SQUARE ROOT CLOSED C*-ALGEBRAS

HIROKI MATUI, MASARU NAGISA, AND MUNEHIRO YAMAMOTO

ABSTRACT. We say that a C*-algebra A is approximately square root closed,
if any normal element in A can be approximated by a square of a normal
element in A. We study when A is approximately square root closed, and have
an affirmative answer for Al-algebras, Goodearl type algebras over the torus,
purely infinite simple unital C*-algebras etc.

0. INTRODUCTION

D. Deckard and C. Pearcy [7, 8] proved that, for a commutative AW *-algebra
M, any algebraic equation with M-valued coefficients has roots in M. Many re-
searchers study analogous problems for a commutative C*-algebra C'(X), and some
results are strongly related to topological properties of X (e.g., covering dimension,
cohomology etc.)[4, 5, 11, 17, 18].

In this paper, we consider this problem for a C*-algebra which is not necessarily
commutative. But we restrict our attention to a special quadratic equation, namely

22 = a. We make the following definition:

Definition 0.1. Let A be a C*-algebra.

(1) We say that A is square root closed, if for any normal element a € A, there
exists a normal element b € A such that a = b.

(2) We say that A is approzimately square root closed, if for any £ > 0 and
any normal element a € A, there exists a normal element b € A such that
|la—b?|| <e.

Needless to say, for a commutative C*-algebra A, the square root closed property
for A is the same as the classical property, i.e., every element in A has its square
root in A.

Our result is as follows.

(1) Every Al-algebra is approximately square root closed. (Theorem 1.8.)

(2) If A is a unital C*-algebra, A ® My~ is approximately square root closed.
(Theorem 2.2.)

(3) For a Goodearl type algebra A over T, A is approximately square root
closed if and only if K;(A) is 2-divisible. (Theorem 2.4.)

(4) For a purely infinite simple unital C*-algebra A, A is approximately square
root closed if and only if K7(A) is 2-divisible. (Theorem 3.9.)
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1. AI-ALGEBRAS

It is clear that every finite dimensional C*-algebra is square root closed. We
say that a C*-algebra A has the property (FN), if any normal element in A can
be approximated by some normal element in A with finite spectrum. If A has the
property (FN), then we can see that A is approximately square root closed. H.
Lin [14] proved that every AF-algebra has the property (FN). This implies every
AF-algebra is approximately square root closed.

We give two examples of C*-algebras which are approximately square root closed
but not square root closed.

Example 1.1. There exists a unital AF-algebra A such that A has a maximal
abelian self-adjoint subalgebra B which is isomorphic to the algebra C(T) of con-
tinuous functions on the torus T (see [2]). Then A is not square root closed.

Indeed, let u be a unitary generator of B = C(T). If y € A is normal and satisfies
y? = u, then y belongs to B by the maximality of B. But u does not have such an
element in B 2 C(T). So A is not square root closed.

Example 1.2. Let I = [0, 1] be the interval. The algebra C(I, M2) of 2 x 2 matrix
valued continuous functions on I is not square root closed but approximately square
root closed.

We define a normal element f € C(I, M) as follows:

10 a1t [0 0

[0 0 + VLt [0 11 te[0,1/3]U[2/3,1]
0= 1|1 1] 1 1 1

— — ™ — o

5 [1 ) +2e6 vl [1 1] te(1/3,2/3).

We assume that g is a normal element in C(I, M) with g2 = f. By the continuity
of spectra, one of g(1/3) and ¢(2/3) must have the spectrum {1,—1}. We only
consider the case Sp(g(1/3)) = {1, —1}. Since we have

. 1 0 0 1 .

this contradicts the assumption.

In Corollary 1.6, we will show that C'(I, M,,) is approximately square root closed.
But, for above f, we construct its approximate square root here. Let 0 < 6 < 1
and v be a unitary in C(I, My) with

u(G/S)B ﬂ w(1/3) B 8};{} ﬂ u(1/3).
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We define the normal element h in C(I, M) as follows:

1 0] a0 0
lO | mve [0 11 te[0,60/3]
u(t) Ll) _01] u(t)* te0/3,1/3]
h(t): 111 1 1 1 -1
2 [1 1] e l—1 1 ] te(1/3,2/3)
[1 0] 4 BTV [0 0] te[2/3,1).
0 O 0 1

It is easy to see that if 1 — 6 is sufficiently small, then so is ||f — h?||.

Let f be anormal element of C'(I, M,,). For each point ¢ € I, f(¢) has the spectral
decomposition: f(t) = Y1, Ai(t)pi(t), where A\1(t),..., A\, (t) are the eigenvalues
of f(t) and p;(t) is a one-dimensional projection corresponding to A; (1 < i < n)
and satisfying > 1, p;(t) = 1. By Rouché’s theorem, we may assume that \; is
continuous on I for each . But p;(t) is not necessarily continuous.

Lemma 1.3. Let k < n and {p;(t) le C M, be a family of mutually orthogonal,
one-dimensional projections for each t € I. If the map I > t — p(t) = Zf:l pi(t)
is continuous, then there are mutually orthogonal projections qi, ..., q; € C(I, M,)
such that p;(0) = ¢:(0), ¢:(1) = ps(1) and p = 31_, ;.

Proof. We can choose a continuous function I 3 ¢t — z1(t) € Range(p(t)) such that
p1(0)21(0) = 21(0), p1(1)z1(1) = 21(1) and ||z1(¢)|| = 1 for any ¢ € I. We define
the projection ¢1 = 21 ® 1 € C(I, M,,). Then I >t +— p(t) — ¢1(t) is continuous.
Repeating the same argument, for [ = 2,... k, we can choose a continuous function
15t a(t) € Range((p — Y121 ¢i(t))) such that py(0)2(0) = 2,(0), py(1)zi(1) =
x1(1) and ||z;(t)|] = 1 for any ¢ € I. Therefore we have p = Ele qi, where
¢ =x; Qx; fori=1,... k. (I

Lemma 1.4. Lete >0,k <nand f =1, \;p; be a normal element of C(I, M,,),
where A1,..., A, € C(I) and {p;(t)}1—1, C M, is a family of mutually orthogonal
projections. If [A1(t) — \(t)] < e and [A1(t) — M (8)] < |A1(t) — A (8)| for each
le{l,...;k} andme{k+1,...,n}, then p = Zlepi e C(I,M,).

Moreover we can choose a family of mutually orthogonal projections qq,...,qx €
C(I, My) such that ¢;(0) = pi(0), ¢;(1) = pi(1) and
k
pfp =Y Nigi|| < 2.
i=1

Proof. We can choose a continuously differentiable function C: I x T — C such
that C(t,-)(= C}) is a simple closed curve with canonical orientation and separates
{A(®),..., ()} (in its inside) and {Ag41(¢),..., A\ (t)} (in its outside) for each
t € I. Since we have

1 1 b
2T Jo =g 2P
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C o k
for any ¢ € I, this implies the continuity of p = > | p;.

By the previous lemma, there are mutually orthogonal projections ¢1,...,qx €
C(I, M,) such that p;(0) = ¢;(0), ¢;(1) = p;(1) and p = Zle ¢;- Then we have

k k k k
Z Aipi — Z Aigi Z A1pi — Z Aigi
i=1 i=1 i=1 i=1

k
Alpfz)\lql < 2¢e. O

=1

< <e+

k
pfp— Z Aigi
=1

=+

Proposition 1.5. Let € > 0 and f be a normal element of C(I, M,,). Then there
are \1,...,\n, € C(I) and mutually orthogonal projections q1,...,q, € C(I, My,)
such that

n
Hf - Z)\iqi <eE.
i=1
Proof. We can choose A1,..., A, € C(I) such that f(¢t) = > i, \i(¢)p;i(t), where

p1(t),...,pn(t) are mutually orthogonal projections for each ¢t € I. Then there
exists & > 0 such that

[t —s] <6 = |Ni(t) = Ni(s)| <eg/2 (i=1,...,n).
For any t € I, we define index sets I1(t),..., Iy (t) as follows:

in(t) =1,
L) ={ie{l,....n}: M) = \(t)] < £/2},

k—1
ir(t) = min ({1,...,n}\ U Mt)) . (k>2)

k—1
L(t) = {z € (Lo \ U 1) : i (0) = Ma(0)] < 6/2}.

=1
Then we can choose a neighborhood Uy of t satisfying the closure U, of Uy is [at, by
and |a; — by| < ¢ and, for i € I;(¢), j € {1,...,n}\ Ule Ii(t) (1 <k < N(t) and
S € [at,bt],
ey () = Xi(8)| < €/2, [ Nipy(s) — Aj(s)| > €/4,
Xine) () = Mi(s)] < [Nipoy () = Xi(s)] -

Since (J,c; Ut is an open covering of I, there exists a finite subcovering of 1. We
may assume that

0:a1<t1<a2<b1<t2<a3<b2<~-<bK,1<tK<bK:1,

K
Uy =la,b] 1<I<K), I=]JU,.
=1

For instance, we set by = a;. For each [ = 1,..., K, applying the previous

lemma N (t;) times, we can find mutually orthogonal projections q%l), .. .,qg) €
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C([bi—1, b)), M,) satisfying ¢” (b_1) = pi(bi—1), ¢\ (b)) = pi(b;) and

HORDIPIOIIC

<e.

We define, for each 4, ¢;(t) = qgl)(t), where ¢ € [b;—1,b;]. Then we have q1,...,q, €
C(I,M,) as asserted. O

Corollary 1.6. C(I,M,) is approzimately square root closed.

Proof. Let e > 0 and f be a normal element of C(I, M,,). Applying Proposition 1.5,
there are Ay,...,\, € C(I) and mutually orthogonal projections ¢i,...,q, €
C(I,M,) such that ||f—> ", Nigl < e. For each i = 1,...,n, we can find
wi € C(I) satisfying \; = p?, which means that C(I, M,,) is approximately square
root closed. O

A C*-algebra is called an Al-algebra if it is isomorphic to the inductive limit of a
sequence (C(I, F,), pn), where each F,, is a finite dimensional C*-algebra and each
on 2 C(I,F,) — C(I,Fy41) is an injective *-homomorphism. A C*-algebra A is
called stable rank one, if the set GL(A) of invertible elements of A is dense in A.
We remark that each C(I, F,,) has stable rank one.

We need the following lemma. We have been unable to find a suitable reference
in the literature, so we include a proof for completeness.

Lemma 1.7. Let A = li_l'I)lAn be an inductive limit such that each C*-algebra A,
has stable rank one. Then, for any normal element x € A and € > 0, there exists a
normal element y in some A, such that ||z —y| < e.

Proof. For each n € N, we can find an element z,, € A,, such that ||z — z,| — 0.
Then [(z,)] := (n)+€D,, An is a normal element in [[,, A,/ P,, An and C*([(z,)])
is isomorphic to C(Sp([(xy)])), where C*([(xy)]) is the C*-algebra generated by
[(zn)]. Since Sp([(x,)]) can be embedded in the closed unit disk D, we have a
*-homomorphism from C(D) onto C(Sp([(z,)])). By using the argument of semi-
projectivity [16, Theorem 19.2.7], there exist a natural number m and a normal
element y,, € A,, for n > m satisfying

[(xla oy Tm—1yTmy 41, - - )] = [(Oa ey Oa Yms Ym+1, - - )]

in [[,, An/ D, An. If we set y = y,, for a sufficiently large n, then y satisfies the
desired condition. (]

Theorem 1.8. Fvery Al-algebra is approximately square root closed.

Proof. Let A = lii>nAn be an Al-algebra. Since each A, has stable rank one, we
can apply Lemma 1.7. So, for any normal element ¢ € A and € > 0, there exists
a normal element b in some A, such that ||a —b|| < . By Corollary 1.6, b can
be approximated by a square of a normal element. Therefore A is approximately
square root closed. ([l

2. TWO-DIVISIBITY FOR K3

Lemma 2.1. Let A be a C*-algebra. If x € A is normal, then there exists a normal
element y € A® M,, such that x ® 1, = y".
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Proof. We set

x 1 1 1
y= W Rern+ || @ez1 + |z ®ezo+ -+ || @eppoi-
Then y becomes a normal element of A ® M,, and satisfies z ® 1,, = y™. O

Let Maw = @), ; M> be the UHF algebra of type 2°° and y: Mae — M= be a
unital *-endomorphism defined by v(z) = 1o ®x (z € Ma ). For each n, we choose
a unitary w, € @, M C My~ such that

Adw, (21 ®@ - @ xp) = wp (21 @ -+ @ Tp)Wy, =Ty QT Q-+ ® Ty
forany 11 ® --- Q@ @, € ®?:1 M. Then we have
lim ||y(z) — Adw,(z)|| =0 for all © € Mae.

Theorem 2.2. If A is a unital C*-algebra, then A ® Ms is approzimately square
root closed.

Proof. We consider the *-endomorphism o = id @y of A @ Ms=. It is easy to see
that a(z) = lim, 0o Ad(1 @ wy,)(x) for all x € A @ Mae.

For any normal element € A ® M, we can see a(x) like as [g 2} . So there
exists a normal element y € A® My~ such that y? = a(z) by Lemma 2.1. It follows

that
[(Ad(1 @ wy,)(y)? — 2| = [|y* — Ad(1 @ w,)(@)|| — [|[v* — a(2)]| = 0,
which means that A ® My~ is approximately square root closed. O

For a C*-algebra A, we say that K;(A) is 2-divisible if any [x] € K1(A) has an
element [y] € K;1(A) with [z] = 2[y].

It is known that if a unital C*-algebra A has stable rank one, then M, (A) has
also stable rank one, and in this case the map from the unitary group of A to K;(A)
is surjective, see [19] for details.

Let A be a unital commutative C*-algebra (A = C'(X)). It is well-known that
A has stable rank one if and only if the covering dimension of the associated com-
pact Hausdorff space X is less than one. In this case K;(A) is isomorphic to
GL(A)/GLy(A), where GLo(A) is the connected component containing the iden-
tity in GL(A).

Proposition 2.3. Let A be a C*-algebra with stable rank one.

(1) If A is approximately square root closed, then K1(A) is 2-divisible.
(2) If A is commutative and Kq(A) is 2-divisible, then A is approximately
square root closed.

Proof. (1) Let u be a unitary in A. There exists a normal element a € A such that
|u—a?|| < 1. In particular, a is invertible. Then we have [u] = [a?] = 2[a] in
Ki(A).

(2) Since A has stable rank one, it suffices to show that any invertible element
in A can be approximated by a square of a normal element of A. For a € GL(A),
there exists an invertible b € A such that [a] = 2[b] = [b?] in K;(A). Therefore a is
connected to b? in GL(A). So we can choose hy,...,h, € A such that

a=e" ... ehnp?,
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It follows that a = (e("1++hn)/2p)2, O

Since K1(C(T)) = Z, we can see that C(T) is not approximately square root
closed. We define 4,, = C(T) (n=1,2,...) and a *-homomorphism ¢,, from A,, to
An+1 by

on(f)(z) = f(z*) (f€C(T)=An,z€T).
Then the inductive limit A of this system (A,,p,) is a commutative C*-algebra
with stable rank one and has Ki(A) & Z[1] = {Z : m € Z,n € N}. In fact, A is
approximately square root closed.

We take a sequence {z,} of a compact Hausdorff space X and an increasing
sequence {k,} of positive integers such that k, divides k, 11 for each n. For each
n, we define a *-homomorphism ¢,, from C(X, My, ) to C(X, My, ) by

—_—
s(n)
for f € C(X, My, ) and z € X. Then we call the inductive limit A of the inductive
system (C(X, My, ),n) a Goodearl type algebra over X. We note that if {x,} is

dense in X, then A becomes simple and is called a Goodearl algebra [10]. But, in
our setting {z,} is not necessarily dense in X.

Theorem 2.4. Let A be a Goodearl type algebra over T. Then the following are
equivalent.

(1) A is approzimately square root closed.
(2) For any n € N, there exists m > n such that s(m) is even.
(3) K1(A) is 2-divisible.

Proof. (1) = (3). It follows from Proposition 2.3.

(3) = (2). We remark that K;(A,) = Z for each n € N and denote by 1,
the unit of K;(A,). Then we have (¢n)«(1,) = s(n)lp41 € K1(Apt1). By the
assumption we can choose a positive integer N (> n) such that

S(N)s(N —1)---s(n)lny1 € 2K1(Any1).

This means that s(m) is even for some m € {n,...,N}.

(2) = (1). Let f be a normal element in A and € > 0. Since each A,, has stable
rank one, by the same argument in Theorem 1.8, we can choose a number n and a
normal element g € A4, such that ||f — g|| < . Then we may assume that s(n) is
even. By Lemma 2.1 we can show that

on(9) = 9@ sy © g(xn) © - @ g(w,)

has a square root in A,1. O

3. PURELY INFINITE SIMPLE UNITAL C*-ALGEBRAS

Let A be a unital simple C*-algebra. We say that A is purely infinite, if every non-
zero hereditary C*-subalgebra of A contains an infinite projection. The simplicity
and the pure infiniteness of A ([20]) implies that A has real rank zero, i.e., the
invertible self-adjoint elements are dense in the set of the self-adjoint elements of
A. Tt is also known that the following are equivalent:

(i) A has real rank zero.
(ii) A has the property (HP), i.e., every non-zero hereditary C*-subalgebra B
of A has an approximate identity of projections in B ([3]).



8 HIROKI MATUI, MASARU NAGISA, AND MUNEHIRO YAMAMOTO

(iii) A has the property weak (FU), i.e., for any u € Up(A4) and £ > 0, there
exists a unitary v € Up(A) with finite spectrum such that ||u —v| < €,
where Up(A) is the connected component containing the identity in the set

of unitaries U(A) ([12]).

Proposition 3.1. Let A be a unital simple purely infinite C*-algebra. When u € A
is a unitary and [u] is 2-divisible in K1(A), for any € > 0 there exists a unitary
v € A such that

lu—v?| <e.

Proof. We denote the unit circle in C by T. If Sp(u) is not the whole of T, then
u has a square root. Therefore we may assume Sp(u) = T. Let F C T be an
e-dense finite subset of T, that is, for any £ € T there exists n € F such that
|¢ — n| < e. Since A has real rank zero, applying [13, Lemma 2], there exist a
unitary uy € A and a family of mutually orthogonal nonzero projections {e, },er
such that ||u — uo|| < € and

enltly = Upey = Ney,
forallne€ F. Lete=1-3% pe,; and B = eAe. Then u; = upe is a unitary of
B. Note that [u; + 1 — €] is equal to [u] in K7(A). Hence there exists a unitary
v € B such that [us] = —2[v] in K;(B) = K;1(A). Since M3(B) has the property
weak (FU), there exist projections qi1,qa,...,qn € M2(B) and &,&,...,&, € T

such that
> %= 1o 1
=1

and

<e.

U 0 .

[01 1)2] - &G
i=1

Because F' is e-dense in T, for each i = 1,2,...,n, there exists n; € F such that

|&; — n:i| < e. Tt follows that

u 0 "
{01 U2}qui < 2e.

i=1

Since A is simple and purely infinite, there exists a family of mutually orthogonal
projections 7; in A such that r; < e,, and [r;] = [¢;] in Ko(A). Put r = >0 | ;.
Then we have

n
up”r = Z T4,
i=1
and so we can find a unitary ug € rAr which is a copy of the unitary
(VA1 0
0 U2 )
and |lug — uor|| is less than 2e. It follows that us = u1 + us + up(l —e—1r) is a
unitary of A and |Jug — || is less than 3. Moreover uy + ug looks like

U1 0 0

0 (75} 0 y
0 0 o2
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which is a square of

0 Ul 0
1 0 0
0 0 w
Because ug(1l — e — r) has finite spectrum, the proof is completed. (]

Corollary 3.2. Let A be a unital simple purely infinite C*-algebra. Suppose that
K1 (A) is 2-divisible. If x € A is a normal element and Sp(x) is homeomorphic to
the circle, then for any € > 0 there exists a normal element y € A such that

lz =2l <e.

Proof. Since the circle is one-dimensional, by perturbing z a little bit, we may
assume that z is invertible. Let f : T — Sp(z) be a homeomorphism. Because
f is a homeomorphism onto Sp(x), the rotation number of f is —1 or 0 or 1. If
the rotation number of f is zero, then = has a square root. Hence, without loss of
generality, we may assume that the rotation number of f is one. We denote the
inverse of f by f~1:Sp(x) — T.

There exists § > 0 such that if u,v € A are unitaries with ||u — v|| < ¢ then
|| f(u)—f(v)|| < e. Applying Proposition 3.1 to the unitary f~!(x), we get a unitary
v € A such that

1F7H (@) = v?] <4,
which means that

lz = f(?)] <e.
Since the rotation number of the function

T>¢— f(€*) eC

is two, we can find a continuous function g: T — C such that
g°(&) = f(&?)

for all £ € T. Put y = g(v). Then y is a normal element and y* = ¢g2(v) = f(v?),
which completes the proof. ([l

Let a and b be two elements of a C*-algebra and ¢ > 0. We write a ~ b, if
la —0b] <e.
Lemma 3.3. Let A be a unital C*-algebra and x € A be a normal element. Suppose
that there exist ¢ € Sp(x) and closed subsets Gy, G1 C Sp(x) such that Sp(z) =

Go UGy and GoN Gy = {¢}. Then, for any € > 0, there exist normal elements
Zo,x1 € A and a unitary u € Ma(A) such that Sp(z;) = G; and

o -]

Proof. We can identify C(Sp(x)) with the abelian C*-subalgebra of A which is
generated by x and 1 € A. Put

O={¢ecC:[¢—-(]<e/2}.
Since Go \ O and Gy \ O are disjoint, there exists a unitary u € My(C(Sp(x))) =
C(Sp(z), M3) such that

u(f){(l) (1)] for £ € Go\O and u(f){(l) (1)} for £ € G4\ O.

<E.
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Define x; € C(Sp(z)) by

o )& EeG;
(e = {C € G

If £ ¢ O, then we can check

wo |5 ueor =" 5]
If € € Go N O, then

woff Yoy =[5 4[5 - [10 8]

When £ € G1 N O, we can obtain the same estimate. O

We put
H, ={a+b/~1€C:b>0}
and
H_ ={a+b/~1€C:b<0}.
We identify the real line R with H, N H_.
Lemma 3.4. Let A be a unital C*-algebra and x € A be a normal element. Suppose
that there exists a homeomorphism f: C — C such that f(R) N Sp(z) = f([-1,1]).

Then, for any € > 0, there exist normal elements xg,x1,a € A and a unitary
u € Ma(A) such that

Sp(zo) = f(Hy) NSp(z), Sp(x1) = f(H-)NSp(z), Sp(a)= f([-1,1])

and
! [z } e [IO ]
a I

Proof. We identify C(Sp(z)) with the abelian C*-subalgebra of A which is gener-
ated by £ and 1 € A. We first deal with the case that f: C — C is the identity
map. Let hg: Hy — [-1,1] and hy: H_ — [—1,1] be continuous functions such
that h;(§) = &£ for € € [-1,1]. Define a, zg,z; € C(Sp(x)) by

a(6) = {ho@) §eH,

<

h(§) €eH_’

S e Hy
xo(f)_{hl(g) ceH

and

¢ ceH_.

Since Sp(z) NR = [—1, 1], there exists § > 0 such that if { = s +¢tv/—1 € Sp(z)
with [t| < 4, then |h;(§) — &|< €/2 for each ¢ = 0,1. We can find a unitary
u € My(C(Sp(x))) = C(Sp(x), M2) such that

=1

1€ = {ho(f) e H,
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for £ = s+ tv/—1 € Sp(x) with ¢t > ¢ and

w0 =17

for £ = s+ tv/—1 € Sp(x) with ¢t < —¢. If |[t| > 4, then for £ = s +¢v/—1 € Sp(x)

we can check
calf e[ 2]

If |t| < 4, then for £ = s+ tv/—1 € Sp(z) we can also check

0[5 g w0 Fuo [ oo [T o] F [t

(
Now let us turn to the general case. Because K = f~1(Sp(x)) = Sp(f~1(z)) is
compact, there exists d > 0 such that if ¢y and y; are normal elements in some C*-
algebra B with Sp(y;) C K and |jyo — 31| <0, then ||f(yo) — f(y1)|| <e. Applying
the first part of this proof to f~!(z) and J, we get

u {f_l(x) a] o [mo IJ

By the choice of §, we obtain

! [m f(a)] v [f(%) f(wl)} H =C

thereby completing the proof. O

<o

We define Iy and I; by
Iy={a+b/-1€C:0<a<1,b=0}
and
L ={a+b/-1€C:0<b<1,a=0}.

Let G be a compact subset of C. We say that G is a lattice graph, if there exist
finite subsets Fy and F} of Z + Z+/—1 such that

¢=J ULn+c¢

i=0,1CEF,

We call each point in G N (Z + Z+/—1) a vertex of G and each I; + ¢ contained in
G an edge of G. We denote by |G| the number of edges of G.

Proposition 3.5. For any nonempty connected lattice graph G, there exists a
natural number N(G) € N such that the following holds: Let A be a unital C*-
algebra and x € A be a normal element with Sp(x) = G. For any € > 0, there exist
a natural number N < N(G), normal elements ay,as,...,an,To,Z1,..., N € A,
and a unitary u € My41(A) such that the following are satisfied.

Hudlag(x ai,asg,...,any)u* — diag(zo, x1,...,zN)| < €.
p(z;) is contained in G.
Sp(z;) is homeomorphic to the closed interval [—1,1] or the circle.
Sp(a;) is contained in G.
Sp(a;) is a single point or homeomorphic to the closed interval [—1,1].

(1)
(2) S
(3)
(4)
()
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Proof. The proof goes by induction concerning |G|. If |G| = 1, then G is homeo-
morphic to the closed interval, and so we have nothing to do.

We may assume that the assertion has been proved for all G with |G| < L. Let
us consider a connected lattice graph G with |G| = L. We would like to show that

N(G) = 2max{N(Gy) : Gy is a connected lattice graph with Go C G} +1

does the work. Suppose that A is a unital C*-algebra and = € A is a normal element
with G = Sp(x). Take € > 0.

Suppose that there exists a vertex ¢ € G such that G \ {{} is not connected.
We can find nonempty connected lattice graphs Gy and G; such that G = Go UG,
and Go N G; = {¢}. Applying Lemma 3.3 to Gy, G1,¢ and /2, we obtain normal
elements zg, 21 € A and a unitary u € Ms(A) such that Sp(x;) = G; and

‘ €

e |

By the induction hypothesis, there exists N; < N(G;) such that the assertion holds
for x; and £/2. Hence N = Ny + N1 + 1 < N(G) works for z and e.

Therefore we may assume that G \ {¢} is connected for all vertices ¢ in G. Let
O be the unbounded connected component of C\ G and JdO be the boundary of
O in C. Then 90 C G is homeomorphic to the circle. If G = 00, then we have
nothing to do. Let us assume that G # 00. We can find an edge e C G such that
e is not contained in O and an endpoint (y of e belongs to dO. Let (; be the
other endpoint of e. Since G \ {(p} is connected, we can find a path in G from (3
to a vertex (o € 0O which is distinct from (y. Let P be the union of this path and
e. Then P C G is homeomorphic to the closed interval [—1,1] and its endpoints
are (o and (2. There exists a homeomorphism f : C — C such that f(R)NG = P
and f([-1,1]) = P. Applying Lemma 3.4 to f and £/2, we obtain normal elements
Zo,x1,a € A and a unitary u € My(A) such that

Sp(zo) = f(Hy) NSp(z), Sp(x1) = f(H-)NSp(x), Sp(a) = f([-1,1])
<-.

[ e[l

Put G; = Sp(z;) for i« = 0,1. Note that G; is a connected lattice graph. By the
induction hypothesis, there exists a natural number N; < N(G;) such that the
assertion holds for z; and £/2. Hence N = Ny + N; + 1 < N(G) works for x and
€. ([

and
5

Lemma 3.6. Let A be a unital C*-algebra and a € A be a normal element. Suppose
that Sp(a) is homeomorphic to the closed interval [—1,1]. For any e > 0, there exist
complex numbers &1,&a, ..., &N, T0, M, -+, NN € Sp(a) and a unitary v € My41(A)
such that

|ludiag(a, &1, &, ..., En)u™ — diag(no, m, - .., N )| < e.

Proof. By using Lemma 3.3 repeatedly, we can find &;,&,...,&n € Sp(a) and
normal elements xg,x1,...,25y € A and a unitary u € My41(A) such that

€

2

and Sp(z;) has diameter less than £/2. Replacing z; with some 7; € Sp(x;), we get
the conclusion. (]

||Udiag(aa€17§27 s 7€N)u* - diag(m()axlu s ,.’EN)H <
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This lemma together with Proposition 3.5 directly implies the following.

Proposition 3.7. Let A be a unital C*-algebra and x € A be a normal element.
Suppose that G = Sp(z) is a lattice graph. For any e > 0, there exist N € N,
£1,&2,...,&n € C, normal elements xg,x1,...,xnx € A and a unitary u € My11(A)
such that the following are satisfied.

(1) |ludiag(z, &1, &2, - -, En)u” — diag(zo, 21, ..., an)| <e.

(2) Sp(x;) is contained in G.

(3) Sp(x;) is a single point or homeomorphic to the closed interval [—1,1] or
the circle.

(4) & is contained in G.

Combining this with Corollary 3.2, we get the following.

Lemma 3.8. Let A be a unital simple purely infinite C*-algebra. Suppose that
K1(A) is 2-divisible. If x € A is a normal element and Sp(e~'z) is a connected
lattice graph for some € > 0, then there exists a normal element y € A such that

lz — 3|l < 2e.
Proof. Put G = Sp(e~'x) and
F =Sp(x) N (eZ 4 Zv —-1).

Thus, e "1 F is the set of vertices of the lattice graph G. Clearly F is an ¢/2-dense
finite subset of Sp(x). As before, we put

Iy={a+b/-1€C:0<a<1,b=0}
and

L ={a+b/-1€C:0<b<1,a=0}.
We define a continuous function f : Sp(z) — Sp(x) as follows: If £ = a4+ by/—1 €
Sp(z) belongs to ely + ¢ with ( =t + by/—1 € F, then we set

¢ t<a<t+3
O =q¢+3a—t—35) t+5<a<t+i¥
2
(+e t+E<a<t+e.
If £ = a+ by/—1 € Sp(x) belongs to eIy + ¢ with { = a+ tv/—1 € F, then we set
¢ t<b<t+%
J&)=qC¢+3b—t—5)V—1 t+5<b<t+%
¢ +ev/—1 t+E<b<t+e

Define z = f(x). Evidently we have ||z — z|| < ¢/3 and Sp(z) = Sp(x) = G.
For each n € F, let g, : C — [0,1] be a continuous function such that g,(n) =1
and g,(§) = 0 if |{ —n| > ¢/3. Since A has real rank zero, there exists a nonzero
projection e, € g,(x)Ag,(x). It is not hard to see that e,z = ze, = ne,. Note
that {e,},er is a family of mutually orthogonal projections. Put e =13 ey,
B = eAe and zg = ze. Then we have

Z =29+ E Nen,
nekF

and so the spectrum of zp in B is equal to eG = Sp(z).
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1

By applying Proposition 3.7 to €72y € B and 1, we obtain complex numbers

&1,&2,...,&Nn € C, normal elements xg,x1,...,2x € B and a unitary u € My41(B)
such that
b “Udia‘g(671207 517 §2a s 7§N)U* - dia’g(x(h L1y--- 7IN)|| <L
e Sp(z;) is a single point or homeomorphic to the closed interval [—1,1] or
the circle.

e & is contained in G.

By replacing &; and x; with e7'&; and e 'z;, we get

® Hudla‘g(‘207 gla §2a s 7§N)u* - dia’g(mOa L1y--- 7xN)|| <Eé.
e Sp(x;) is a single point or homeomorphic to the closed interval [—1,1] or
the circle.

e ¢, is contained in Sp(z).

Because F' is €/2-dense in Sp(x), for each ¢ = 1,2,..., N we can find n; € F such
that |&; —n;| < /2. It follows that

||Udiag(20a7717n27 .- ﬂ?N)U* - diag($073§1, .- ,.I‘N)” < ?

Since A is purely infinite, there exists a family of mutually orthogonal projections
¢i such that ¢; <e,, and [¢;] = [e] in Ko(A). Put ¢ = )" ¢;. Then we have

N
(e+q)z =20+ Zm%
i=1
and so there exists a normal element w € (e + ¢)A(e + ¢) which is a unitary
conjugation of diag(zg,z1,...,zN) and
3e

(e +a)z - wl < 5.

Thanks to Corollary 3.2, we can find a normal element yo € (e + q)A(e + ¢q) such
that

€

5

Since (1 — e — ¢)z has finite spectrum, it has a square root y;. Put y = yo + v1.
Then we have

lw = y5ll <

3¢ 3 €
Iz =92l = e+ @)z — ygll < llw— w5l + 5 <3 tg

This estimate together with ||z — z|| < ¢/3 implies
|z — 2| < 2e. O
Now we are ready to prove the main result of this section.

Theorem 3.9. For a unital simple purely infinite C*-algebra A, the following are
equivalent.

(1) A is approximately square root closed.
(2) K1(A) is 2-divisible.

Proof. (1)=(2). Since K1(A) 2 U(A)/Uy(A), it suffices to show that every unitary
in A is divided by 2 in K;(A). Let u be a unitary in A. Then there exists a unitary
v € A such that ||u — v?|| < 1. Therefore [u] = 2[v] in K;(A).
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(2)=(1). Take a normal element z € A and a small real number ¢ > 0. By [9,
Lemma 3.2], there exists a normal element z € A such that ||z — z|| < e and Sp(z)
is contained in

{a+bv—-1€C:acecZorbecZ}.

By perturbing z a little bit more, we can find a normal element w € A such that
|z—wl|| <eand G =71 Sp(w) is a lattice graph. Let Gy, Ga, ..., Gy be connected
components of G. Each G is a connected lattice graph. Let h; be the characteristic
function on eG; and put w; = h;(w). Then w is the direct sum of wy, ws, ..., w,
and Sp(w;) = €G;. By using the lemma above, we get mutually orthogonal normal
elements y1,%a, ..., Yn such that |w; —y?|| < 2. Put y =y; + 42+ -+ + yn. We
can easily see that |z — y?|| < 4e. O
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