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Abstract

Minimal homeomorphisms on the locally compact Cantor set are investigated. We prove
that scaled dimension groups modulo infinitesimal subgroups determine topological orbit
equivalence classes of locally compact Cantor minimal systems. We also introduce several
full groups and show that they are complete invariants for orbit equivalence, strong orbit
equivalence and flip conjugacy. These are locally compact version of the famous results
for Cantor minimal systems obtained by Giordano, Putnam and Skau. Moreover, proper
homomorphisms and skew product extensions of locally compact Cantor minimal systems
are examined and it is shown that every finite group can be embedded into the group of
centralizers trivially acting on the dimension group.

1 Introduction

In this paper, we study minimal homeomorphisms on the locally compact Cantor set. Minimal
homeomorphisms on the Cantor set have been studied by several authors by using Bratteli
diagrams and dimension groups. The Cantor set is characterized as the topological space which
is compact, metrizable, perfect and totally disconnected. We say a topological space X is the
locally compact Cantor set if X is homeomorphic to a non-closed open subset of the Cantor set.
This is equivalent to saying that X is homeomorphic to the product space of the Cantor set and
a countable infinite discrete space. A homeomorphism ¢ from a topological space X to itself is
said to be minimal if every orbit Orbg(x) = {¢™(x);n € Z} is dense in X. If X is the Cantor
set (resp. the locally compact Cantor set) and ¢ is minimal, we call the pair (X, ¢) a Cantor
minimal system (resp. locally compact Cantor minimal system) or CM system (resp. LCCM
system), shortly. When (X, ¢) is an LCCM system, we write the one-point compactification of
(X,¢) by (X U{ocox},¢). Note that (X U{ocox}, ) is not a minimal system but an essentially
minimal system in the sense of | , Definition 1.2].

One of our interests is the orbit equivalence of LCCM systems. Let (X, ¢;),i = 1,2 be
two topological dynamical systems. If there exists a homeomorphism F': X; — X5 such that
F(Orbg, (x)) = Orby, (F(x)) for each x € X1, these two systems are said to be orbit equivalent.
When F' gives an orbit equivalence and the systems are aperiodic, the orbit cocyclesn : X1 — Z
and m : Xy — 7Z are uniquely determined by, for each z € X7 and y € Xj,

F(¢1(x)) = 65 (F(x)), F N (2(y)) = 67" (F ' (y)).

If (X;,¢;),i = 1,2 are CM systems and each of the orbit cocycles has at most one point of
discontinuity, these two systems are said to be strong orbit equivalent ([ ]). Giordano,
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Putnam and Skau showed that two CM systems are strong orbit equivalent if and only if their
associated unital dimension groups are isomorphic to each other in | |. Danilenko proved
the analogous result for LCCM systems in [D]. He defined strong orbit equivalence for LCCM
systems and showed that their associated dimension groups are complete invariants of strong
orbit equivalence. In this paper, we continue his work and show that various techniques for CM
systems can be applied to the locally compact case.

In the case of CM systems the associated dimension group was unital. Indeed, the class of the
constant function one was the order unit of the dimension group. But, this is not true for LCCM
systems, since the space is non-compact. We have to consider scales of dimension groups instead
of order units. Scales were introduced by Elliott to classify non-unital AF-algebras. By using the
idea of scales, we can describe o-finite or finite invariant measures of LCCM systems completely.
This is one of the differences between LCCM systems and CM systems. The other difference
from the compact case is the fact that LCCM systems have the “bad recurrence” property. In
general, topological dynamical systems on non-compact locally compact spaces admit a point
whose positive semi-orbit has no accumulation point. Therefore, first return maps can not be
defined for compact open sets even if the system is minimal. The “bad recurrence” property,
however, is not a bad property. In contrast to the compact case, for LCCM systems, two points
which lie in the same orbit always have the same tail in the Bratteli diagram. Moreover every
homeomorphism in the topological full group (see Section 4 for the definition) supported on a
compact open subset is of finite order. These phenomena are, roughly speaking, due to the fact
that LCCM systems have a weaker recurrence property than CM systems.

Now we give an overview of each section below. In Section 2, we recall basic definitions
concerning Bratteli diagrams and dimension groups. For an LCCM system (X, ¢), we denote
the C*-crossed product Co(X) x4 Z by C*(X,¢). AF-subalgebras of the crossed product C*-
algebras C*(X, ¢) associated with closed subsets will be introduced, and they play an important
role in the argument of the next section. In Section 3, by using the homological algebra theory,
we prove that scaled dimension groups modulo infinitesimal subgroups are complete invariants
for orbit equivalence of LCCM systems. Our proof is essentially the same as the compact case.
Analogue of the results in | | will be proved for the locally compact system in Section 4.
We will introduce seven kinds of (topological) full groups and show that they are complete
invariants for orbit equivalence, strong orbit equivalence and flip conjugacy, respectively. It
is also proved that their normalizers induce automorphisms of C*-algebras preserving Cp(X).
In Section 5, injective homomorphisms from LCCM systems to CM or LCCM systems are
considered. (We use the terminology ‘homomorphism’ instead of ‘factor map’ as in [A], because
we will sometimes consider non-surjective maps.) This type of homomorphisms is described by
embedding of Bratteli diagrams. The strong orbit realization theorem is proved in the locally
compact case for ergodic automorphisms on a non-atomic Lebesgue probability space. Section
6 is devoted to the study of homomorphisms and extensions. At first, we will show that proper
homomorphisms induce scale preserving order embedding of dimension groups. By considering
skew product extensions of LCCM systems associated with finite group valued cocycles, we will
prove that every finite group can be included in the group of centralizers acting trivially on the
dimension group. This result contrasts with the fact that CM systems admit only cyclic groups
as finite subgroups of those centralizers. It is also proved that skew product extensions over non
locally finite groups are never minimal.
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2 Bratteli diagrams and dimension groups

In order to describe LCCM systems, we have to introduce almost simple properly ordered Bratteli
diagrams. The following definitions can be found in [HPS] and [D].

Definition 2.1. We say B = (V, E) is a Bratteli diagram, whenV = J;_,V;, and E = J,_, En,
are disjoint union of finite sets of vertices and edges with source maps s : £, — Vy,_1 and range
maps v : Bp — Vi, which are both surjective. We always assume Vi consists of one point vy and
call it the top vertex. For a Bratteli diagram B = (V, E),

X ={(en)n ; en € En,r(en) = s(ent1) for alln € N}

is called the infinite path space of B. The space Xp is endowed with the natural product topology.
For a finite path p from vy to v € V,,, U(p) denotes the clopen set of Xp which consists of all
infinite paths whose initial n edges agree with p. We denote the number of paths from vg to v

by hp(v).
Simplicity and almost simplicity of Bratteli diagrams are defined in the following way.
Definition 2.2. Let B = (V, E) be a Bratteli diagram.

(i) We say B = (V, E) is simple, when for every v € V,, there exists m > n such that all
vertices of Vp, are connected to v.

(ii) Let us assume there is an infinite path (en)n € Xp such that r—1(r(e,)) = {en} for all
n € N. The diagram B is said to be almost simple, when for every v € V,, \ {r(e,)} and
v’ €V, there exists m > n such that all vertices of V,, which are connected to v are also
connected to v'. We denote the infinite path (ey)n by cop.

We need the idea of ordered Bratteli diagrams to introduce the Bratteli-Vershik systems.
Definition 2.3. Let B = (V, E) be a Bratteli diagram.

(i) When the finite set r='(v) has a linear order for each v € V, we call B an ordered Bratteli
diagram. We define the set of maximal infinite paths and minimal infinite paths by

XY ={(en)n € XB ; €y is mazimum in r_l(?”(en))}

and
X?m = {(en)n S XB ; En s MInimum in Tﬁl(r(en))}'

(ii) A simple ordered Bratteli diagram B = (V, E) is said to be properly ordered, when each of
XEFY and X7 consists of one point.

(iii) An almost simple ordered Bratteli diagram B = (V, E) is said to be properly ordered, when
Xper = Xpin = {oop}.

For simple or almost simple properly ordered Bratteli diagram B, we denote the Bratteli- Vershik
system of B by (Xp,¢p). In the case of almost simple diagrams, cop is the unique fixed point

of ¢B.
We refer to | ] or [D] for the definition of ¢p.
The following theorem is the model theorem of CM systems and LCCM systems.

Theorem 2.4 (]| , Theorem 4.6][D, Theorem 3.3]). When (X,¢) is a CM (resp.
LCCM) system, there ezists a simple (resp. almost simple) properly ordered Bratteli diagram
B = (V, E) such that (X, ¢) (resp. (X U{oox},¢)) is isomorphic to (Xp, dB).



Remark 2.5. In the locally compact case, we may always assume the following condition
for B = (V,E); for every n € N, 7(s75(V,, \ {r(en)})) equals V,41 \ {r(ens1)}, where (e,)n
is the infinite path cop. For example, when we set a decreasing sequence {U,}, of clopen
neighborhoods of cox by U,y1 = ¢~ (U,) N U, N ¢(U,,) inductively, the corresponding Bratteli
diagram B satisfies this condition.

We have to review basic facts about dimension groups. An unperforated ordered group
(G,G7) is called a dimension group, if it satisfies the Riesz interpolation property. When a
non-zero positive element u € G is specified, the triple (G, G™,u) is called a unital dimension
group. A Bratteli diagram B = (V| F) determines a unital dimension group. We denote it by
(Ko(V, E),Ko(V, E)*,15). Of course, if B is simple, its dimension group becomes simple. The
reader may refer to Chapter 3 and 4 of [[X{] for more details of dimension groups.

Definition 2.6 ([Ef, Chapter 7]). Let (G,G") be a dimension group. A subset ¥ C GV is
called a scale, if the following properties are satisfied;

(i) For each a € G there exist a,...,a, € X witha=aj + -+ ay.
(ii) If0<a<bey, thena € X.
(iii) Given a,b € X, there exists ¢ € X with a,b < c.

When a scale ¥ is fized, we call the triple (G,G,%) a scaled dimension group. Moreover,
if X has no maximal element, the scaled dimension group is said to be non-unital. An order
homomorphism m from G to another scaled dimension group is called an order contraction, if
m(X) is contained in the scale.

We remark that the condition (i) above can be omitted in the case of simple dimension
groups.

For a non-unital scaled simple dimension group (G,G*,¥), let us consider G! = G @ Z and
define a positive cone by

G = {(a,n) € G' ; there exists b € ¥ with a + nb > 0}.

It is easy to see that (G!,G'*,(0,1)) is a unital dimension group with a unique proper order
ideal. We call it the unitization of G.

Definition 2.7 ([D, Definition 3.3]). Let (G,GT,u) be a unital dimension group which has a
unique proper order ideal J with G/J = Z. When u maps to a generator of Z by the isomorphism
G/J = Z and there is no mazimal element in

YS={acJ"; 0<a<ul,
G is said to be almost simple.

In the above definition, we can check that ¥ is a scale of J (the condition (iii) of Definition
2.6 is proved by applying the Riesz interpolation property for a+b and u). Hence, there exists a
bijective correspondence between non-unital scaled simple dimension groups and almost simple
dimension groups. The next lemma is easily shown.

Lemma 2.8. When B = (V,E) is an almost simple Bratteli diagram, the dimension group
associated with B is almost simple. Conversely, if the associated dimension group is almost
simple, the Bratteli diagram is almost simple.



Let B = (V, E) be an almost simple Bratteli diagram with cop = (e,)n. When B satisfies
the condition of Remark 2.5, we define a subdiagram B = (V, E) of B as follows:

Vo= {w}, Vo =Va\{r(en)}, V=JWa

n

and
B, =En\s '(s(en), E=JEn.

n

Then, B becomes a simple Bratteli diagram and the unique proper order ideal of Ky(V, E) is

canonically order isomorphic to Ko(V, E). When we put u,, = (hp(v)), € Z"», the scale is equal
to the set of elements which is smaller than v,, for some n.

Definition 2.9. In the above setting, we call the subdiagram B the ideal part of B.
We give an example of an almost simple Bratteli diagram B = (V| E) and its ideal part

B = (V, E) below.

Vo

B =(V,E) B=(V.E)

For a unital dimension group (G,G™,u),
{p € Hom(G,R) ; p(u) =1 and p(a) >0 for all a € G*}

is called the state space of G and we denote it by S, (G). The topology of S, (G) is induced from
the product topology of R“. For a scaled dimension group (G,G*,X), we write the set of all

ot



positive homomorphisms from G to R by S(G) and call it the quasi-state space. Set
Sx(G) = {p € S(G) ; sup{p(a);a € X} =1}.

The topology of S(G) and Sx(G) is induced from RY, too. In general, Sx;(G) may be empty or
non-closed.

Lemma 2.10. Let (G,G", %) be a non-unital scaled simple dimension group.
(i) Sx(G) is empty if and only if ¥ = G™.
(ii) For a positive a, a € ¥ if and only if p(a) < 1 for all p € Sx(G).

Proof. For (i), we prove the ‘only if’ part. Take a € GT \ X. Let {v,}, C X be an increasing
approximate unit, that is, v, < v,4+1 and for every v € X there is v, greater than v. Set

o = {p € Sa(G) ; plvn) < pla) = 1},

which is closed and non-empty because a is not in ¥. The compactness of S,(G) leads the
conclusion.
The proof of (ii) is similar. O

Let (X, ¢) be an LCCM system. We denote by Cy(X,Z) the set of all continuous functions
from X to Z with compact supports. Obviously, Cy(X,Z) is a countable abelian group. Define
the coboundary subgroup By such as

By=1{f—foo™\; feCo(X, D)},
and set K°(X, ¢) = Co(X, 7)/Bg. We write the quotient map by [-]. Moreover, we put
KX, ¢)" ={[f] € K°(X,9) ; f >0}

and
(X, 0) ={[f] € K%X,¢); 0< f <1}

Theorem 2.11 (| , Theorem 5.4][Po, Theorem 2.3] [D, Theorem 3.3]). Let (X, ¢)
be an LCCM system and B = (V, E) be an almost simple properly ordered Bratteli diagram such
that (X U{oox}, ®) is isomorphic to (Xg, ¢p). Then, the triple (K°(X, ¢), K°(X,¢)*,S(X, ¢))
becomes a non-unital scaled simple dimension group and its unitization is isomorphic to the
unital dimension group (Ko(V,E),Ko(V,E)",1p). The C*-crossed product Co(X) Xy Z is a
non-unital simple AF-algebra and its unitization is given by the diagram B.

Since we can always define a proper order on a given almost simple Bratteli diagram, every
non-unital scaled simple dimension group except for Z can be realized as the associated dimension
group of an LCCM system.

We write C*(X,¢) = Co(X) x4 Z and its unitization by C*(X, ¢)!. It is clear that the
dimension group Ko(C*(X, $)') = Ko(V, E) is isomorphic to the quotient of C'(X U {0}, Z) by
the coboundary subgroup By.

Let X be the compact or locally compact Cantor set and B(X) be the Borel field of X
generated by all compact subsets. When p is a positive measure on B(X) and p(K) is finite for
every compact subset K, we call ;1 a Borel measure on X. We denote by M (X) the set of all
Borel measures on X. The space M (X) is endowed with the so-called weak-* topology, that is,
we say fi,, converges to p if lim p,,(U) = u(U) holds for every compact open set U.



If X is the locally compact Cantor set, we can write X as a countable disjoint union of the
Cantor sets X,,, n € N. For € M(X), the restriction of  on each X,, gives an element of
M (X,). Hence, we can identify M (X) with the product space of M(X,)’s. Note that every
v € M(X,) is automatically regular, because X,, is metrizable. For the Cantor set X, it is
well-known that there exists a canonical bijective correspondence between M (X,,) and the set
of positive homomorphisms from C(X,,,Z) to R. Consequently we have the following.

Lemma 2.12. When X is the locally compact Cantor set, the integration by p € M(X) gives
a positive homomorphism p,, from Cy(X,Z) to R, and this map p — p, induces a one-to-one
correspondence between M(X) and the set of positive homomorphisms from Co(X,Z) to R.

Let (X, ¢) be a CM or LCCM system. We say u € M(X) is ¢-invariant, if u(E) = pu(o(FE))
holds for every F € B(X). Obviously, p is ¢-invariant if and only if u(U) = wu(é(U)) for
every compact open set U. We denote by My the set of invariant measures and M 1 be the
set of invariant probability measures. For each pu € My, the integration by u gives a positive
homomorphism p, : K%(X,¢) — R evidently. In the compact case, M, 41) can be identified with
Snj(K°(X, ¢)) by this correspondence (| , Theorem 5.5]). In the locally compact case, we
have the following from the above lemma and Theorem 2.11.

Proposition 2.13. When (X, ¢) is an LCCM system, . — p,, gives a homeomorphism from My
to S(KY(X,¢)). Moreover, yu is a probability measure if and only if p, is in SE(X#,)(KO(X, ®)).

In the rest of this paper, we will identify My with S(K°(X,¢)). From the definition of the
topology of S(K%(X,®)), we have p,, goes to p in My if and only if u,(U) goes to u(U) for
every compact open subset U.

As pointed out in [D], positive or negative semi-orbits may not be dense in X in the case
of locally compact systems. For an LCCM system (X, ¢), we denote the set of points whose
positive (resp. negative) semi-orbit is dense in X by X, (resp. X_). The subsets X, X_ and
X, N X_ are dense in X. One can show the following easily.

Lemma 2.14. When an LCCM system (X, ¢) is represented by an almost simple properly
ordered Bratteli diagram B = (V,E) and B satisfies the condition of Remark 2.5, an infinite
path (fn)n € Xp is in X4 (resp. X_) if and only if for infinitely many n there is f € E, such
that s(f) # s(en) and f, < f (resp. f < fn), where cop = (€n)n-

Let us introduce the notion of first return maps for compact open subsets. Let (X, ¢) be an
LCCM system and U C X a compact open subset. It is evident that

Up = {xz € U ; 3In € N such that ¢"(z) € U}
is open and dense in U. For x € Uy
r(z) =min{n e N; ¢"(z) € U}

is well-defined, and so ¢y (x) = ¢"®)(x) gives a homeomorphism from Uy C U to ¢y (Up) C U.
We call ¢y the first return map for U. The first return map ¢y is a partial homeomorphism on
U and p(¢u(V)) = u(V) for every compact open set V' C Uy and p € My. The *-isomorphism
ay : Cy(Up) — Co(éu(Up)) induced by ¢ is a partial automorphism on the commutative C*-
algebra C(U) in the sense of [[\x]. The covariance C*-algebra associated with (C(U),ay) is
clearly isomorphic to pC* (X, ¢)p, where p is the characteristic function of U.

By using the first return map we can prove the following.

Lemma 2.15. Let (X, ¢) be an LCCM system.



(i) For all p € My we have p(X$) = p(X°) =0.
(ii) If V e B(X) satisfies VN @™ (V) =0 for all n # 0, then pu(V) =0 for every p € My.

Proof. (i) It is sufficient to prove the assertion only for X¢. Take a compact open subset U and
let ¢y : Up — ¢ur(Up) be the first return map. The subset

V={zxeU,; ¢ "(x) €U for all n € N}

is compact and ¢, (V') is contained in Uy for every n > 0. Since ¢ (V)’s are mutually disjoint
and every compact set has finite measure, p(V') must be zero for all p € My. Now we get the
conclusion from X¢ =, ¢, #"(V).

(ii) By (i) we may assume V' C X_. We may also assume that V' is contained in a compact
open subset U. When ¢y : Uy — ¢y (Up) is the first return map for U, it is easy to see that
V,ou(V),¢%(V),... C Uy are well-defined and mutually disjoint. Hence V has zero measure for
every invariant measure. O

For a closed subset Y C X, let us define a C*-subalgebra Ay of C*(X, ¢) by

Ay = C*(Co(X),uCo(X \Y)),

where u means the implementing unitary (see [P, Section 3]). We denote the unitization of Ay
by Ai. It is not hard to see that Ay and A}, are AF-algebras. We can write down the Bratteli
diagram B = (V, E) of A} in the same way as Lemma 5.1 of | |. The diagram B is ordered

and we can define the Bratteli-Vershik map ¢p so that (X U{cox}, ¢) is conjugate to (X, ¢p)
and X1\ {oop} (resp. X%\ {cop}) corresponds to Y (resp. ¢(Y)). The Ko-group of Ay
is isomorphic to the quotient of Cy(X,Z) by

Byg={f—fo¢™"; feCo(X,Z),f]Y =0}.
The positive cone Ko(Ay)" and scale (Ay) is described in the obvious fashion.
Lemma 2.16. In the above setting, the following are equivalent.
(i) Ay is simple.
(ii) Y is contained in X+ N X_ and Y N ¢/ (Y) is empty for all j # 0.
(ili) B = (V,E) is an almost simple Bratteli diagram.

Proof. (1)=(ii). If the positive semi-orbit of y € Y is not dense in X, Z = {¢"(y);n > 0} is a
closed set of X. Set
I=C"(Co(X\ Z),uCo(X \ (Y U Z))).

Then, I is a non-trivial ideal of Ay and Ay /I is isomorphic to the C*-algebra of compact
operators. The other cases are proved similarly.

(il)=(iii). We can identify X with Xp \ {cop}. By assumption, for every z € Xp \ {cop},
the set of infinite paths which have the same tail as x is dense in Xp. Therefore, one get the
almost simplicity.

(iii)=(i). Because Ky(Ay) is isomorphic to the unique ideal of Ko(V, E), the assertion is
clear. O

The kernel of the natural homomorphism from Ky(Ay) to K(X,¢) is described by the
following exact sequence.



Lemma 2.17. Let (X, ¢) be an LCCM system and Y C X be closed. Then, the sequence
0 — Co(Y,Z) > Ko(Ay) -5 K°(X,¢) — 0

is exact, where the map q is the natural one. Moreover, for every a € K°(X,¢)" there is
be Ko(Ay)™T such that q(b) = a.

Proof. See [Pu, Theorem 4.1]. O
In order to prove the orbit equivalence theorem, we need the following lemma.

Lemma 2.18. Let (X,¢) be an LCCM system and Y be a closed subset of X satisfying the
condition (ii) of Lemma 2.16. Then, the natural homomorphism q from Ko(Ay) to K°(X, )
induces an isomorphism between their quasi-state spaces, that is, the image of § is contained in

the infinitesimal subgroup Inf(Ko(Ay)). Moreover we have ¥ (Ay) \ {0} = ¢ 1 (Z(X, ¢) \ {0}).

Proof. Take a quasi-state on Ko(Ay). By Lemma 2.12, it comes from p € M(X) satisfying
pu(f) = 0 for all f € By,. By a similar argument to the proof of Lemma 2.15(ii), we obtain
w(Y) = p(o(Y)) = 0. On account of this, one concludes that p is ¢-invariant. See [’11, Corollary
5.7] for details.

The inclusion %(Ay )\ {0} € ¢ H(2(X, ¢) \ {0}) is obvious. The other inclusion follows from
Im(d) C Inf(Ko(Ay)), since X(Ay) \ {0} + Inf(Ko(Ay)) = Z(Ay) \ {0}. O

3 Topological orbit equivalence

In this section, we show the orbit equivalence theorem for LCCM systems. We begin by recalling
the bounded orbit equivalence theorem and the strong orbit equivalence theorem. We say two
homeomorphisms ¢; and ¢2 are flip conjugate, if ¢; is conjugate to ¢2 or ¢5 L

Theorem 3.1 ([BT, Corollary 2.7]). Let (X;,¢;), i = 1,2 be two LCCM systems. The
following are equivalent.

(i) There exists a homeomorphism F : X1 — Xa which gives an orbit equivalence and one of
the orbit cocycles is continuous and bounded.

(i) (X1,¢1) and (X2, ¢2) are flip conjugate.

Two LCCM systems are said to be strong orbit equivalent if these systems are orbit equivalent
and the associated orbit cocycles are continuous. The following is the main theorem of [D].

Theorem 3.2 ([D, Theorem 4.2]). For LCCM systems (X;, ¢i), i = 1,2, the following are
equivalent.

(i) (X1,01) and (Xa, ¢2) are strong orbit equivalent.
(ii) The C*-algebras C*(X1, ¢1) and C*(Xa, ¢p2) are isomorphic.
(i) (K°(X1,¢1), KO(X1,¢1)", B(X1,¢1)) and (K°(Xa, ¢2), K°(Xa, ¢2)t, B(X2, ¢2)) are iso-

morphic as scaled dimension groups.

Let (G,GT,Y) be a non-unital scaled simple dimension group and 7 be the quotient map
from G to G/Inf(G). Then, (7(G),7(GT),n(X)) is also a non-unital scaled simple dimension
group. We denote it by (G, GT, %)/ Inf, simply.



Theorem 3.3. When (X;, ¢;), i = 1,2 are two LCCM systems, the following are equivalent.
(i) (X1,01) and (X2, ¢2) are orbit equivalent.

(ii) There exists a homeomorphism F : X1 — Xy which induces bijections from My, to My,
and from Mq%l to MQ%Q.

(iii) (K°(Xs, ¢:), KO(Xi, )T, 2(X;,¢))/Inf, i = 1,2, are isomorphic as scaled dimension
groups.

We need a series of lemmas to prove the implication (iii)=-(i).

Lemma 3.4. Let (G, G;r, ¥), i = 1,2 be two non-unital scaled simple acyclic dimension groups
and assume (Gi,G;",Ei)/Inf, 1 = 1,2 are isomorphic. Then, there exist a non-unital scaled
simple dimension group (H,H',X), homomorphisms v; : Z°° — H and order contractions
w; « H — G; such that

OHZOOL)HLG,L'—)O

18 exact and

Imy; C Inf(H), 2\ {0} == (=i \{0})
fori=1,2.

The proof is similar to that of Lemma 5.4 of | ].
Let B = (V,E) be an almost simple Bratteli diagram. As in Lemma 10.2 of | |, the
exact sequence

0-2" L7V — Ko(V,E) =0

gives a projective resolution of Ko(V, E), where 0(v) =v —>_ r(e). Hence, every element

s(e)=v
of Ext(Ko(V, E),Z>®) has a representative in Hom(Z",Z>). We write the representative as a
map p from V x N to Z. The next lemma is used to replace the map p to the appropriate one.

Lemma 3.5. Let (G,GT,X) be a non-unital scaled simple dimension group and € be an element
of Ext(G,Z>). Then, there exist an almost simple Bratteli diagram B = (V,E), a map p :
V x N — Z and a strictly increasing sequence of natural numbers {ry},, which satisfy the
following.

o The diagram B satisfies the property of Remark 2.5 and Ko(V,E) = G' as a unital di-
MEeNnsLon group.

e The map p is a representative of €.
Put cop = (€n)n, vn = r(ey) and denote the number of edges from v to v’ by E(v,v’).

e For everyn € N, V,, contains two vertices v, and uy, and Vy41 \ {vn+1, Unt1} contains ry,

. 1 1 1
vertices ’U§n+ ),vé"+ ), e 7%(;1+ ).

e p(v,i) =0 for everyv € V,, and i > ry,.
o For every v € Vy, \ {vp,un}t and i <y, 0 < p(v,i) < E(v,vgnJrl)) — 1.

)

o For everyi <rn, 1 < p(vp,i) < E(vy,v

i

o For every i <rp, 1 < p(un,i) < E(up,v

By using the above lemma, we can define an appropriate order on the Bratteli diagram.

10



Lemma 3.6. Let B = (V,E) be an almost simple Bratteli diagram and assume that B, p :
V XN — Z and {ry}, satisfy the condition of Lemma 3.5. Then, we can define a linear order
on each r=(v) so that the following hold.

e B = (V,E) is properly ordered.

o There exists a closed subset Y = {y;}ien C Xp \ {ocop} satisfying the condition (ii) of
Lemma 2.16.

e For everyv €V, andi € N,
p(v,i) =#{e € Ent1; s(e) =v, yi(n +1) <e}.

Proof. The proof goes in a similar way as the compact case. The last condition of Lemma 3.5 is

needed to arrange the linear order on r~! (vl-(nﬂ)) in such a way that there exist e, e’ € r—* (UZ-(nH))
with e < y;(n+ 1) < ¢ and s(e) = s(¢/) = u,. By Lemma 2.14, the positive and negative semi-
orbits of y; are dense in X. O

Now we are ready to prove the theorem.

Proof of Theorem 3.3. The proof of (i)=-(ii) is straightforward. From Lemma 2.10 (ii) and
Proposition 2.13, we can prove (ii)=>(iii).

Let us show (iii)=(i). One can find (H,H",X), ¢; and 7; as in Lemma 3.4. By the two
lemmas above and Lemma 10.3 of | |, there exist almost simple properly ordered Bratteli
diagrams B; = (V(i), E(i)) and closed countable subsets Y; C Xp,; such that the following exact
sequences hold.

0 — z*° —“— H' 5 K'X;¢)! —— 0

| kb

0 —— Z® —— Ko(Ay,)! —2— KoV, ED) —— 0

Since 7; is a unital order isomorphism, (Xj, ¢;) and (Xp,\{ocop, }, ¢B,) are strong orbit equivalent
for i = 1,2 by Theorem 3.2. By adjusting 7; by an element of Z*°, we may assume 7;(0,1) =
(0,1). Thanks to Lemma 3.4 and 2.18, the map 7); is revealed to be a unital order isomorphism.
Because | , Lemma 5.2] is valid for locally compact systems, we get the conclusion. Il

4 Full groups and their normalizers

The aim of this section is to show results analogous to those of [ ] in the locally compact
setting. We adopt the notation of | ].

Let X be the locally compact Cantor set and I' C Homeo(X) be a subgroup. We say I is of
class F when I' has the following properties.

(I'l) For compact open subsets U and V with U ~p V| there exists v € " such that v(U) =V,
2 — 1 and | c — ].
Y Yi(Uuv)

(T'2) For a compact open set U and a clopen set V', there exists a clopen partition Uy, ..., U, of
U such that U; <r V for every i.

(I'3) There is no non-trivial I'-invariant closed set.
(I'4) If v(U) = U for a compact open U and v € T', there exists 79 € I' with v|U = «|U and
’70|Uc = 1.

11



Several kinds of full groups, which are defined later, will satisfy the above properties.
Let us assume I is of class F. When H C I is a subgroup, we write

Ht={yeTl; yn=mnyforallnc H}.

For an open set O C X, let I'g be the set of homomorphisms 7 € I" such that v(x) = = for each
x € O° In order to characterize a subgroup of I' of the form I'yy with a compact open U, we
introduce the following conditions for a non-trivial subgroup H C T

(D1) H*+ = H and HN H* = {1}.
(D2) If N is a non-trivial normal subgroup of H (resp. H'), then Nt = HL (resp. Nt = H).

(D3) If H' is a subgroup which contains H properly and satisfies (D1) and (D2), then the
subgroup of T' generated by H' and H* is equal to I.

(D4) For all a € T'\ HH*, there exists n € H \ {1} such that ana~! € H*.
(D6) If a subgroup L of H satisfies (D1), (D2) and (D3), there exist 71,72, ...,n, € I' such that

HAL 0 (mInpyY)t 00 gLy, ')t = {1}.

Since (D1) and (D4) imply the condition (D5) of | | automatically, we omit it (see [ )
Lemma 3.26]). Although (D1), (D2) and (D4) are symmetric for H and H+, (D3) and (D6) are
not. The condition (D6) is new.

At first, we can prove the next two lemmas by exactly the same way as Proposition 3.13 and

Lemma 3.21 of | ].
Lemma 4.1. If O is a non-trivial reqular open set of X, then T'o satisfies (D1) and (D2).

Lemma 4.2. Let O be a non-trivial reqular open set. If, for any subgroup H which contains
Lo properly and satisfies (D1) and (D2), the subgroup of I generated by H and Fé is equal to
I', then O is clopen.

The next lemma corresponds to | , Lemma 3.23].

Lemma 4.3. Let H C T be a proper subgroup satisfying the conditions (D1), (D2) and (D3).
Then, either of the following holds.

(i) Py is clopen and H =Tp,,.
(i) Py = Py = X.

Proof. Set O = (Pg)°. Then O is a non-empty regular open set and H C T'p. If H equals T'p,
the conclusion (i) follows because of the above lemma and (D3).

Assume H is a proper subgroup of I'g. The condition (D3) implies that I is generated by I'o
and H+. Since Py is Tp and H'-invariant, we have Py = X. Put U = (Py.)°. As H+ C Ty,
we get I'yr € H. For Ut = (Py.)¢ is H-invariant, I';;1 is a normal subgroup of H. If U+ is
not empty, by (D2), T';1 is equal to H. Because Py = X, U+ must be the whole space X and
it contradicts the assumption on H. Thereby we verify (ii). O

We need to deny the possibility of (ii) of the lemma above. The proof of the following lemma
is similar to | , Lemma 3.27].

Lemma 4.4. Let H C T be a subgroup satisfying (D1), (D2) and (D4). When Py = Py1 = X
and a non-empty open set O is H or H- -invariant, then O is dense in X.
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We use the non-compactness of X in the next lemma.

Lemma 4.5. Let H C T be a subgroup satisfying (D1), (D2) and (D4). When Py = Py = X,
the complement of O = {x € X;n(x) = k(z)}° is not compact forn € H\ {1} and x € H*.

Proof. Take v € H such that yny~! # 7. Since v commutes with x
Y(0) ={x € X 5 vy~ H(z) = w(x)}".
If O¢ is compact, O N+(0O) is not empty. Hence,
U={zeX;n)=yn")}

is not empty and H-'-invariant. By the above lemma, U is dense in X, and so we have a
contradiction. O

Lemma 4.6. Let H C I' be a subgroup satisfying (D1), (D2), (D3) and (D4). Then Py is clopen
and H =T'p,,.

Proof. Let us assume the case (ii) of Lemma 4.3. Take v € T" \ {1} such that the complement
of the y-fixed point set X? = {z € X;v(x) = 2} is compact. If v € HH', the above lemma
implies v € H*. Therefore, X7 is H-invariant and we get a contradiction from Lemma 4.4. So,
7 is not in HH*. By (D4), there is n € H \ {1} with 4y~ € H*. But, for z € X" Ny~ (X)),
we have n(x) = vy~ 1(x). By using the above lemma again, we obtain a contradiction. O

One can show the following as in the compact case.
Lemma 4.7. When O is a compact open non-empty subset, then I'o satisfies (D3) and (D4).
The following proposition gives the algebraic characterization of local subgroups.

Proposition 4.8. The maps O — I'p and H — Py induce a bijective correspondence between
the set of non-empty compact open subsets of X and the set of subgroups of I' satisfying (D1),
(D2), (D3), (D4) and (D6).

Proof. For a clopen set O, it is easy to see that I'p satisfies (D6) if and only if O is compact.
By virtue of Lemma 4.1, 4.6 and 4.7, we get the conclusion. ]

Theorem 4.9. Let X;, i = 1,2 be two locally compact Cantor sets and TV C Homeo(X;) be
subgroups of class F. If a : I'D — T® s an isomorphism, then there exists a homeomorphism
7 X1 — Xy such as a(y) = myr ! for all v € T,

Proof. For a point z € X1, let {O),}n,en be a decreasing sequence of compact open sets of X3
such that (O, = {z}. Set H, = ng and O, = Pyu,)- Then, {0}, forms a decreasing
sequence of compact open subsets of Xy and the intersection is a one-point set {y}. Define the
map 7 by w(x) = y. One can check that 7 is a well-defined homeomorphism from X; to Xs. It
is not hard to see that a(y) = myr~! for all v € T(1), O

Now we would like to introduce several kinds of full groups.

Definition 4.10. Let (X, ¢) be an LCCM system. Define the largest full group by
[¢] = {y € Homeo(X) ; y(x) € Orby(z) for allz € X}.
If v is an element of [¢], the orbit cocycle ny : X — 7Z is determined by v(x) = ") (z). Set

[0le = {7 € [¢] ; K a compact open set such that n,|K® is zero}.
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We can check that these two full groups are of class F because of the next lemma.

Lemma 4.11. Let (X, ¢) be an LCCM system and U,V be two compact open sets. Then 1y is
equivalent to 1y in KY(X, ¢) modulo infinitesimals if and only if there is y € [¢]. with v(U) =V,
¥ =1 and y|[(UUV)¢ = 1.

See | , Proposition 2.6] for the proof.
Next, let us define topological full groups.

Definition 4.12. For an LCCM system (X, ¢), we set
T[¢] = {v € [¢] ; ny is continuous on X},

T[oly = {y € 7[¢] ; ny is bounded on X},
T[¢lu = {y € T[¢] ; IK a compact open set such that n is constant on K}

and 7[¢]c = 7[¢] N [P

It is clear that these topological full groups are of class F. We also remark that every element
of 7[¢]. is of finite order, since 7[¢]. is isomorphic to an inductive limit of finite groups.

Theorem 4.13. Let (X, ¢) be an LCCM system.
(i) [@] is a complete invariant for the orbit equivalence class of (X, @).

(ii) [@]c is a complete invariant for the orbit equivalence class of (X, ¢).
(iii) T[] is a complete invariant for the strong orbit equivalence class of (X, @).

T[plu is a complete invariant for the flip conjugacy class of (X, @).

)
)
(iv) 7[dlp is a complete invariant for the flip conjugacy class of (X, ¢).
(v)
)

(vi) 7[¢]c is a complete invariant for the strong orbit equivalence class of (X, @).

Proof. The assertion (i) and (iii) are clear from Theorem 4.9. By Theorem 4.9 and 3.1, (iv) and
(v) can be shown.

We prove (ii). Let ¢ and ¥ be minimal homeomorphisms on the locally compact Cantor sets
X and [¢]. & [¢]c. From Theorem 4.9, we may assume [¢]. = [¢].. Then, it can be shown that
each ¢-orbit is equal to ¥-orbit, and so [¢] = [¢].

For (vi), we need Theorem 3.2. It is not hard to see 7[¢]. is an invariant for strong orbit
equivalence. Assume T7[¢]. = 7[¢)]. for two minimal homeomorphisms ¢ and i on X. Let
us consider the Hilbert space £2(X) spanned by the complete orthonormal basis {&,}zcx. The
commutative C*-algebra Co(X) canonically acts on £2(X) by multiplications. Every v € 7[¢]. =
7[¢]c induces a unitary v, such that v,(£;) = &,(;). We denote the C*-algebra generated by
Co(X) and v,’s by A. Then, A is isomorphic to C*(X,¢) and C*(X,v). By Theorem 3.2, ¢
and v are strong orbit equivalent. O

A minimal homeomorphism ¢ on the locally compact Cantor set can be extended to a
homeomorphism on the one-point compactification X U{ocox } or on the Stone-Cech compactifi-
cation BX. We denote the corresponding C*-crossed products of C(X U {ocox}) and C(5X) by
C*(X U{oox},¢) and C*(BX, ¢), respectively. Then, we get the inclusion of the C*-algebras

Co(X) € C*(X,¢)' € C*(X U{oox},¢) C C*(BX, ¢) C M(C™(X,9)).

We write all implementing unitaries by the same symbol u. For a C*-algebra inclusion B C A,
we write the set of unitary normalizers of B in A by UN(A, B).
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Proposition 4.14. When (X, ¢) is an LCCM system, the following diagram is commutative,
and all horizontal rows are exact and split.

0 — U(C(X U{oox})) ——  UN(C*(X,9)',Co(X)) —— 7[dle —— 0

0 —— U(C(X U{oox})) —— UN(C*(X U{oox},¢),Co(X)) —— 7[dlu —— 0

l

0 —— U@pX) —— UN(C(BX,9),C(X)) —— 7[¢lp —— 0

0 —— U@@X) —— UNWM(C(X,9)),C0(X)) —— 7[o] —— 0

Proof. Since the relative commutant C*(8X, ¢) N Co(X)' is equal to C(BX) and C*(X, ¢) is
an ideal of C*(BX,¢), the set of unitary normalizers UN(C*(8X, ¢),Co(X)) coincides with
UN(C*(BX,¢),C(8X)). Hence, the third sequence is exact and splits by Theorem 1 of [T].
The same argument also holds for the second sequence. It is easy to see the split exactness of
the top sequence.

Let us consider the bottom sequence. The dual action a on C*(X, ¢) can be extended to

the multiplier algebra M(C*(X, ¢)) and

E:a— / ar(a)dt
T

gives a norm one projection from M(C*(X, ¢)) to C(X). Take v € UN(M(C*(X, ¢)), Co(X))
arbitrarily and put p, = E(u~"v) for n € Z. The same argument as that in [Pu, Lemma 5.1]
shows that p,, is a projection of C(6X) and {p,}, induces a clopen partition of X. If p is a
projection of Cy(X) and p < py,, we have E(u""vp) = 6y, np. Therefore, when the support of
f € Cp(X) is compact, we get

vfvt = u fpau",

new

where the sum is actually a finite sum. Hence, f — vfv* induces a homeomorphism which is
contained in 7[¢]| and the homomorphism from UN (M (C*(X, ¢)), Co(X)) to 7[¢] is well-defined.
Now the split exactness can be shown in the same way. ]

We would like to define the index map. Obviously the quotient of 7[¢], by 7[¢]. is the
integers and it corresponds to the fact K1 (C*(XU{ocox},¢)) = Z. In the same way, by Pimsner-
Voiculescu exact sequence, the Ki-group of C*(3X, ¢) is also the integers, and so we obtain a
map I from 7[¢], from Z. We call this homomorphism the index map. It is needless to say that
I(¢) =1 and 7[¢]. C kerI.

Lemma 4.15. Let (X, ¢) be an LCCM system and v € T[@|,. For every point x € X,
I(y) = #(0rb (x) Ny(Orby (x))) — #(Orby (x) N(Orbg (x))),
where Orb;f(a:) means {¢"(x);n > 0} and Orb, (x) means {¢"(z);n < 0}.

Proof. Note that the right hand side determines a well-defined homomorphism I, from 7[¢],
to Z. We will construct a representation 7 of C*(8X,¢) on the Hilbert space ¢2(Z). Let
{¢,}n be the orthonormal basis of ¢*(Z) and w(u) be the bilateral shift. For f € C(8X),
define 7(f)(&n) = f(¢™(x))€n. Then, 7 is a well-defined representation. When we denote by
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P the orthogonal projection to the closed subspace spanned by {&,}nen, it is easy to see that
Pr(a)—m(a)P is a compact operator for every a € C*(8X, ¢). So the Fredholm index of Pr(v)P
is well-defined for each unitary v € C*(5X, ¢), which implies the right hand side of the above
equality is homotopy invariant. Hence, the kernels of I and I, agree. O

Remark 4.16. For a point € X, we can define the subgroup 7[¢];, of 7[¢], such as the set
of homeomorphisms which preserve each of Orb;r (z) and Orb, (). However, this group always
has an element of infinite order. We do not know if there exists a surjective homomorphism
from 7[¢], to Z which differs from the index map I.

We denote the kernel of the index map I by 7[¢]o. It is easily seen that 7[¢]o is of class F.

Lemma 4.17. When (X, ¢) is an LCCM system, there exists a clopen partition {U;}1_ of X
such that ¢(U;) NU; is empty for alli=1,2,... n.

Proof. Existence of such a partition is equivalent to the fact that the system (56X, ¢) has no
fixed point. This follows from Theorem 5.11. O

Theorem 4.18. The kernel T[¢]o of the index map I is a complete invariant for the flip conju-
gacy class of (X, ).

Proof. When 7[¢]g = 7[¢)]p for two minimal homeomorphisms ¢ and 1) acting on X, we may
assume 7[plo = 7[¢]g from Theorem 4.9. By the above lemma, we can take a clopen partition
{U;}_; of X such that ¢(U;)NU; is empty for all i. Define v; € T[¢p]o = 7[1]o such as v;(z) = ¢(x)
for x € U;, vi(z) = ¢~ Y(x) for z € ¢(U;) and v;(x) =  for all x € (U; U ¢(U;))¢. Then, ¢ is
expressed by

o(x) = vi(x) for z € U,

which means ¢ € T[1]p. Similarly, we can show ¢ € 7[¢],. By Theorem 3.1, ¢ and ¢ are flip
conjugate. O

For these full groups, we denote by N(-) the set of normalizers in Homeo(X).

Lemma 4.19. If (X, ¢) is an LCCM system, we have

and

N(7[¢lu) C N(7[¢lo) = N(7[¢]s) C N(7[g]) = N(7[¢]c).

Proof. It is obvious that N([¢]) is contained in N([¢].). Let v € N([¢].) and 7 € [¢]. For every
x € X, we can choose 7’ € [¢]. so that 7(y~(z)) = 7/(y*(x)). Then, y7y~}(z) = y7'v 1 (x) =
7"(x) for some 7" € [@].. Because yry~1(x) lies in the orbit of z, we get y7y~ ! € [¢]. By a
similar argument, one readily verifies N(7[¢],) C N(7[¢]y) C N(7[¢]) = N(7[¢]c).

Let us prove N(7[¢lo) = N(7[¢]p). If v € N(7[4]s), by the proposition below, we obtain an
automorphism of C*(5X, ¢). Hence, v preserves the kernel of the index map. Conversely, let us
assume v € N(7[¢p]o). For every 7 € 7[¢]p, we can find a clopen partition {U;}! ; in the same
way as Lemma 4.17 such that 7(U;) NU; = ). Therefore, 7 can be written as an element of 7[¢]o
locally, which finishes the proof. O

For an inclusion of C*-algebras B C A, we denote by Aut(A, B) the set of automorphisms
which preserve B globally.
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Proposition 4.20. When (X, ¢) is an LCCM system, the following diagram is commutative
and all horizontal rows are exact and split.

0 —— U(C(XU{oox}) —— Aut(C*(X U{oox},¢),Co(X)) —— N(7[d]s)

0 ——  UCPX) ——  Aut(C*(8X,9),Co(X))  —— N(7[¢]p)) —— 0
0 —— U((C(PX)) —— AwM(C*(X,9)),Co(X)) —— N(r[¢]) —— 0
Proof. See the proof of | , Proposition 2.4] for the top and middle sequence. One can

replace the bottom sequence with
0 — U(C(BX)) — Aut(C*(X, ¢), Co(X)) — N(7[d]c) — 0,
and so the split exactness is clear by the same argument as that in | , Proposition 2.4]. O

We would like to conclude this section by giving a semi-direct product decomposition of
N(r[¢].) and N(r[g];). Define

C*(¢) = {y € Homeo(X) ; yv¢7~" = por ¢~'}
for an LCCM system (X, ¢). It is not hard to see C(¢) C N(7[¢]u)-

Proposition 4.21. Let (X, ¢) be an LCCM system. Then, the sequences
0— Z - 7[¢]y x C(9) = N(7[@lu) — 0

and

0—7 - (gl x C(¢) == N(r[¢]s) — 0

are exact, where the map i is given by n +— (¢", ¢~ ") and the map w is given by (7,7) — T7.
Moreover, we have T[p]. X C(¢) = N(7[¢]u) and T[plo X C(p) = N(7[d]p).

Proof. Apply [BT, Corollary 2.7] for (X U {oox},®) or (58X, ). See also | , Proposition
5.11]. O

5 Injective homomorphisms from LCCM systems

The aim of this section is to construct injective homomorphisms from LCCM systems by using
embedding of Bratteli diagrams.

Definition 5.1. Let D = (W, F) be a simple Bratteli diagram and B = (V, E) be a simple or
almost simple Bratteli diagram. A graph homomorphism p : D — B is called an embedding of
the Bratteli diagram D, if p|W and p|F are injective and p(W,,) C V, for every n > 0. We
denote the associated continuous embedding from Xp to Xp by the same symbol p.

We would like to characterize a compact subset of Xp of the form p(Xp).

Definition 5.2. Let (X,¢) be a CM or LCCM system. A compact subset A C X is said to be
¢-homogeneous if the following two conditions are satisfied.

(i) For every x € A, the subset AN Orbg(x) is dense in A.
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(ii) If x and ¢™(x) are contained in A, there exists a clopen neighborhood U of x such that

P"(ANU)=An¢"(U).

Lemma 5.3. When (X, ) is a CM system and A C X is a compact subset, the following are
equivalent.

(i) The compact subset A is ¢p-homogeneous.

(ii) There exists a simple properly ordered Bratteli diagram B = (V, E) and a conjugacy m :
(X,¢) — (Xp,¢p) such that w(A) equals p(Xp) for some embedding p : D — B of a
simple Bratteli diagram D.

A similar statement also holds for LCCM systems.

Proof. The proof of (ii)=-(i) is obvious. Let us show the converse. Assume
P={X(kj): k=1,2,....K, j=1,2,...,J}

is a Kakutani-Rohlin partition for (X, ¢). By using (ii) of Definition 5.2, we can divide each
tower so that

ANX (ki) #0, ANX(k,j)#0 = ¢ (ANX(k,i) =ANX(k,j)

holds for all £ = 1,2,...,K and 4,57 = 1,2,...,J;. Then, edges corresponding to (k,j) with
ANX(k,j) non-empty are chosen as edges coming from a Bratteli diagram D. By repeating this
procedure, we obtain a simple properly ordered Bratteli diagram B = (V, E') which represents
(X, ¢), a Bratteli diagram D and an embedding p : D — B. It is clear that p(Xp) equals A
under the identification of X with Xp. The simplicity of D is derived from (i) of Definition 5.2.
The proof of the locally compact case is similar. O

Let (X, ¢) be a CM or LCCM system and A C X be a ¢-homogeneous compact subset. We
moreover assume that A is nowhere dense and perfect. Let us consider the disjoint union of A
and one point *. The countable infinite product (AU {*})%? endowed with the product topology
is the Cantor set. Let 7: X — (AU {*})” be the map defined for z € X by

n(@)(n) = { ¢ iﬁg; ;ﬁ for n € Z.

Then, the range of 7 is a shift invariant subset containing the point **°, because (J,, " (A) is not
equal to X by the Baire category theorem. We set Y = n(X) \ {**°} and denote the subshift
on Y by .

Lemma 5.4. In the above setting, (Y, ) is a LCCM system and there exists a canonical injective
homomorphism m from (Y, ) to (X, ¢). A similar statement holds for an LCCM system (X, ¢),
too.

Proof. We will write > by coy. Let us show that Y U {ooy } is a closed set. Take {xp}r C X
and assume limy, n(zy) = & for some & € (AU {*})%. If € equals ooy, we have nothing to do.
Hence, we may assume &(n) = x for some n € Z and = € A. Since n(z)(n) goes to x, we have
¢"(xr) € A eventually. If £(m) = *, then ¢™(xy) is not in A eventually. From the ¢-homogeneity
of A, we get ¢ "(x) € A. When {(m) € X, it is clear that ¢"" () = {(m) € A. Therefore,
¢ is equal to n(¢~"(x)), which implies Y U {coy } is closed. By using the ¢-homogeneity of A,
one can also check the minimality of (Y, ) easily. When we define n(n(z)) = x for n(z) € Y,
the map 7 is a continuous and injective homomorphism. O
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We call 7 : (Y1) — (X, ¢) in the above lemma the LCCM extension arising from A.

Lemma 5.5. Let (X,¢) be a CM system and A C X a ¢-homogeneous subset. Suppose (X, @)
is strong orbit equivalent to another CM system (X', ¢') by a homeomorphism F : X — X',
When the orbit cocycle n : X — 7Z is continuous on all points in A, the closed subset F(A) is
¢'-homogeneous. Then two LCCM systems arising from A and F(A) are strong orbit equivalent.
If (X, ¢) and (X', ¢") are LCCM systems, we also get a similar statement.

Proof. As F gives an orbit equivalence, the condition (i) of Definition 5.2 follows immediately.
For every x € A the orbit cocycle n is continuous at z, and so one verifies the condition (ii) of
Definition 5.2.

Let 7: (Y,¢) — (X,¢) and 7" : (Y',¢') — (X', ¢') be the LCCM extensions arising from A
and F(A), respectively. Then, 7'~ ' Fr is a well-defined homeomorphism from Y to Y, and two
LCCM systems (Y, 4) and (Y’,4’) are strong orbit equivalent by this homeomorphism. O

Proposition 5.6. Let B = (V, E) be a simple (resp. almost simple) properly ordered Bratteli
diagram and p : D — B be an embedding of a simple Bratteli diagram D = (W, F). Assume
p(Xp) does not contain the unique mazimal or minimal infinite paths. If w: (Y,v) — (X, ¢B)
(resp. (Xp \ {ooB},dB)) is the LCCM extension arising from p(Xp), the dimension group
KO(Y, %) is order isomorphic to Ko(W, F) and the scale X(Y,v) is given by

{a € Ko(W,F)" ; a < p, for some n € N},

where py, is (hp(p(w)))wew, € ZV".

Proof. Let us construct an almost simple Bratteli diagram D' = (W', F’) whose ideal part is
equal to D. We add a new vertex w, to W, and set W} = W,, U {w,}. For every w € W1,
we put hp(p(w)) — hp(w) edges between w, and w so that hp (w) equals hp(p(w)) for every
w € W) 1 \ {wp41}. Finally, we connect w,, and w41 by a single edge. Then, the almost
simple Bratteli diagram D’ = (W', F”) is obtained. By using the linear order in r~!(p(w)), we
can define a linear order in r~!(w) for w € W' so that D’ becomes a properly ordered Bratteli
diagram which represents (Y, ). The assertion clearly follows from Theorem 2.11. O

The converse of Lemma 5.4 also holds.

Proposition 5.7. Let 7 : (Y,¢) — (X,¢) be an injective homomorphism from an LCCM
system to a CM or LCCM system. When K C Y is a non-empty compact open subset, w(K)
is a compact ¢-homogeneous subset of X. Moreover, if ©' : (Y',¢') — (X, ¢) is the LCCM
extension arising from w(K), there exists a homeomorphism v : Y — Y’ such that yipy~! = o/
and 7'y = .

Proof. Let us show the ¢-homogeneity of 7(K). If y,4' € K, by the minimality of 1, we may
assume lim % (y) = y/. Because 1 (y) is in K eventually, the condition (i) of Definition 5.2 is
proved. To prove the condition (ii), take y, "™ (y) € K arbitrarily. The proof is by contradiction.
Assume {ym }m € K satisfies im 7(y,,) = 7(y) and ¢™(7(ym)) & 7(K). Since K is compact and
7 is injective, we have limy,,, = y. Then, ¥"(y,,) € K for sufficiently large m, which contradicts
the assumption.

Let n : X — Y’ be the map which is used in Lemma 5.4 to construct (Y’,¢’). The compo-
sition ¥ = nr is a homeomorphism from Y to Y’ satisfying y¢»y~' = ¢’ and 7'y = 7. O

Let w : (Y,9) — (X, ¢) be a homomorphism from an LCCM system to a CM or LCCM
system. If 7 is surjective and injective, there exists a compact open set U C Y such that the
image w(U) is open, by the Baire category theorem. Then, from the minimality of (Y,1)) one
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can show that (X, ¢) is an LCCM system and 7(U) is open for every open set U C Y, thus
7 is actually a homeomorphism. Notice that there exists a continuous bijection which is not a
homeomorphism from the locally compact Cantor set to the Cantor set or the locally compact
Cantor set.

Example 5.8. Let X = {0,1,2,3,4}" and (X, ) be the odometer system of type 5% (see [02,
Section 2] for odometer systems). It is well known that the dimension group of (X, ¢) is order
isomorphic to (Z[1/5],Z[1/5]") and the order unit is one. We set the closed subset A of X by

A={(xn)neny € X ; zp 1 1,2 or 3 for all n € N}.

It is easily seen that A is a ¢-homogeneous subset. The dimension group of the LCCM extension
arising from A is order isomorphic to (Z[1/3],Z[1/3]") and the scale equals the whole of the
positive cone.

In general, when (Y,v) and (X, ¢) are CM or LCCM systems and 7 : (Y,9) — (X, ¢) is a
homomorphism, 7 induces a map m, : Mi - M d1> By | , Proposition 3.11] 7, is continuous
and surjective, if (Y,1) and (X, ¢) are CM systems. Let us consider the case that (Y,) is an
LCCM system. Assume {p,}, C Mi}) converges to p € Mi, that is, un(U) goes to u(U) for each
compact open set U C Y. Since every clopen subset of Y can be divided as a countable disjoint
union of compact open subsets, we see that lim p,(U) = p(U) holds for all clopen subsets.
Hence, the map 7, : Ml}) - M <11> is always continuous.

Lemma 5.9. If 7 : (Y,¢) — (X, ) is an injective homomorphism from an LCCM system
(Y,9) to a CM or LCCM system (X, ¢), then m, gives a continuous injection from Mi onto
{pe M} ur(Y)) =1}, and v € MI}} is an extremal point of Mi if and only if m«(v) is an
extremal point of ]\4415 When Ml}) 1s closed, m, becomes a homeomorphism.

Proof. If € Mdl) satisfies p(m(Y')) = 1, then it is easy to see that U +— u(w(U)) for a compact
open subset U of Y gives the preimage of u. Therefore, 7, is a bijective correspondence. When
Ml}) is closed, then it is compact, and so the inverse map is continuous. O

The following theorem shows that there is no K-theoretical obstruction for existence of
injective homomorphism from LCCM systems without finite invariant measures.

Theorem 5.10. Let (Y,1)) be an LCCM system without finite invariant measures and (X, ¢)
be a CM or LCCM system. Then, there exists an injective continuous map @ : Y — X and
continuous functions n,m :Y — 7Z such that

m((y)) = ¢"V(r(y)), w(¥"W(y)) = (x(y)),

for all y € Y. Thus, ™ gives an orbit embedding.

Proof. We assume (X, ¢) is a CM system. The proof of the locally compact case is similar. Let
B = (V, E) be a simple properly ordered Bratteli diagram such that (Xpg, ¢p) is isomorphic to
(X,¢) and D = (W, F) be a simple Bratteli diagram such that Ko(W, F') is order isomorphic
to K°(Y, ). By telescoping B appropriately, we can construct an embedding p : D — B in
such a way that p(Xp) does not contain the unique maximal or minimal infinite paths and
w(p(Xp)) is zero for every u € M(})B (see [ , Lemma 4.2]). Then, we get the LCCM
extension 7 : (Y',9') — (X, ¢p). By Proposition 5.6 and Lemma 5.9, K°(Y’ ¢) is isomorphic
to K°(Y,) as scaled dimension groups. From Theorem 3.2, we get the conclusion. O
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The author does not know the necessary and sufficient condition for CM and LCCM systems
so that there exists a continuous injection which preserve orbits like the theorem above.
Let us show that every LCCM system has an injective homomorphism to a CM system.

Theorem 5.11. When (Y,1) is an LCCM system, there exist a CM system (X,¢) and an
injective homomorphism m : (Y,9) — (X, $). Moreover, when (Y,1) has no infinite invariant
measure, we can take the above homomorphism w so that the induced map m, : Mi — Mdl) 18
surjective.

Proof. We begin with the proof of the first part. We would like to construct a simple properly
ordered Bratteli diagram B = (V, E) and an almost simple properly ordered Bratteli diagram
D = (W, F) so that the following conditions are satisfied. We write cop = (fp)n and r(f,) = wy.

(i) The Bratteli-Vershik system (Xp, ¢p) is conjugate to (Y U {ooy }, ). (We will identify
them in the argument below.)

(ii) For each n, V,, contains two distinguished vertices v9 and v}.

(iii) When we denote the ideal part of D by D = (W, F), there exists an embedding p : D— B
such that p(W,,) = V;, \ {02, v2} and hp(w) = hp(p(w)) for every w € W.

(iv) Let p1,po,...,pn and q1,q2,...,qn be the ordered list of paths from the top vertex wq to
w and from the top vertex vy to p(w), where w is a vertex of Wy, and N = hp(w). Then,
if p; goes through w,_1, ¢; goes through v? or vl. If p; goes through w' € Wn 1, ¢i gOes
through p(w’).

(v) For each n, hp(v}) — hp(v?) is one. Put L, = hp(v9)? + hp(vd) + 1.

(vi) When p is the unique path from wy to wy, the clopen subset U(p) of Y satisfies the
following: if y ¢ U(p) and 9(y) € U(p), then ¢¥(y), ..., " (y) € U(p).

Let us consider the case n = 1. We put two edges from vy to v and one edge from vy to
v9. Then, L; is three. One can choose a clopen neighborhood U of ooy so that y ¢ U and
Y(y) € U imply ¥?(y) € U and ¢*(y) € U. Define a vertex set Wy which consists of two points
corresponding to U¢ and U, and put a single edge from the top vertex wg to each of them. We
can construct V; and p: Wi \ {w;} — V; satisfying (iii).

For the induction step, suppose all the items have been constructed to level n — 1. At first,
for every v € V,,_1, we put a single edge between v and each of v? and v}. Furthermore, we
add one more edge between v _; and v} for each i = 0,1. Then, the condition (v) is achieved
and the natural number L, is determined. We can define a linear order on r~1(v%), i = 0,1,
so that the maximum edge has the source vertex v. ; and the minimum edge has the source

vertex vg_l. Let p be the unique path from the top vertex wg to w,_1. Set
Ln Ln—l
v=Jv'( (1 Y Um).
i=0  j=—Ln—1

It is easy to check that U is a clopen neighborhood of ooy and contained in ﬂj,_l PI(U(p)).
One can take a sufficiently finer Kakutani-Rohlin partition for (Y, ) which has U as the roof
set. This partition determines the vertex set W, which contains wy,, the edge set F), and the
partial order on Fj,. Let W and F be the ideal part of W,, and F,,. Put the copy of W and
F,, in the n-th level of the diagram B. Then, the embedding p in the n-th level is determined
obviously. When we denote by p’ the unique path from wg to wy,, the clopen set U(p') equals
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U N(U). By the definition of U, we can check the condition (vi) for U(p'). Let w be a vertex
of Wiy, \ {wy}. From the definition of U and (vi) for U(p), one verifies that edges whose source
vertex is w,_1 appear in the ordered list of edges in »~!(w) at least L, 1 times consecutively .
For every natural number L > L,_1, there exist m,n € N such that L = mhg(v?) + nhg(v)),
and so we can put edges between v9_;, vl | and p(w) and define the linear order in r~1(p(w))
so that the condition (iv) holds. Besides, we may assume that v0_; is the source vertex of the
minimum edge and v} _; is the source vertex of the maximum edge. We can do the same thing
for all vertices in W, \ {wy,}. This completes the induction step and all the desired properties
are clear.

By using (iv), we can construct an injective homomorphism from (Y, ), which is identified
with (XD, ¢D), to (XB, (;53)

Let us prove the second part. Suppose (Y, ) has no infinite invariant measure. Note that
this is equivalent to assuming that the scale ¥(Y, %) is bounded above in the ordered group
K°(Y, ). Under this assumption we will show that the map 7, induced by the homomorphism
7 constructed above is a surjection from Mé to M <¢1>B‘ Take p € M %B arbitrarily. It suffices to
show 1(p(Xp)) > 0 from Lemma 5.9. We denote by a the element (hp(w))wew, in K°(Y,)T.
Since K°(Y, 1)) is a simple dimension group, there exists a constant C' > 4 such that b < Ca
for all b € X(Y,4). For v € V let p, be a finite path from the top vertex vy to v. From the
construction we have

u(p(Xp)) = lim > hp(w)u(U(pmw)
weWn,

= dim > " hp(w)E(p(w), v)uU(p.),
weWp v€Vp 41

where E(-,-) is the number of edges between two vertices. When v =2, or v = v}, one has

S b (@) E(p(w), )aUp) = 3 ho(@)aUp.) = ~hp@)u(Up,).
4

weWy, weWn

When v = p(w’) for some w’ € W41, one also gets

> hp(w)E(p(w), v)uw(U(py)) = hp(w")u(U(ps)) = C~ hp(0)u(U (py))-
weWn,

Hence u(Xp) > C~! > 0 and the proof is completed. O

By a topological realization of an automorphism 7' of a measure space (Y,v), we mean a
homeomorphism ¢ on a topological space X along with a ¢-invariant measure p such that (¢, u)
is measurably conjugate to (T,v). In [O1] Ormes answered the following question: when can we
realize a given ergodic automorphism on a non-atomic Lebesgue probability space as a minimal
homeomorphism on the Cantor set within a given strong orbit equivalence class? He showed
that there is no obstruction except for rational discrete spectrum. We can prove an analogous
result for LCCM systems.

Theorem 5.12. Let (G,G",X) be a non-unital scaled simple dimension group and u € Sx(G)
be an extremal point of Sx(G). For any ergodic transformation T on a non-atomic Lebesque
probability space (Y,v), we can find an LOCM system (X, ¢) such that K°(X,¢) is isomorphic
to G as scaled dimension groups and (¢, u) is measurably conjugate to (T,v).
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Proof. Suppose D = (W, F) is an almost simple Bratteli diagram such that the unitization of
G is isomorphic to Ko(W, F). One can easily construct a simple Bratteli diagram B = (V, E)
and an embedding p : D — B so that the order unit 15 of Ky(V, FE) is not divisible by any
natural numbers (see the proof of Theorem 5.11 for example). Let u' € S1,(Ko(V, E)) be the
state corresponding to p. By Lemma 5.9 y/ is an extremal point. From Theorem 2.5 of [O1] we
can telescope the Bratteli diagram B and define a proper order such that the unique maximal
and minimal paths are not contained in p(Xz) and (Xp, ¢p,p') is measurably conjugate to
(Y,T,v). Let 7 : (X,¢) — (XB,¢B) be the LCCM extension arising from p(Xg). Then,
K°(X, ¢) is isomorphic to G as scaled dimension groups by Lemma 5.5 and Proposition 5.6, and
(X, ¢, 1) is measurably conjugate to (Xp, ¢p, it'). O

In the compact case, Sugisaki showed that the strong orbit equivalence class of a CM system
contains transformations of all possible topological entropies ([51],[52]). The following corollary
is a locally compact analogue of this result.

Corollary 5.13. Let (Y,4) be an LCCM system and let 0 < a < oo. If Mli consists of one
point, or every invariant measure for (Y,1) is finite, then there exists an LCCM system (X, ¢)
such that (Y, 1)) is strong orbit equivalent to (X, ¢) and the topological entropy of (X U{ocox}, ®)
equals a.

Proof. Suppose Mi = {p}. Choose an ergodic automorphism 7" on a non-atomic Lebesgue
probability space (Y,v) which has measure theoretic entropy «. From Theorem 5.12 there
exists an LCCM system (X, ¢) such that (Y,1) is strong orbit equivalent to (X, ¢) and (¢, u)
is measurably conjugate to (7', v). There exist two ergodic ¢-invariant probability measures on
X U{oox}: one is p and the other is the Dirac measure on cox. By the variational principle
(see [ , Proposition 18.11]) we get the conclusion. In fact, one needs only Mi # () in the
case of a = oc.

Let us assume that every invariant measure of (Y,1)) is finite. We can find an injective
homomorphism 7 from (Y, ) to a CM system (Z, 7) which induces a surjection 7, : MJ) — M}
By Sugisaki’s results there exists a CM system (Z’, 7’) such that (Z, 1) is strong orbit equivalent
to (Z',7") and the topological entropy of (Z',7') is @. From Lemma 5.5 we get an LCCM
extension 7' : (X,¢) — (Z',7") and (X, ¢) is strong orbit equivalent to (Y,). For u € M(zls
the measurable dynamical system (¢, u) is conjugate to (7', 7 (u)) via «’. Because the set
of ergodic probability measures on (X U {oox},¢) consists of the Dirac measure on cox and
ergodic probability measures of (X, ¢), by the variational principle the topological entropy of
(X U{ocox}, ¢) is equal to . O

When an LCCM system (X, ¢) has no finite invariant measure, the topological entropy of
(X U{oox}, ¢) is always zero because there is no invariant probability measure on X U {ocox }
except for the Dirac measure on cox. It should be also pointed out that the topological entropy
of (6X,¢) is always infinity when (X, ¢) is an LCCM system. This is because there exists a
homomorphism 7 from (X, ¢) to the n-full shift on {1,2,...,n}% such that the range 7(X) is
dense. Such a homomorphism extends to a surjective homomorphism from SX to the n-full shift.
It is well known that the n-full shift has topological entropy logn. Therefore the topological
entropy of (86X, ¢) is equal to or greater than logn, and so we have the conclusion.

6 Proper homomorphisms and skew 