < L. Let
us consider a connected lattice graph G with |G| = L. We would like to show that

N(G) = 2max{N(G0) : G0 is a connected lattice graph with G0 ( G} + 1

does the work. Suppose that A is a unital C∗-algebra and x ∈ A is a normal element
with G = Sp(x). Take ε > 0.

Suppose that there exists a vertex ζ ∈ G such that G \ {ζ} is not connected.
We can find nonempty connected lattice graphs G0 and G1 such that G = G0 ∪G1

and G0 ∩ G1 = {ζ}. Applying Lemma 3.3 to G0, G1, ζ and ε/2, we obtain normal
elements x0, x1 ∈ A and a unitary u ∈ M2(A) such that Sp(xi) = Gi and∥∥∥∥u

[
x

ζ

]
u∗ −

[
x0

x1

]∥∥∥∥ <
ε

2
.

By the induction hypothesis, there exists Ni ≤ N(Gi) such that the assertion holds
for xi and ε/2. Hence N = N0 + N1 + 1 ≤ N(G) works for x and ε.

Therefore we may assume that G \ {ζ} is connected for all vertices ζ in G. Let
O be the unbounded connected component of C \ G and ∂O be the boundary of
O in C. Then ∂O ⊂ G is homeomorphic to the circle. If G = ∂O, then we have
nothing to do. Let us assume that G ̸= ∂O. We can find an edge e ⊂ G such that
e is not contained in ∂O and an endpoint ζ0 of e belongs to ∂O. Let ζ1 be the
other endpoint of e. Since G \ {ζ0} is connected, we can find a path in G from ζ1

to a vertex ζ2 ∈ ∂O which is distinct from ζ0. Let P be the union of this path and
e. Then P ⊂ G is homeomorphic to the closed interval [−1, 1] and its endpoints
are ζ0 and ζ2. There exists a homeomorphism f : C → C such that f(R) ∩ G = P
and f([−1, 1]) = P . Applying Lemma 3.4 to f and ε/2, we obtain normal elements
x0, x1, a ∈ A and a unitary u ∈ M2(A) such that

Sp(x0) = f(H+) ∩ Sp(x), Sp(x1) = f(H−) ∩ Sp(x), Sp(a) = f([−1, 1])

and ∥∥∥∥u

[
x

a

]
u∗ −

[
x0

x1

]∥∥∥∥ <
ε

2
.

Put Gi = Sp(xi) for i = 0, 1. Note that Gi is a connected lattice graph. By the
induction hypothesis, there exists a natural number Ni ≤ N(Gi) such that the
assertion holds for xi and ε/2. Hence N = N0 + N1 + 1 ≤ N(G) works for x and
ε. ¤

Lemma 3.6. Let A be a unital C∗-algebra and a ∈ A be a normal element. Suppose
that Sp(a) is homeomorphic to the closed interval [−1, 1]. For any ε > 0, there exist
complex numbers ξ1, ξ2, . . . , ξN , η0, η1, . . . , ηN ∈ Sp(a) and a unitary u ∈ MN+1(A)
such that

∥u diag(a, ξ1, ξ2, . . . , ξN )u∗ − diag(η0, η1, . . . , ηN )∥ < ε.

Proof. By using Lemma 3.3 repeatedly, we can find ξ1, ξ2, . . . , ξN ∈ Sp(a) and
normal elements x0, x1, . . . , xN ∈ A and a unitary u ∈ MN+1(A) such that

∥u diag(a, ξ1, ξ2, . . . , ξN )u∗ − diag(x0, x1, . . . , xN )∥ <
ε

2
and Sp(xi) has diameter less than ε/2. Replacing xi with some ηi ∈ Sp(xi), we get
the conclusion. ¤
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This lemma together with Proposition 3.5 directly implies the following.

Proposition 3.7. Let A be a unital C∗-algebra and x ∈ A be a normal element.
Suppose that G = Sp(x) is a lattice graph. For any ε > 0, there exist N ∈ N,
ξ1, ξ2, . . . , ξN ∈ C, normal elements x0, x1, . . . , xN ∈ A and a unitary u ∈ MN+1(A)
such that the following are satisfied.

(1) ∥u diag(x, ξ1, ξ2, . . . , ξN )u∗ − diag(x0, x1, . . . , xN )∥ < ε.
(2) Sp(xi) is contained in G.
(3) Sp(xi) is a single point or homeomorphic to the closed interval [−1, 1] or

the circle.
(4) ξi is contained in G.

Combining this with Corollary 3.2, we get the following.

Lemma 3.8. Let A be a unital simple purely infinite C∗-algebra. Suppose that
K1(A) is 2-divisible. If x ∈ A is a normal element and Sp(ε−1x) is a connected
lattice graph for some ε > 0, then there exists a normal element y ∈ A such that

∥x − y2∥ < 2ε.

Proof. Put G = Sp(ε−1x) and

F = Sp(x) ∩ (εZ + εZ
√
−1).

Thus, ε−1F is the set of vertices of the lattice graph G. Clearly F is an ε/2-dense
finite subset of Sp(x). As before, we put

I0 = {a + b
√
−1 ∈ C : 0 ≤ a ≤ 1, b = 0}

and
I1 = {a + b

√
−1 ∈ C : 0 ≤ b ≤ 1, a = 0}.

We define a continuous function f : Sp(x) → Sp(x) as follows: If ξ = a + b
√
−1 ∈

Sp(x) belongs to εI0 + ζ with ζ = t + b
√
−1 ∈ F , then we set

f(ξ) =


ζ t ≤ a ≤ t + ε

3

ζ + 3(a − t − ε
3 ) t + ε

3 ≤ a ≤ t + 2ε
3

ζ + ε t + 2ε
3 ≤ a ≤ t + ε.

If ξ = a + b
√
−1 ∈ Sp(x) belongs to εI1 + ζ with ζ = a + t

√
−1 ∈ F , then we set

f(ξ) =


ζ t ≤ b ≤ t + ε

3

ζ + 3(b − t − ε
3 )
√
−1 t + ε

3 ≤ b ≤ t + 2ε
3

ζ + ε
√
−1 t + 2ε

3 ≤ b ≤ t + ε.

Define z = f(x). Evidently we have ∥x − z∥ ≤ ε/3 and Sp(z) = Sp(x) = εG.
For each η ∈ F , let gη : C → [0, 1] be a continuous function such that gη(η) = 1
and gη(ξ) = 0 if |ξ − η| ≥ ε/3. Since A has real rank zero, there exists a nonzero
projection eη ∈ gη(x)Agη(x). It is not hard to see that eηz = zeη = ηeη. Note
that {eη}η∈F is a family of mutually orthogonal projections. Put e = 1−

∑
η∈F eη,

B = eAe and z0 = ze. Then we have

z = z0 +
∑
η∈F

ηeη,

and so the spectrum of z0 in B is equal to εG = Sp(z).
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By applying Proposition 3.7 to ε−1z0 ∈ B and 1, we obtain complex numbers
ξ1, ξ2, . . . , ξN ∈ C, normal elements x0, x1, . . . , xN ∈ B and a unitary u ∈ MN+1(B)
such that

• ∥u diag(ε−1z0, ξ1, ξ2, . . . , ξN )u∗ − diag(x0, x1, . . . , xN )∥ < 1.
• Sp(xi) is a single point or homeomorphic to the closed interval [−1, 1] or

the circle.
• ξi is contained in G.

By replacing ξi and xi with ε−1ξi and ε−1xi, we get
• ∥u diag(z0, ξ1, ξ2, . . . , ξN )u∗ − diag(x0, x1, . . . , xN )∥ < ε.
• Sp(xi) is a single point or homeomorphic to the closed interval [−1, 1] or

the circle.
• ξi is contained in Sp(x).

Because F is ε/2-dense in Sp(x), for each i = 1, 2, . . . , N we can find ηi ∈ F such
that |ξi − ηi| ≤ ε/2. It follows that

∥u diag(z0, η1, η2, . . . , ηN )u∗ − diag(x0, x1, . . . , xN )∥ <
3ε

2
.

Since A is purely infinite, there exists a family of mutually orthogonal projections
qi such that qi ≤ eηi and [qi] = [e] in K0(A). Put q =

∑
qi. Then we have

(e + q)z = z0 +
N∑

i=1

ηiqi,

and so there exists a normal element w ∈ (e + q)A(e + q) which is a unitary
conjugation of diag(x0, x1, . . . , xN ) and

∥(e + q)z − w∥ <
3ε

2
.

Thanks to Corollary 3.2, we can find a normal element y0 ∈ (e + q)A(e + q) such
that

∥w − y2
0∥ <

ε

6
.

Since (1 − e − q)z has finite spectrum, it has a square root y1. Put y = y0 + y1.
Then we have

∥z − y2∥ = ∥(e + q)z − y2
0∥ < ∥w − y2

0∥ +
3ε

2
<

3ε

2
+

ε

6
.

This estimate together with ∥x − z∥ ≤ ε/3 implies

∥x − y2∥ < 2ε. ¤

Now we are ready to prove the main result of this section.

Theorem 3.9. For a unital simple purely infinite C∗-algebra A, the following are
equivalent.

(1) A is approximately square root closed.
(2) K1(A) is 2-divisible.

Proof. (1)⇒(2). Since K1(A) ∼= U(A)/U0(A), it suffices to show that every unitary
in A is divided by 2 in K1(A). Let u be a unitary in A. Then there exists a unitary
v ∈ A such that

∥∥u − v2
∥∥ < 1. Therefore [u] = 2[v] in K1(A).
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(2)⇒(1). Take a normal element x ∈ A and a small real number ε > 0. By [9,
Lemma 3.2], there exists a normal element z ∈ A such that ∥x − z∥ < ε and Sp(z)
is contained in

{a + b
√
−1 ∈ C : a ∈ εZ or b ∈ εZ}.

By perturbing z a little bit more, we can find a normal element w ∈ A such that
∥z−w∥ < ε and G = ε−1 Sp(w) is a lattice graph. Let G1, G2, . . . , Gn be connected
components of G. Each Gi is a connected lattice graph. Let hi be the characteristic
function on εGi and put wi = hi(w). Then w is the direct sum of w1, w2, . . . , wn

and Sp(wi) = εGi. By using the lemma above, we get mutually orthogonal normal
elements y1, y2, . . . , yn such that ∥wi − y2

i ∥ < 2ε. Put y = y1 + y2 + · · · + yn. We
can easily see that ∥x − y2∥ < 4ε. ¤
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