SQUARE ROOT CLOSED C^*-ALGEBRAS

HIROKI MATUI, MASARU NAGISA, AND MUNEHIRO YAMAMOTO

Abstract. We say that a C^*-algebra A is approximately square root closed, if any normal element in A can be approximated by a square of a normal element in A. We study when A is approximately square root closed, and have an affirmative answer for AI-algebras, Goodearl type algebras over the torus, purely infinite simple unital C^*-algebras etc.

0. Introduction

D. Deckard and C. Pearcy [7, 8] proved that, for a commutative AW^*-algebra M, any algebraic equation with M-valued coefficients has roots in M. Many researchers study analogous problems for a commutative C^*-algebra $C(X)$, and some results are strongly related to topological properties of X (e.g., covering dimension, cohomology etc.)[4, 5, 11, 17, 18].

In this paper, we consider this problem for a C^*-algebra which is not necessarily commutative. But we restrict our attention to a special quadratic equation, namely $x^2 = a$. We make the following definition:

Definition 0.1. Let A be a C^*-algebra.

(1) We say that A is square root closed, if for any normal element $a \in A$, there exists a normal element $b \in A$ such that $a = b^2$.

(2) We say that A is approximately square root closed, if for any $\varepsilon > 0$ and any normal element $a \in A$, there exists a normal element $b \in A$ such that $\|a - b^2\| < \varepsilon$.

Needless to say, for a commutative C^*-algebra A, the square root closed property for A is the same as the classical property, i.e., every element in A has its square root in A.

Our result is as follows.

(1) Every AI-algebra is approximately square root closed. (Theorem 1.8.)

(2) If A is a unital C^*-algebra, $A \otimes M_{\infty}$ is approximately square root closed. (Theorem 2.2.)

(3) For a Goodearl type algebra A over T, A is approximately square root closed if and only if $K_1(A)$ is 2-divisible. (Theorem 2.4.)

(4) For a purely infinite simple unital C^*-algebra A, A is approximately square root closed if and only if $K_1(A)$ is 2-divisible. (Theorem 3.9.)

2000 Mathematics Subject Classification. Primary 46L80; Secondary 46L05.

Key words and phrases. C^*-algebra, K-theory, square root, AI-algebra, Goodearl algebra, purely infinite simple unital C^*-algebra.
1. **AI-Algebras**

It is clear that every finite dimensional C^*-algebra is square root closed. We say that a C^*-algebra A has the property (FN), if any normal element in A can be approximated by some normal element in A with finite spectrum. If A has the property (FN), then we can see that A is approximately square root closed. H. Lin [14] proved that every AF-algebra has the property (FN). This implies every AF-algebra is approximately square root closed.

We give two examples of C^*-algebras which are approximately square root closed but not square root closed.

Example 1.1. There exists a unital AF-algebra A such that A has a maximal abelian self-adjoint subalgebra B which is isomorphic to the algebra $C(T)$ of continuous functions on the torus T (see [2]). Then A is not square root closed.

Indeed, let u be a unitary generator of $B \cong C(T)$. If $y \in A$ is normal and satisfies $y^2 = u$, then y belongs to B by the maximality of B. But u does not have such an element in $B \cong C(T)$. So A is not square root closed.

Example 1.2. Let $I = [0, 1]$ be the interval. The algebra $C(I, M_2)$ of 2×2 matrix valued continuous functions on I is not square root closed but approximately square root closed.

We define a normal element $f \in C(I, M_2)$ as follows:

$$f(t) = \begin{cases}
\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + e^{6\pi\sqrt{-1}t} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} & t \in [0, 1/3] \cup [2/3, 1] \\
\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + \frac{1}{2} e^{6\pi\sqrt{-1}t} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} & t \in (1/3, 2/3).
\end{cases}$$

We assume that g is a normal element in $C(I, M_2)$ with $g^2 = f$. By the continuity of spectra, one of $g(1/3)$ and $g(2/3)$ must have the spectrum $\{1, -1\}$. We only consider the case $\text{Sp}(g(1/3)) = \{1, -1\}$. Since we have

$$\lim_{t \to 1/3^-} g(t) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \neq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \lim_{t \to 1/3^+} g(t),$$

this contradicts the assumption.

In Corollary 1.6, we will show that $C(I, M_n)$ is approximately square root closed. But, for above f, we construct its approximate square root here. Let $0 < \theta < 1$ and u be a unitary in $C(I, M_2)$ with

$$u(\theta/3) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad u(1/3) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} u(1/3).$$
We define the normal element h in $C(I, M_2)$ as follows:

$$h(t) = \begin{cases}
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix} + e^{3\pi\sqrt{-1}t/\theta} \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix} & t \in [0, \theta/3] \\
\begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix} u(t)^* & t \in [\theta/3, 1/3] \\
\begin{bmatrix}
1/2 & 1 \\
1/2 & 1
\end{bmatrix} + e^{3\pi\sqrt{-1}t} \begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix} & t \in (1/3, 2/3) \\
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix} + e^{3\pi\sqrt{-1}t} \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix} & t \in [2/3, 1].
\end{cases}$$

It is easy to see that if $1 - \theta$ is sufficiently small, then so is $\|f - h\|$.

Let f be a normal element of $C(I, M_n)$. For each point $t \in I$, $f(t)$ has the spectral decomposition: $f(t) = \sum_{i=1}^n \lambda_i(t)p_i(t)$, where $\lambda_1(t), \ldots, \lambda_n(t)$ are the eigenvalues of $f(t)$ and $p_i(t)$ is a one-dimensional projection corresponding to λ_i ($1 \leq i \leq n$) and satisfying $\sum_{i=1}^n p_i(t) = 1$. By Rouché’s theorem, we may assume that λ_i is continuous on I for each i. But $p_i(t)$ is not necessarily continuous.

Lemma 1.3. Let $k \leq n$ and $\{p_i(t)\}_{i=1}^k \subset M_n$ be a family of mutually orthogonal, one-dimensional projections for each $t \in I$. If the map $I \ni t \mapsto p(t) = \sum_{i=1}^k p_i(t)$ is continuous, then there are mutually orthogonal projections $q_1, \ldots, q_k \in C(I, M_n)$ such that $p_i(0) = q_i(0)$, $q_i(1) = p_i(1)$ and $p = \sum_{i=1}^k q_i$.

Proof. We can choose a continuous function $I \ni t \mapsto x_1(t) \in \text{Range}(p(t))$ such that $p_1(0)x_1(0) = x_1(0)$, $p_1(1)x_1(1) = x_1(1)$ and $\|x_1(t)\| = 1$ for any $t \in I$. Define the projection $q_1 = x_1 \otimes x_1 \in C(I, M_n)$. Then $I \ni t \mapsto p(t) - q_1(t)$ is continuous. Repeating the same argument, for $l = 2, \ldots, k$, we can choose a continuous function $I \ni t \mapsto x_l(t) \in \text{Range}((p - \sum_{i=1}^{l-1} q_i(t)))$ such that $p_1(0)x_l(0) = x_l(0)$, $p_l(1)x_l(1) = x_l(1)$ and $\|x_l(t)\| = 1$ for any $t \in I$. Therefore we have $p = \sum_{i=1}^k q_i$, where $q_i = x_i \otimes x_i$ for $i = 1, \ldots, k$. \[\Box\]

Lemma 1.4. Let $\varepsilon > 0$, $k \leq n$ and $f = \sum_{i=1}^n \lambda_i p_i$ be a normal element of $C(I, M_n)$, where $\lambda_1, \ldots, \lambda_n \in C(I)$ and $\{p_i(t)\}_{i=1}^k \subset M_n$ is a family of mutually orthogonal projections. If $|\lambda_1(t) - \lambda_1| < \varepsilon$ and $|\lambda_i(t) - \lambda_i| < |\lambda_1(t) - \lambda_m|)$ for each $l \in \{1, \ldots, k\}$ and $m \in \{k+1, \ldots, n\}$, then $p = \sum_{i=1}^k p_i \in C(I, M_n)$.

Moreover we can choose a family of mutually orthogonal projections $q_1, \ldots, q_k \in C(I, M_n)$ such that $q_i(0) = p_i(0)$, $q_i(1) = p_i(1)$ and

$$\left\| p \right\| < 2\varepsilon - \sum_{i=1}^k \lambda_i q_i.$$

Proof. We can choose a continuously differentiable function $C: I \times \mathbb{T} \to C$ such that $C(t, \cdot) = C_t$ is a simple closed curve with canonical orientation and separates $\{\lambda_j(t), \ldots, \lambda_k(t)\}$ (in its inside) and $\{\lambda_{k+1}(t), \ldots, \lambda_n(t)\}$ (in its outside) for each $t \in I$. Since we have

$$\frac{1}{2\pi\sqrt{-1}} \int_{C_t} \frac{1}{z - f(t)} \, dz = \sum_{i=1}^k p_i(t)$$
for any $t \in I$, this implies the continuity of $p = \sum_{i=1}^{k} p_i$.

By the previous lemma, there are mutually orthogonal projections $q_1, \ldots, q_k \in C(I, M_n)$ such that $p_1(0) = q_1(0)$, $q_i(1) = p_i(1)$ and $p = \sum_{i=1}^{k} q_i$. Then we have

$$\left\| pfp - \sum_{i=1}^{k} \lambda_i q_i \right\| \leq \left\| \sum_{i=1}^{k} \lambda_i p_i - \sum_{i=1}^{k} \lambda_i q_i \right\| \leq \varepsilon + \left\| \sum_{i=1}^{k} \lambda_i p_i - \sum_{i=1}^{k} \lambda_i q_i \right\|$$

$$= \varepsilon + \left\| \lambda_1 p - \sum_{i=1}^{k} \lambda_i q_i \right\| < 2\varepsilon.$$

\[\Box \]

Proposition 1.5. Let $\varepsilon > 0$ and f be a normal element of $C(I, M_n)$. Then there are $\lambda_1, \ldots, \lambda_n \in C(I)$ and mutually orthogonal projections $q_1, \ldots, q_n \in C(I, M_n)$ such that

$$\left\| f - \sum_{i=1}^{n} \lambda_i q_i \right\| < \varepsilon.$$
C([b_{l-1}, b_l], M_n) satisfying \(q_i(t)b_{l-1} = p_i(b_{l-1}) \), \(q_i(t)b_l = p_i(b_l) \) and \[
\left\| f(t) - \sum_{i=1}^n \lambda_i(t)q_i(t) \right\| < \varepsilon. \]

We define, for each \(i \), \(q_i(t) = q_i(t) \), where \(t \in [b_{l-1}, b_l] \). Then we have \(q_1, \ldots, q_n \in C(I, M_n) \) as asserted.

Corollary 1.6. \(C(I, M_n) \) is approximately square root closed.

Proof. Let \(\varepsilon > 0 \) and \(f \) be a normal element of \(C(I, M_n) \). Applying Proposition 1.5, there are \(\lambda_1, \ldots, \lambda_n \in C(I) \) and mutually orthogonal projections \(q_1, \ldots, q_n \in C(I, M_n) \) such that \(\| f - \sum_{i=1}^n \lambda_i q_i \| < \varepsilon \). For each \(i = 1, \ldots, n \), we can find \(\mu_i \in C(I) \) satisfying \(\lambda_i = \mu_i^2 \), which means that \(C(I, M_n) \) is approximately square root closed.

A \(C^* \)-algebra is called an \(AI \)-algebra if it is isomorphic to the inductive limit of a sequence \((C(I, F_n), \varphi_n) \), where each \(F_n \) is a finite dimensional \(C^* \)-algebra and each \(\varphi_n : C(I, F_n) \rightarrow C(I, F_{n+1}) \) is an injective \(* \)-homomorphism. A \(C^* \)-algebra \(A \) is called stable rank one, if the set \(GL(A) \) of invertible elements of \(A \) is dense in \(A \).

We remark that each \(C(I, F_n) \) has stable rank one.

We need the following lemma. We have been unable to find a suitable reference in the literature, so we include a proof for completeness.

Lemma 1.7. Let \(A = \lim A_n \) be an inductive limit such that each \(C^* \)-algebra \(A_n \) has stable rank one. Then, for any normal element \(x \in A \) and \(\varepsilon > 0 \), there exists a normal element \(y \) in some \(A_n \) such that \(\| x - y \| < \varepsilon \).

Proof. For each \(n \in \mathbb{N} \), we can find an element \(x_n \in A_n \) such that \(\| x - x_n \| \rightarrow 0 \). Then \([x_n] := (x_n) + \bigoplus A_n\) is a normal element in \(\prod A_n/ \bigoplus A_n \) and \(C^*([x_n]) \) is isomorphic to \(C(\text{Sp}([x_n])) \), where \(C^*([x_n]) \) is the \(C^* \)-algebra generated by \([x_n])]. Since \(\text{Sp}([x_n]) \) can be embedded in the closed unit disk \(\mathbb{D} \), we have a \(* \)-homomorphism from \(C(\mathbb{D}) \) onto \(C(\text{Sp}([x_n])) \). By using the argument of semi-projectivity [16, Theorem 19.2.7], there exist a natural number \(m \) and a normal element \(y_n \in A_n \) for \(n \geq m \) satisfying \([x_1, \ldots, x_{m-1}, y_m, y_{m+1}, \ldots] = [0, \ldots, 0, y_m, y_{m+1}, \ldots] \) in \(\prod A_n/ \bigoplus A_n \). If we set \(y = y_n \) for a sufficiently large \(n \), then \(y \) satisfies the desired condition.

Theorem 1.8. Every \(AI \)-algebra is approximately square root closed.

Proof. Let \(A = \lim A_n \) be an \(AI \)-algebra. Since each \(A_n \) has stable rank one, we can apply Lemma 1.7. So, for any normal element \(a \in A \) and \(\varepsilon > 0 \), there exists a normal element \(b \) in some \(A_n \) such that \(\| a - b \| < \varepsilon \). By Corollary 1.6, \(b \) can be approximated by a square of a normal element. Therefore \(A \) is approximately square root closed.

2. Two-divisibility for \(K_1 \)

Lemma 2.1. Let \(A \) be a \(C^* \)-algebra. If \(x \in A \) is normal, then there exists a normal element \(y \in A \otimes M_n \) such that \(x \otimes 1_n = y^n \).
We set $N = n^{\alpha}$. Let $\alpha = x \in A$ be a unital *-endomorphism defined by $\gamma(x) = 1_2 \otimes x$ ($x \in M_{2^\infty}$). For each n, choose a unitary $w_n \in \bigotimes_{i=1}^n M_2 \subset M_{2^\infty}$ such that
\[
\text{Ad } w_n(x_1 \otimes \cdots \otimes x_n) = w_n(x_1 \otimes \cdots \otimes x_n)w_n^* = x_n \otimes x_1 \otimes \cdots \otimes x_{n-1}
\]
for any $x_1 \otimes \cdots \otimes x_n \in \bigotimes_{i=1}^n M_2$. Then we have
\[
\lim_{n \to \infty} \| \gamma(x) - \text{Ad } w_n(x) \| = 0 \quad \text{for all } x \in M_{2^\infty}.
\]

Theorem 2.2. If A is a unital C^*-algebra, then $A \otimes M_{2^\infty}$ is approximately square root closed.

Proof. We consider the *-endomorphism $\alpha = \text{id} \otimes \gamma$ of $A \otimes M_{2^\infty}$. It is easy to see that $\alpha(x) = \lim_{n \to \infty} \text{Ad}(1 \otimes w_n)(x)$ for all $x \in A \otimes M_{2^\infty}$.

For any normal element $x \in A \otimes M_{2^\infty}$, we can see $\alpha(x)$ like as $\begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$. So there exists a normal element $y \in A \otimes M_{2^\infty}$ such that $y^2 = \alpha(x)$ by Lemma 2.1. It follows that
\[
\|(\text{Ad}(1 \otimes w_n^*)(y))^2 - x\| = \|y^2 - \text{Ad}(1 \otimes w_n)(x)\| \to \|y^2 - \alpha(x)\| = 0,
\]
which means that $A \otimes M_{2^\infty}$ is approximately square root closed. \hfill \Box

For a C^*-algebra A, we say that $K_1(A)$ is 2-divisible if any $[x] \in K_1(A)$ has an element $[y] \in K_1(A)$ with $[x] = 2[y]$.

It is known that if a unital C^*-algebra A has stable rank one, then $M_n(A)$ has also stable rank one, and in this case the map from the unitary group of A to $K_1(A)$ is surjective, see [19] for details.

Let A be a unital commutative C^*-algebra ($A \cong C(X)$). It is well-known that A has stable rank one if and only if the covering dimension of the associated compact Hausdorff space X is less than one. In this case $K_1(A)$ is isomorphic to $GL(A)/GL_0(A)$, where $GL_0(A)$ is the connected component containing the identity in $GL(A)$.

Proposition 2.3. Let A be a C^*-algebra with stable rank one.

1. If A is approximately square root closed, then $K_1(A)$ is 2-divisible.
2. If A is commutative and $K_1(A)$ is 2-divisible, then A is approximately square root closed.

Proof. (1) Let u be a unitary in A. There exists a normal element $a \in A$ such that $\|a^2 - 1\| < 1$. In particular, a is invertible. Then we have $|u| = |a^2| = 2|a|$ in $K_1(A)$.

(2) Since A has stable rank one, it suffices to show that any invertible element in A can be approximated by a square of a normal element of A. For $a \in GL(A)$, there exists an invertible $b \in A$ such that $|a| = 2|b| = |b^2|$ in $K_1(A)$. Therefore a is connected to b^2 in $GL(A)$. So we can choose $h_1, \ldots, h_n \in A$ such that $a = e^{h_1} \cdots e^{h_n} b^2$.\hfill \Box
It follows that $a = (e^{(h_1 + \cdots + h_n)/2}b)^2$.

Since $K_1(C(\mathbb{T})) = \mathbb{Z}$, we can see that $C(\mathbb{T})$ is not approximately square root closed. We define $A_n = C(\mathbb{T}) \ (n = 1, 2, \ldots)$ and a *-homomorphism φ_n from A_n to A_{n+1} by

$$\varphi_n(f)(z) = f(z^2) \quad (f \in C(\mathbb{T}) = A_n, z \in \mathbb{T}).$$

Then the inductive limit A of this system (A_n, φ_n) is a commutative C^*-algebra with stable rank one and has $K_1(A) \cong \mathbb{Z} \langle \frac{1}{2} \rangle = \{ \frac{m}{2^n} : m \in \mathbb{Z}, n \in \mathbb{N} \}$. In fact, A is approximately square root closed.

We take a sequence $\{x_n\}$ of a compact Hausdorff space X and an increasing sequence $\{k_n\}$ of positive integers such that k_n divides k_{n+1} for each n. For each n, we define a *-homomorphism φ_n from $C(X, M_{k_n})$ to $C(X, M_{k_{n+1}})$ by

$$\varphi_n(f)(x) = \text{diag}(f(x), \ldots, f(x), f(x_n), \ldots, f(x_n))$$

for $f \in C(X, M_{k_n})$ and $x \in X$. Then we call the inductive limit A of the inductive system $(C(X, M_{k_n}), \varphi_n)$ a Goodearl type algebra over X. We note that if $\{x_n\}$ is dense in X, then A becomes simple and is called a Goodearl algebra [10]. But, in our setting $\{x_n\}$ is not necessarily dense in X.

Theorem 2.4. Let A be a Goodearl type algebra over \mathbb{T}. Then the following are equivalent.

1. A is approximately square root closed.
2. For any $n \in \mathbb{N}$, there exists $m \geq n$ such that $s(m)$ is even.
3. $K_1(A)$ is 2-divisible.

Proof. (1) \Rightarrow (3). It follows from Proposition 2.3.

(3) \Rightarrow (2). We remark that $K_1(A_n) \cong \mathbb{Z}$ for each $n \in \mathbb{N}$ and denote by 1_n the unit of $K_1(A_n)$. Then we have $(\varphi_n)_*(1_n) = s(n)1_{n+1} \in K_1(A_{n+1})$. By the assumption we can choose a positive integer $N(> n)$ such that

$$s(N)s(N-1) \cdots s(n)1_{N+1} \in 2K_1(A_{N+1}).$$

This means that $s(m)$ is even for some $m \in \{n, \ldots, N\}$.

(2) \Rightarrow (1). Let f be a normal element in A and $\varepsilon > 0$. Since each A_n has stable rank one, by the same argument in Theorem 1.8, we can choose a number n and a normal element $g \in A_n$ such that $\|f - g\| < \varepsilon$. Then we may assume that $s(n)$ is even. By Lemma 2.1 we can show that

$$\varphi_n(g) = g \otimes 1_{s(n)} \oplus g(x_n) \oplus \cdots \oplus g(x_n)$$

has a square root in A_{n+1}.

\[\square \]

3. **Purely infinite simple unital C^*-algebras**

Let A be a unital simple C^*-algebra. We say that A is purely infinite, if every non-zero hereditary C^*-subalgebra of A contains an infinite projection. The simplicity and the pure infiniteness of A ([20]) implies that A has real rank zero, i.e., the invertible self-adjoint elements are dense in the set of the self-adjoint elements of A. It is also known that the following are equivalent:

i. A has real rank zero.

ii. A has the property (HP), i.e., every non-zero hereditary C^*-subalgebra B of A has an approximate identity of projections in B ([3]).
We denote the unit circle in \mathbb{C} by \mathbb{T}. If $\text{Sp}(u)$ is not the whole of \mathbb{T}, then u has a square root. Therefore we may assume $\text{Sp}(u) = \mathbb{T}$. Let $F \subseteq \mathbb{T}$ be an ε-dense finite subset of \mathbb{T}, that is, for any $\xi \in \mathbb{T}$ there exists $\eta \in F$ such that $|\xi - \eta| < \varepsilon$. Since A has real rank zero, applying $[13, \text{Lemma } 2]$, there exist a unitary $u_0 \in A$ and a family of mutually orthogonal nonzero projections $\{e_\eta\}_{\eta \in F}$ such that $\|u - u_0\| < \varepsilon$ and

$$e_\eta u_0 = u_0 e_\eta = \eta e_\eta$$

for all $\eta \in F$. Let $e = 1 - \sum_{\eta \in F} e_\eta$ and $B = e A e$. Then $u_1 = u_0 e$ is a unitary of B. Note that $[u_1 + 1 - e]$ is equal to $[u]$ in $K_1(A)$. Hence there exists a unitary $v \in B$ such that $[u_2] = -2 [v]$ in $K_1(B) \cong K_1(A)$. Since $M_2(B)$ has the property weak (FU), there exist projections $q_1, q_2, \ldots, q_n \in M_2(B)$ and $\xi_1, \xi_2, \ldots, \xi_n \in \mathbb{T}$ such that

$$\sum_{i=1}^n q_i = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and

$$\left\| \begin{bmatrix} u_1 & 0 \\ 0 & v^2 \end{bmatrix} - \sum_{i=1}^n \xi_i q_i \right\| < \varepsilon.$$

Because F is ε-dense in \mathbb{T}, for each $i = 1, 2, \ldots, n$, there exists $\eta_i \in F$ such that $|\xi_i - \eta_i| < \varepsilon$. It follows that

$$\left\| \begin{bmatrix} u_1 & 0 \\ 0 & v^2 \end{bmatrix} - \sum_{i=1}^n \eta_i q_i \right\| < 2\varepsilon.$$

Since A is simple and purely infinite, there exists a family of mutually orthogonal projections r_i in A such that $r_i \leq e_{\eta_i}$ and $[r_i] = [q_i]$ in $K_0(A)$. Put $r = \sum_{i=1}^n r_i$. Then we have

$$u_0 r = \sum_{i=1}^n \eta_i r_i,$$

and so we can find a unitary $u_2 \in r A r$ which is a copy of the unitary

$$\begin{bmatrix} u_1 & 0 \\ 0 & v^2 \end{bmatrix},$$

and $\|u_2 - u_0 r\|$ is less than 2ε. It follows that $u_3 = u_1 + u_2 + u_0 (1 - e - r)$ is a unitary of A and $\|u_3 - u\|$ is less than 3ε. Moreover $u_1 + u_2$ looks like

$$\begin{bmatrix} u_1 & 0 & 0 \\ 0 & u_1 & 0 \\ 0 & 0 & v^2 \end{bmatrix},$$
which is a square of
\[
\begin{bmatrix}
0 & u_1 & 0 \\
1 & 0 & 0 \\
0 & 0 & v \\
\end{bmatrix}.
\]
Because \(u_0(1 - e - r) \) has finite spectrum, the proof is completed. □

Corollary 3.2. Let \(A \) be a unital simple purely infinite \(C^* \)-algebra. Suppose that \(K_1(A) \) is 2-divisible. If \(x \in A \) is a normal element and \(\text{Sp}(x) \) is homeomorphic to the circle, then for any \(\varepsilon > 0 \) there exists a normal element \(y \in A \) such that
\[
\|x - y^2\| < \varepsilon.
\]

Proof. Since the circle is one-dimensional, by perturbing \(x \) a little bit, we may assume that \(x \) is invertible. Let \(f : \mathbb{T} \to \text{Sp}(x) \) be a homeomorphism. Because \(f \) is a homeomorphism onto \(\text{Sp}(x) \), the rotation number of \(f \) is \(-1\) or \(0 \) or \(1 \). If the rotation number of \(f \) is zero, then \(x \) has a square root. Hence, without loss of generality, we may assume that the rotation number of \(f \) is one. We denote the inverse of \(f \) by \(f^{-1} : \text{Sp}(x) \to \mathbb{T} \).

There exists \(\delta > 0 \) such that if \(u, v \in A \) are unitaries with \(\|u - v\| < \delta \), then \(\|f(u) - f(v)\| < \varepsilon \). Applying Proposition 3.1 to the unitary \(f^{-1}(x) \), we get a unitary \(v \in A \) such that
\[
\|f^{-1}(x) - v^2\| < \delta,
\]
which means that
\[
\|x - f(v^2)\| < \varepsilon.
\]
Since the rotation number of the function
\[
\mathbb{T} \ni \xi \to f(\xi^2) \in \mathbb{C}
\]
is two, we can find a continuous function \(g : \mathbb{T} \to \mathbb{C} \) such that
\[
g^2(\xi) = f(\xi^2)
\]
for all \(\xi \in \mathbb{T} \). Put \(y = g(v) \). Then \(y \) is a normal element and \(y^2 = g^2(v) = f(v^2) \), which completes the proof. □

Let \(a \) and \(b \) be two elements of a \(C^* \)-algebra and \(\varepsilon > 0 \). We write \(a \sim b \), if \(\|a - b\| < \varepsilon \).

Lemma 3.3. Let \(A \) be a unital \(C^* \)-algebra and \(x \in A \) be a normal element. Suppose that there exist \(\zeta \in \text{Sp}(x) \) and closed subsets \(G_0, G_1 \subset \text{Sp}(x) \) such that \(\text{Sp}(x) = G_0 \cup G_1 \) and \(G_0 \cap G_1 = \{\zeta\} \). Then, for any \(\varepsilon > 0 \), there exist normal elements \(x_0, x_1 \in A \) and a unitary \(u \in M_2(A) \) such that \(\text{Sp}(x_i) = G_i \) and
\[
\left\|u \begin{bmatrix} x & \zeta \\ \zeta & x \end{bmatrix} u^* - \begin{bmatrix} x_0 & x_1 \\ x_1 & x_0 \end{bmatrix}\right\| < \varepsilon.
\]

Proof. We can identify \(C(\text{Sp}(x)) \) with the abelian \(C^* \)-subalgebra of \(A \) which is generated by \(x \) and \(1 \). Put \(O = \{\xi \in \mathbb{C} : |\xi - \zeta| < \varepsilon/2\} \).

Since \(G_0 \setminus O \) and \(G_1 \setminus O \) are disjoint, there exists a unitary \(u \in M_2(C(\text{Sp}(x))) \cong C(\text{Sp}(x), M_2) \) such that
\[
u(\xi) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{for } \xi \in G_0 \setminus O \quad \text{and} \quad u(\xi) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{for } \xi \in G_1 \setminus O.
\]
Define \(x_i \in C(\text{Sp}(x)) \) by
\[
x_i(\xi) = \begin{cases} \xi & \xi \in G_i \\ \zeta & \xi \in G_{1-i} \end{cases}.
\]

If \(\xi \notin O \), then we can check
\[
u(\xi) \begin{bmatrix} \xi & 0 \\ 0 & \zeta \end{bmatrix} \nu(\xi)^* = \begin{bmatrix} x_0(\xi) & 0 \\ 0 & x_1(\xi) \end{bmatrix}.
\]

If \(\xi \in G_0 \cap O \), then
\[
u(\xi) \begin{bmatrix} \xi & 0 \\ 0 & \zeta \end{bmatrix} \nu(\xi)^* \approx \begin{bmatrix} \zeta & 0 \\ 0 & \zeta \end{bmatrix} \approx \begin{bmatrix} x_0(\xi) & 0 \\ 0 & x_1(\xi) \end{bmatrix}.
\]

When \(\xi \in G_1 \cap O \), we can obtain the same estimate. \(\square \)

We put\[
H_+ = \{ a + b\sqrt{-1} \in \mathbb{C} : b \geq 0 \}
\]
and
\[
H_- = \{ a + b\sqrt{-1} \in \mathbb{C} : b \leq 0 \}.
\]

We identify the real line \(\mathbb{R} \) with \(H_+ \cap H_- \).

Lemma 3.4. Let \(A \) be a unital \(C^* \)-algebra and \(x \in A \) be a normal element. Suppose that there exists a homeomorphism \(f : \mathbb{C} \to \mathbb{C} \) such that \(f(\mathbb{R}) \cap \text{Sp}(x) = f(\mathbb{R}) \cap \text{Sp}(x) \). Then, for any \(\varepsilon > 0 \), there exist normal elements \(x_0, x_1, a \in A \) and a unitary \(u \in M_2(A) \) such that
\[
\text{Sp}(x_0) = f(H_+ \cap \text{Sp}(x)), \quad \text{Sp}(x_1) = f(H_- \cap \text{Sp}(x)), \quad \text{Sp}(a) = f([-1, 1])
\]
and
\[
\left\| u \begin{bmatrix} x & 0 \\ 0 & a \end{bmatrix} u^* - \begin{bmatrix} x_0 & 0 \\ 0 & x_1 \end{bmatrix} \right\| < \varepsilon.
\]

Proof. We identify \(C(\text{Sp}(x)) \) with the abelian \(C^* \)-subalgebra of \(A \) which is generated by \(x \) and \(1 \in A \). We first deal with the case that \(f : \mathbb{C} \to \mathbb{C} \) is the identity map. Let \(h_0 : H_+ \to [-1, 1] \) and \(h_1 : H_- \to [-1, 1] \) be continuous functions such that \(h_i(\xi) = \xi \) for \(\xi \in [-1, 1] \). Define \(a, x_0, x_1 \in C(\text{Sp}(x)) \) by
\[
a(\xi) = \begin{cases} h_0(\xi) & \xi \in H_+ \\ h_1(\xi) & \xi \in H_- \end{cases},
\]
\[
x_0(\xi) = \begin{cases} \xi & \xi \in H_+ \\ h_1(\xi) & \xi \in H_- \end{cases}
\]
and
\[
x_1(\xi) = \begin{cases} h_0(\xi) & \xi \in H_+ \\ \xi & \xi \in H_- \end{cases}.
\]

Since \(\text{Sp}(x) \cap \mathbb{R} = [-1, 1] \), there exists \(\delta > 0 \) such that if \(\xi = s + t\sqrt{-1} \in \text{Sp}(x) \) with \(|t| < \delta \), then \(|h_i(\xi) - \xi| < \varepsilon/2 \) for each \(i = 0, 1 \). We can find a unitary \(u \in M_2(C(\text{Sp}(x))) \cong C(\text{Sp}(x), M_2) \) such that
\[
u(\xi) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]
for \(\xi = s + t\sqrt{-1} \in \text{Sp}(x) \) with \(t \geq \delta \) and
\[
u(\xi) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]
for \(\xi = s + t\sqrt{-1} \in \text{Sp}(x) \) with \(t \leq -\delta \). If \(|t| \geq \delta \), then for \(\xi = s + t\sqrt{-1} \in \text{Sp}(x) \) we can check
\[
u(\xi) \begin{bmatrix} \xi & 0 \\ 0 & a(\xi) \end{bmatrix} \nu(\xi)^* = \begin{bmatrix} x_0(\xi) & 0 \\ 0 & x_1(\xi) \end{bmatrix}
\]
If \(|t| < \delta \), then for \(\xi = s + t\sqrt{-1} \in \text{Sp}(x) \) we can also check
\[
u(\xi) \begin{bmatrix} \xi & 0 \\ 0 & a(\xi) \end{bmatrix} \nu(\xi)^* \cdot \nu(\xi) \begin{bmatrix} a(\xi) & 0 \\ 0 & a(\xi) \end{bmatrix} \nu(\xi)^* = \begin{bmatrix} a(\xi) & 0 \\ 0 & a(\xi) \end{bmatrix} \cdot \begin{bmatrix} x_0(\xi) & 0 \\ 0 & x_1(\xi) \end{bmatrix}
\]
Now let us turn to the general case. Because \(K = f^{-1}(\text{Sp}(x)) = \text{Sp}(f^{-1}(x)) \) is compact, there exists \(\delta > 0 \) such that if \(y_0 \) and \(y_1 \) are normal elements in some \(C^* \)-algebra \(B \) with \(\text{Sp}(y_1) \subset K \) and \(\|y_0 - y_1\| < \delta \), then \(\|f(y_0) - f(y_1)\| < \varepsilon \). Applying the first part of this proof to \(f^{-1}(x) \) and \(\delta \), we get
\[
\left\| u \begin{bmatrix} f^{-1}(x) & 0 \\ 0 & a \end{bmatrix} u^* - \begin{bmatrix} x_0 & 0 \\ 0 & x_1 \end{bmatrix} \right\| < \delta.
\]
By the choice of \(\delta \), we obtain
\[
\left\| u \begin{bmatrix} z & f(a) \\ f(\xi) & \end{bmatrix} u^* - \begin{bmatrix} f(x_0) & \end{bmatrix} \right\| < \varepsilon,
\]
thereby completing the proof.

We define \(I_0 \) and \(I_1 \) by
\[
I_0 = \{a + b\sqrt{-1} \in \mathbb{C} : 0 \leq a \leq 1, b = 0\}
\]
and
\[
I_1 = \{a + b\sqrt{-1} \in \mathbb{C} : 0 \leq b \leq 1, a = 0\}.
\]
Let \(G \) be a compact subset of \(\mathbb{C} \). We say that \(G \) is a lattice graph, if there exist finite subsets \(F_0 \) and \(F_1 \) of \(Z + Z\sqrt{-1} \) such that
\[
G = \bigcup_{i=0,1} \bigcup_{\zeta \in F_i} I_i + \zeta.
\]
We call each point in \(G \cap (Z + Z\sqrt{-1}) \) a vertex of \(G \) and each \(I_i + \zeta \) contained in \(G \) an edge of \(G \). We denote by \(|G| \) the number of edges of \(G \).

Proposition 3.5. For any nonempty connected lattice graph \(G \), there exists a natural number \(N(G) \in \mathbb{N} \) such that the following holds: Let \(A \) be a unital \(C^* \)-algebra and \(x \in A \) be a normal element with \(\text{Sp}(x) = G \). For any \(\varepsilon > 0 \), there exist a natural number \(N \leq N(G) \), normal elements \(a_1, a_2, \ldots, a_N, x_0, x_1, \ldots, x_N \in A \), and a unitary \(u \in M_{N+1}(A) \) such that the following are satisfied.

1. \(\|u \text{diag}(x, a_1, a_2, \ldots, a_N)u^* - \text{diag}(x_0, x_1, \ldots, x_N)\| < \varepsilon \).
2. \(\text{Sp}(x_i) \) is contained in \(G \).
3. \(\text{Sp}(x_i) \) is homeomorphic to the closed interval \([-1, 1]\) or the circle.
4. \(\text{Sp}(a_i) \) is contained in \(G \).
5. \(\text{Sp}(a_i) \) is a single point or homeomorphic to the closed interval \([-1, 1] \).
Proof. The proof goes by induction concerning $|G|$. If $|G| = 1$, then G is homeomorphic to the closed interval, and so we have nothing to do.

We may assume that the assertion has been proved for all G with $|G| < L$. Let us consider a connected lattice graph G with $|G| = L$. We would like to show that

$$N(G) = 2 \max \{N(G_0) : G_0 \text{ is a connected lattice graph with } G_0 \subseteq G \} + 1$$

does the work. Suppose that A is a unital C^*-algebra and $x \in A$ is a normal element with $G = \text{Sp}(x)$. Take $\varepsilon > 0$.

Suppose that there exists a vertex $\zeta \in G$ such that $G \setminus \{\zeta\}$ is not connected. We can find nonempty connected lattice graphs G_0 and G_1 such that $G = G_0 \cup G_1$ and $G_0 \cap G_1 = \{\zeta\}$. Applying Lemma 3.3 to G_0, G_1, ζ and $\varepsilon/2$, we obtain normal elements $x_0, x_1 \in A$ and a unitary $u \in M_2(A)$ such that $\text{Sp}(x_i) = G_i$ and

$$\| u \begin{bmatrix} x & \zeta \\ \zeta^* & u^* \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \| < \frac{\varepsilon}{2}.$$

By the induction hypothesis, there exists $N_i \leq N(G_i)$ such that the assertion holds for x_i and $\varepsilon/2$. Hence $N = N_0 + N_1 + 1 \leq N(G)$ works for x and ε.

Therefore we may assume that $G \setminus \{\zeta\}$ is connected for all vertices ζ in G. Let O be the unbounded connected component of $\mathbb{C} \setminus G$ and ∂O be the boundary of O in \mathbb{C}. Then $\partial O \subseteq G$ is homeomorphic to the circle. If $G = \partial O$, then we have nothing to do. Let us assume that $G \neq \partial O$. We can find an edge $e \subset G$ such that e is not contained in ∂O and an endpoint ζ_0 of e belongs to ∂O. Let ζ_1 be the other endpoint of e. Since $G \setminus \{\zeta_0\}$ is connected, we can find a path in G from ζ_1 to a vertex $\zeta_2 \in \partial O$ which is distinct from ζ_0. Let P be the union of this path and e. Then $P \subseteq G$ is homeomorphic to the closed interval $[-1, 1]$ and its endpoints are ζ_0 and ζ_2. There exists a homeomorphism $f : \mathbb{C} \to \mathbb{C}$ such that $f(\mathbb{R}) \cap G = P$ and $f([-1, 1]) = P$. Applying Lemma 3.4 to f and $\varepsilon/2$, we obtain normal elements $x_0, x_1, a \in A$ and a unitary $u \in M_2(A)$ such that

$$\text{Sp}(x_0) = f(H_+) \cap \text{Sp}(x), \quad \text{Sp}(x_1) = f(H_-) \cap \text{Sp}(x), \quad \text{Sp}(a) = f([-1, 1])$$

and

$$\| u \begin{bmatrix} x & a \\ a^* & u^* \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \| < \frac{\varepsilon}{2}.$$

Put $G_i = \text{Sp}(x_i)$ for $i = 0, 1$. Note that G_i is a connected lattice graph. By the induction hypothesis, there exists a natural number $N_i \leq N(G_i)$ such that the assertion holds for x_i and $\varepsilon/2$. Hence $N = N_0 + N_1 + 1 \leq N(G)$ works for x and ε.

Lemma 3.6. Let A be a unital C^*-algebra and $a \in A$ be a normal element. Suppose that $\text{Sp}(a)$ is homeomorphic to the closed interval $[-1, 1]$. For any $\varepsilon > 0$, there exist complex numbers $\xi_1, \xi_2, \ldots, \xi_N, \eta_0, \eta_1, \ldots, \eta_N \in \text{Sp}(a)$ and a unitary $u \in M_{N+1}(A)$ such that

$$\| u \text{diag}(a, \xi_1, \xi_2, \ldots, \xi_N)u^* - \text{diag}(\eta_0, \eta_1, \ldots, \eta_N) \| < \varepsilon.$$

Proof. By using Lemma 3.3 repeatedly, we can find $\xi_1, \xi_2, \ldots, \xi_N \in \text{Sp}(a)$ and normal elements $x_0, x_1, \ldots, x_N \in A$ and a unitary $u \in M_{N+1}(A)$ such that

$$\| u \text{diag}(a, \xi_1, \xi_2, \ldots, \xi_N)u^* - \text{diag}(x_0, x_1, \ldots, x_N) \| < \frac{\varepsilon}{2}$$

and $\text{Sp}(x_i)$ has diameter less than $\varepsilon/2$. Replacing x_i with some $\eta_i \in \text{Sp}(x_i)$, we get the conclusion. □
This lemma together with Proposition 3.5 directly implies the following.

Proposition 3.7. Let A be a unital C^*-algebra and $x \in A$ be a normal element. Suppose that $G = \text{Sp}(x)$ is a lattice graph. For any $\varepsilon > 0$, there exist $N \in \mathbb{N}$, $\xi_1, \xi_2, \ldots, \xi_N \in \mathbb{C}$, normal elements $x_0, x_1, \ldots, x_N \in A$ and a unitary $u \in M_{N+1}(A)$ such that the following are satisfied.

1. $\|u \text{diag}(x, \xi_1, \xi_2, \ldots, \xi_N)u^* - \text{diag}(x_0, x_1, \ldots, x_N)\| < \varepsilon$.
2. $\text{Sp}(x_i)$ is contained in G.
3. $\text{Sp}(x_i)$ is a single point or homeomorphic to the closed interval $[-1, 1]$ or the circle.
4. ξ_i is contained in G.

Combining this with Corollary 3.2, we get the following.

Lemma 3.8. Let A be a unital simple purely infinite C^*-algebra. Suppose that $K_1(A)$ is 2-divisible. If $x \in A$ is a normal element and $\text{Sp}(\varepsilon^{-1}x)$ is a connected lattice graph for some $\varepsilon > 0$, then there exists a normal element $y \in A$ such that $\|x - y^2\| < 2\varepsilon$.

Proof. Put $G = \text{Sp}(\varepsilon^{-1}x)$ and $F = \text{Sp}(x) \cap (\varepsilon \mathbb{Z} + \varepsilon \mathbb{Z} \sqrt{-1})$.

Thus, $\varepsilon^{-1}F$ is the set of vertices of the lattice graph G. Clearly F is an $\varepsilon/2$-dense finite subset of $\text{Sp}(x)$. As before, we put

$$I_0 = \{a + b\sqrt{-1} \in \mathbb{C} : 0 \leq a \leq 1, b = 0\}$$

and

$$I_1 = \{a + b\sqrt{-1} \in \mathbb{C} : 0 \leq b \leq 1, a = 0\}.$$

We define a continuous function $f : \text{Sp}(x) \to \text{Sp}(x)$ as follows: If $\xi = a + b\sqrt{-1} \in \text{Sp}(x)$ belongs to $\varepsilon I_0 + \zeta$ with $\zeta = t + b\sqrt{-1} \in F$, then we set

$$f(\xi) = \begin{cases}
\zeta & t \leq a \leq t + \frac{\varepsilon}{3} \\
\zeta + 3(a - t - \frac{\varepsilon}{3}) & t + \frac{\varepsilon}{3} \leq a \leq t + \frac{2\varepsilon}{3} \\
\zeta + \varepsilon & t + \frac{2\varepsilon}{3} \leq a \leq t + \varepsilon.
\end{cases}$$

If $\xi = a + b\sqrt{-1} \in \text{Sp}(x)$ belongs to $\varepsilon I_1 + \zeta$ with $\zeta = a + t\sqrt{-1} \in F$, then we set

$$f(\xi) = \begin{cases}
\zeta & t \leq b \leq t + \frac{\varepsilon}{3} \\
\zeta + 3(b - t - \frac{\varepsilon}{3})\sqrt{-1} & t + \frac{\varepsilon}{3} \leq b \leq t + \frac{2\varepsilon}{3} \\
\zeta + \varepsilon \sqrt{-1} & t + \frac{2\varepsilon}{3} \leq b \leq t + \varepsilon.
\end{cases}$$

Define $z = f(x)$. Evidently we have $\|x - z\| \leq \varepsilon/3$ and $\text{Sp}(z) = \text{Sp}(x) = \varepsilon G$. For each $\eta \in F$, let $g_\eta : F \to [0, 1]$ be a continuous function such that $g_\eta(\xi) = 1$ and $g_\eta(\xi) = 0$ if $|\xi - \eta| \geq \varepsilon/3$. Since A has real rank zero, there exists a nonzero projection $e_\eta \in g_\eta(x)Ag_\eta(x)$. It is not hard to see that $e_\eta z = ze_\eta = \eta e_\eta$. Note that $(e_\eta)_{\eta \in F}$ is a family of mutually orthogonal projections. Put $e = 1 - \sum_{\eta \in F} e_\eta$, $B = eAe$ and $z_0 = ze$.

Then we have

$$z = z_0 + \sum_{\eta \in F} \eta e_\eta,$$

and so the spectrum of z_0 in B is equal to $\varepsilon G = \text{Sp}(z)$.

SQUARE ROOT CLOSED C-ALGEBRAS*
By applying Proposition 3.7 to $e^{-1}z_0 \in B$ and 1, we obtain complex numbers $\xi_1, \xi_2, \ldots, \xi_N \in \mathbb{C}$, normal elements $x_0, x_1, \ldots, x_N \in B$ and a unitary $u \in M_{N+1}(B)$ such that

1. $\|u \text{diag}(e^{-1}z_0, \xi_1, \xi_2, \ldots, \xi_N)u^* - \text{diag}(x_0, x_1, \ldots, x_N)\| < 1$.
2. $\text{Sp}(x_i)$ is a single point or homeomorphic to the closed interval $[-1, 1]$ or the circle.
3. ξ_i is contained in G.

By replacing ξ_i and x_i with $e^{-1}\xi_i$ and $e^{-1}x_i$, we get

1. $\|u \text{diag}(z_0, \xi_1, \xi_2, \ldots, \xi_N)u^* - \text{diag}(x_0, x_1, \ldots, x_N)\| < \varepsilon$.
2. $\text{Sp}(x_i)$ is a single point or homeomorphic to the closed interval $[-1, 1]$ or the circle.
3. ξ_i is contained in $\text{Sp}(x)$.

Because F is $\varepsilon/2$-dense in $\text{Sp}(x)$, for each $i = 1, 2, \ldots, N$ we can find $\eta_i \in F$ such that $|\xi_i - \eta_i| \leq \varepsilon/2$. It follows that

$$\|u \text{diag}(z_0, \eta_1, \eta_2, \ldots, \eta_N)u^* - \text{diag}(x_0, x_1, \ldots, x_N)\| < \frac{3\varepsilon}{2}.$$

Since A is purely infinite, there exists a family of mutually orthogonal projections q_i such that $q_i \leq \varepsilon_i$ and $[q_i] = [e]$ in $K_0(A)$. Put $q = \sum q_i$. Then we have

$$(e + q)z = z_0 + \sum_{i=1}^{N} \eta_i q_i,$$

and so there exists a normal element $w \in (e + q)A(e + q)$ which is a unitary conjugation of $\text{diag}(x_0, x_1, \ldots, x_N)$ and

$$\|(e + q)z - w\| < \frac{3\varepsilon}{2}.$$

Thanks to Corollary 3.2, we can find a normal element $y_0 \in (e + q)A(e + q)$ such that

$$\|w - y_0^2\| < \frac{\varepsilon}{6}.$$

Since $(1 - e - q)z$ has finite spectrum, it has a square root y_1. Put $y = y_0 + y_1$. Then we have

$$\|z - y^2\| = \|(e + q)z - y_0^2\| < \|w - y_0^2\| + \frac{3\varepsilon}{2} < \frac{3\varepsilon}{2} + \frac{\varepsilon}{6}.$$

This estimate together with $\|x - z\| \leq \varepsilon/3$ implies

$$\|x - y^2\| < 2\varepsilon.$$

Now we are ready to prove the main result of this section.

Theorem 3.9. For a unital simple purely infinite C^*-algebra A, the following are equivalent.

1. A is approximately square root closed.
2. $K_1(A)$ is 2-divisible.

Proof. (1)⇒(2). Since $K_1(A) \cong U(A)/U_0(A)$, it suffices to show that every unitary in A is divided by 2 in $K_1(A)$. Let u be a unitary in A. Then there exists a unitary $v \in A$ such that $\|u - v^2\| < 1$. Therefore $[u] = 2[e]$ in $K_1(A)$.

(2)⇒(1). Take a normal element \(x \in A \) and a small real number \(\varepsilon > 0 \). By [9, Lemma 3.2], there exists a normal element \(z \in A \) such that \(\|x - z\| < \varepsilon \) and \(\text{Sp}(z) \) is contained in

\[
\{ a + b\sqrt{-1} \in \mathbb{C} : a \in \varepsilon \mathbb{Z} \text{ or } b \in \varepsilon \mathbb{Z} \}.
\]

By perturbing \(z \) a little bit more, we can find a normal element \(w \in A \) such that \(\|z - w\| < \varepsilon \) and \(G = \varepsilon^{-1} \text{Sp}(w) \) is a lattice graph. Let \(G_1, G_2, \ldots, G_n \) be connected components of \(G \). Each \(G_i \) is a connected lattice graph. Let \(h_i \) be the characteristic function on \(\varepsilon G_i \) and put \(v_i = h_i(w) \). Then \(w \) is the direct sum of \(v_1, v_2, \ldots, v_n \) and \(\text{Sp}(w) = \varepsilon G_i \). By using the lemma above, we get mutually orthogonal normal elements \(y_1, y_2, \ldots, y_n \) such that \(\|w_i - y_i^2\| < 2\varepsilon \). Put \(y = y_1 + y_2 + \cdots + y_n \). We can easily see that \(\|x - y^2\| < 4\varepsilon \).

\[\square\]

References

